
Thomas Jefferson University
Jefferson Digital Commons

Scleroderma Center Faculty Papers Scleroderma Center of Thomas Jefferson University

11-2009

Mechanism of NSF: New evidence challenging the
prevailing theory
Ben B. Newton, PhD
GE Healthcare, Medical Diagnostics Discovery Research

Sergio A. Jimenez, MD
Thomas Jefferson University

Let us know how access to this document benefits you
Follow this and additional works at: http://jdc.jefferson.edu/sclerodermafp

Part of the Medicine and Health Sciences Commons

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas
Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly
publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and
interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in
Scleroderma Center Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact:
JeffersonDigitalCommons@jefferson.edu.

Recommended Citation
Newton, PhD, Ben B. and Jimenez, MD, Sergio A., "Mechanism of NSF: New evidence challenging
the prevailing theory" (2009). Scleroderma Center Faculty Papers. Paper 3.
http://jdc.jefferson.edu/sclerodermafp/3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Jefferson Digital Commons

https://core.ac.uk/display/46973967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://jdc.jefferson.edu?utm_source=jdc.jefferson.edu%2Fsclerodermafp%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://jdc.jefferson.edu/sclerodermafp?utm_source=jdc.jefferson.edu%2Fsclerodermafp%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://jdc.jefferson.edu/scleroderma?utm_source=jdc.jefferson.edu%2Fsclerodermafp%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://jeffline.jefferson.edu/Education/surveys/jdc.cfm
http://jdc.jefferson.edu/sclerodermafp?utm_source=jdc.jefferson.edu%2Fsclerodermafp%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=jdc.jefferson.edu%2Fsclerodermafp%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.jefferson.edu/university/teaching-learning.html/


 1 

As submitted to 

Journal of Magnetic Resonance Imaging 

and later published as: 

“Mechanism of NSF: New evidence challenging the prevailing 

theory” 

Volume 30 Issue 6, Pages 1277 – 1283 

November 2009 

DOI: 10.1002/jmri.21980 

 

 

Ben B. Newton PhD* and Sergio A. Jimenez MD 

 

*Corresponding author 
Ben Newton PhD 
GE Healthcare, 
Medical Diagnostics Discovery Research, 
White Lion Road, 
Amersham, 
HP7 9LL, 
UK. 
Telephone: +44 1494 543706 
Mobile: +44 7796 000717 
Fax: +44 1494 543284 
ben.newton@ge.com 
 
 
Sergio A. Jimenez MD 
Jefferson Institute of Molecular Medicine, 
Jefferson Medical College, 
Thomas Jefferson University, 



 2 

233 South 10th Street Philadelphia, 
PA, 
USA.



 3 

Abstract 

NSF has been reported to be associated with the administration of gadolinium based contrast 

agents in patients with severely impaired renal function (SIRF), end stage renal disease (ESRD) 

or acute renal failure (ARF). Since the vast majority of these patients do not get NSF, it is highly 

likely that patient factors play a role in its development.  Although “free" or dechelated Gd
3+

 is 

thought by some to be the only trigger of NSF, recent evidence suggests that chelated-Gd
3+

 may 

be important. Chelated-Gd
3+

 Omniscan (Gadodiamide) and Magnevist (Gadopentetate) can 

directly stimulate macrophages and monocytes to release profibrotic cytokines and growth 

factors capable of initiating and supporting the tissue fibrosis that is characteristic of NSF. In 

addition, an effect of chelated-Gd
3+

 on Fibroblasts has also been demonstrated. Chelated-Gd
3+

 in 

the form of Omniscan, Magnevist, Multihance, and Prohance increased proliferation of human 

dermal fibroblasts. Indeed increased numbers of Macrophages, together with activated 

Fibroblasts and Fibrocytes are essential cells in the fibrotic process and are present in NSF skin. 

Accordingly it is important that chelated-Gd
3+

, in combination with patient cofactors, is 

considered in the aetiology of NSF associated with enhanced scans.  
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Nephrogenic systemic fibrosis (NSF) is a rare, but potentially serious, acquired systemic disease 

initially described as a form of scleromyxedema (1).  To date, it has only been reported in 

patients with severely impaired renal function (SIRF), end stage renal disease (ESRD) and those 

in acute renal failure (ARF) (2, 3, 4, 5).  The many risk factors shown to be associated with NSF 

include: oedema (6), metabolic acidosis, thrombotic events, high dose erythropoietin (EPO) (7, 

8), systemic inflammation (9), recent surgery, kidney disease (10) and Gadolinium (Gd
3+

) Based 

Contrast Agent (GBCA) exposure (11, 12) especially when used at relatively high dose GBCA 

(13, 5).  One current hypothesis assumes that the increased retention of GBCA, brought about by 

SIRF and ESRD, leads to the increased Gd
3+

 release from GBCA.  This “Free" or dechelated 

Gd
3+

 is then postulated to trigger NSF (14).  Although there is no evidence that inorganic Gd
3+

-

species directly trigger NSF, the hypothesis that dechelated inorganic Gd
3+

 might cause NSF is 

based on the following rationale: 

 

1. The elimination half-life of gadolinium chelates increases in normal human volunteers from 

1.5 hours to over 30 hours in patients with renal insufficiency (15, 16, 17, 18).   

2. Differences in in vitro stability constants control the rate and extent of Gd
3+

 release (14). 

3. Released Gadolinium precipitates and is phagocytosed by tissue macrophages and Gd
3+

 has 

been identified in the skin of affected patients (19, 20). 

4. The phagocytosis of Gadolinium triggers inflammatory and fibrotic responses at the site of 

precipitation.  

5. Detection of Gadolinium deposits in NSF tissue. 
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These ideas, coupled with in vitro stability constant parameters, have led investigators to propose 

that “free” gadolinium liberated from the chelate is the culprit species in NSF-associated with 

enhanced scans.   There are several published studies that have assessed the different 

stability constants of GBCAs using a number of in vitro and in vivo assays and, depending on the 

experimental conditions and methods of gadolinium detection, these have shown great variation 

in both absolute values, and in relation to each other (21).  It can be argued that these, and a 

number of other potential hypotheses based on comparative stability, have arisen, at least in part, 

in order to explain the difference in reported NSF case numbers between GBCA, such that agents 

with lower in vitro stability are more likely to trigger NSF.  However this theory does not take 

into account other factors which can explain the differences in reported numbers and is largely 

based on thermodynamic stability (Ktherm), a measurement made at pH 11, which does not reflect 

physiological conditions (see Table 1).   

 

When taken together these data do not provide a cause and effect relationship in vivo.   

Furthermore, the observations that only a small minority of ESRD patients develop NSF (2, 5) 

clearly indicate that other associated factors play a significant role in the development of NSF:   

 

� Gadolinium is usually, but not always found in NSF patient biopsies (20). 

� Some countries have a relatively high incidence of NSF (23), while others using the same 

agent at standard dose have few reported cases (22). 

� Although there are clear differences in Ktherm between certain agents, stability constants are 

more similar when the constant reflects a more physiological environment (24, 25).  Table 2 
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shows the conditional stability constants (Kcond), which reflect the calculated stability at a pH 

of 7.4. 

 

NSF, which was first recognized by Cowper (1) and linked to GBCA in 2006 (24), is 

characterized by induration, thickening and tightening of the skin.  Distal parts of the body are 

usually most affected (26) but the trunk as well as internal organs such as the lungs, heart, liver, 

kidneys, skeletal muscle and diaphragm can also develop lesions.   Histopathologically, NSF is 

characterized in early stages by the presence of dermal collagen interspersed with fluid oedema, 

mucin and elastin (27).   Fibocytes or “spindle” cells are abundant and very closely associated 

with the developing fibrosis.  Fibrocytes are a new class of bone marrow derived leukocyte 

subpopulation which display a distinctive phenotype with surface expression of procollagen, 

vimentin and CD34 and are capable of specifically entering and localizing to tissue injury sites 

(28). 

 

Although fibrocytes are thought to account for as many as 10% of cells that are recruited to sites 

of acute tissue injury (28) it is not known whether these cells initiate or support the development 

of the fibrotic lesions associated with NSF.  However the fact that fibrocytes possess the ability 

endocytose material in their surroundings has been proposed as a mechanism for their 

involvement in NSF (29).  Indeed, whilst an initiator role for the fibrocyte is uncertain, it is likely 

that its involvement increases as disease develops.  Although both CD34 and procollagen I are 

key markers of fibrocytes, collagen and procollagen I positivity are low in early stages.  As 

disease develops, extracellular collagen deposition appears to correlate with increases in the 

procollagen I positivity of fibrocytes (27).       
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Fibroblasts however, being resident interstitial cells, regulate responses to local foreign material 

and are thus likely to initiate any response to high level exposure of GBCA in the oedematous 

periphery.  Indeed fibroblasts are also present in early NSF disease and numbers increase 

steadily with lesion age (30).  α-Smooth muscle actin (α-SMA) positive myofibroblasts, or 

“activated” fibroblasts, become increasingly frequent and florid as lesions develop, to the extent 

that lesions resemble a site of acute tissue injury.  Myofibroblasts are abundant in the deep 

dermis and around subcutaneous tissues, colocalising exactly with developing fibrosis (1, 30).  In 

fact areas rich in activated fibroblasts stain very strongly with Alcian blue which indicate 

elevated deposition of hyaluronan and sulfated glycosaminoglycans (31).  Such data strongly 

implicate fibroblasts as effector cells in the development of NSF. 

 

Macrophages are also present in NSF tissue (30, 32).   Increased numbers of macrophages, 

increased expression of Factor XIIIa+ and TGFβ1, together with the activated fibroblasts and 

infiltrated fibrocytes are present in dermal and sub-dermal skin.  These can also extend into the 

muscles along tracts of fibrotic tissue and cause a severe infiltrative myopathy in NSF patients 

(33).  Since it has already been established that CD68+/factor XIIIa+ dendritic cells and TGFβ1 

orchestrate the host response to eliminate noxious putative etiologic agents, it is likely that these 

factors have this role in NSF (32).  The high levels of TGFβ1 expression and its role in the 

regulation of dendritic cell maturation (34, 35) suggest at least one mechanism that may promote 

lesion formation in NSF (32).   
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Gd
3+

-species have also been found in NSF tissue co-localised in areas of dermal inflammation 

rich in macrophages.  In freshly cut paraffin block surfaces gadolinium was detected ranging 

from 1 to 2270 cps/mm2 in 57 cutaneous biopsies of NSF. Gd was associated with P, Ca, and 

usually Na in tissue deposits (19).   High et al. analyzed thirteen affected skin samples from 

seven patients (20).  Gadolinium had been deposited in four of thirteen samples (four of the 

seven patients with NSF) at an average concentration of 70 ppm.  A sample of uninvolved skin 

(with actinic keratosis) from a patient with NSF had a gadolinium concentration of only 5 ppm.  

High et al (20) detected insoluble Gd
3+

-species of <1µm in diameter confined to areas of fibrosis 

in NSF tissue.  Since Gd
3+

-species was considered to be intracellularly located, possibly within 

lysosomes, it was proposed that NSF was caused by precipitated Gd
3+

-species being 

phagocytosed by macrophages which in turn produce and secrete the cytokines and growth 

factors that stimulate fibrosis (20).   

 

Whilst the observations by Thakral, Abraham and High are extremely important in our 

understanding of the disease, the reasoning currently offered to explain the presence of Gd
3+

-

species in NSF tissue may not necessarily be correct.  The basis for this assumption is that “free” 

Gd
3+

, which can be toxic to cells, is suspected to be the causative agent.  Indeed the toxicity of 

Gd
3+ 

necessitated chelation so that it could be safely used as an MR imaging agent.  Chelation 

both shields the body from damage and promotes GBCA rapid elimination.  However, there is 

now emerging alternative evidence to suggest that even chelated-Gd
3+

 has the ability to initiate 

cellular processes that were previously attributed to precipitated Gd
3+

 alone.   
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It has now been shown that chelated-Gd
3+

 (Gadodiamide (Gd
3+

-DTPA-BMA, Omniscan) and 

Gadopentetate dimeglumine (Gd
3+

-DTPA, Magnevist)) can directly stimulate human monocytes 

and macrophages to release profibrotic cytokines and growth factors capable of initiating and 

supporting the tissue fibrosis that is characteristic of NSF (36).    In these studies human 

peripheral blood monocytes were exposed to varying concentrations of GBCA and GdCl3.  

Changes in expression levels of relevant cytokines and growth factors were assessed by real-time 

polymerase chain reaction (rt PCR) of RNA isolated from peripheral blood monocytes and by 

quantitative assessment of numerous cytokines, growth factors, and other inflammatory 

mediators employing Searchlight ELISA of culture media.   Not surprisingly GdCl3 was shown 

to activate the expression of IL-6, IL-13, TGF-β and VEGF mRNA by normal human peripheral 

blood monocytes.  However, what was unexpected was the activation of cytokine release by 

Gadodiamide and Gadopentetate dimeglumine.  Cytokine levels assayed in culture supernatants 

from the treated cells by Searchlight ELISA confirmed the increased secretion of profibrotic 

cytokines and growth factors to chelated-Gd
3+

.   Such studies provide a direct mechanistic link 

with the histopathological findings of Thakral and Abraham (19) and High (20). 

 

In a series of follow-up studies Del Galdo (37) exposed terminally differentiated human 

peripheral blood macrophages to either Omniscan or saline before isolating and analysing 

cellular RNA for global gene expression microarray analysis.  Volcano plot analysis of the 

microarray data revealed that 31 genes were up-regulated by more than two-fold in the Omniscan 

treated macrophages (p<0.05).  Pathway analysis and rt PCR validation of the up-regulated genes 

strongly suggested the participation of Toll-Like Receptor (TLR) mediated activation and 

immunofluorescence analysis of activated cells demonstrated NFκB translocation from the 
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cytosol to the nucleus within minutes of GBCA application.  Indeed 5 out of 9 genes were 

chemokine genes from the CC and the CXC families.  ELISA of culture supernatants from 

cultured macrophages exposed to Omniscan indicated that CCL2, CCL8, CXCL10 and CXCL11 

were up-regulated between 10 and 240 fold higher than saline controls.  Correspondingly, 

immunofluorescence analysis of NSF skin biopsies revealed that CCL8 (MCP-2) was 

preferentially up-regulated compared to normal skin.   Such observations support the mechanistic 

relevance of the in vitro studies.   

 

Similarly, a direct effect of chelated-Gd
3+

 has also been demonstrated on fibroblasts in vitro.  In 

a study by Edward (38), gadodiamide added to culture medium, stimulated fibroblast growth. In 

the same study, fibroblasts exposed to gadodiamide synthesized increased levels of hyaluronan. 

NSF Fibroblasts cultured from the lesions of six NSF patients, all of whom were exposed to 

gadodiamide, synthesized excess levels of hyaluronan and collagen compared to control 

fibroblasts.  In a separate study (39) chelated-Gd
3+

 in the form of Omniscan, Magnevist, 

Multihance, and Prohance all increased proliferation of human dermal fibroblasts in monolayer 

culture.  Additionally, increased proliferation of cells was accompanied by an increase in 

production of Matrix Metalloproteinase-1 (MMP-1) and Tissue inhibitor of Matrix 

Metalloproteinase-1 (TIMP-1) but no increase in type I procollagen (39,40).  Specific analysis of 

the signaling events immediately after GBCA application shows activation of tyrosine kinases 

within minutes following GBCA exposure, again suggesting that chelated-Gd
3+

 could be acting 

as the trigger molecule (40). 
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Once again such studies provide a direct mechanistic link with the histopathological findings of 

Neudecker (31) and Jimenez (32) in NSF.  Perhaps as important, NSF patient serum stimulated 

control skin fibroblasts in vitro whilst healthy control serum was without effect (38).  This 

signifies that substances other than GBCA e.g. proinflammatory and or profibrotic cytokines, are 

secreted into serum by monocytes and or macrophages after GBCA exposure, and could control, 

participate or modulate the pathogenesis of NSF.   

 

These observations are extremely important since Wermuth (36) has demonstrated that 

conditioned media isolated from GBCA-exposed PBMC caused cultured human dermal 

fibroblasts to increase expression of extracellular matrix proteins and α-SMA indicating their 

conversion into myofibroblasts (36).  Since these studies show that it is possible for products of 

inflammatory cells to induce a fibrotic phenotype in normal dermal human fibroblasts in vitro, it 

is not inconceivable that GBCA, under certain conditions, could stimulate inflammatory cells to 

secrete the mediators essential to the development of NSF in vivo.  It is interesting to note that all 

but one of the six samples studied in the Edward experiments came from NSF patients with 

higher than normal levels of inflammatory cells; because of a pre-existing inflammatory 

condition at the time of their enhanced scans (38).   

 

This emerging evidence permits an alternative hypothesis (Figure 1): 

 

1. Protracted retention of GBCA in renal insufficiency provides the conditions for enhanced 

exposure of tissues to GBCA. 
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2. GBCA could themselves trigger inflammatory and fibrotic responses in the tissues of 

susceptible cells. 

3. GBCA interacting with cells may be internalised via receptor driven phagocytosis in 

macrophages and receptor mediated endocytosis in fibroblastic cells. 

4. The highly acidic environment inside lysosomes could provide the conditions for dechelation 

of GBCA. 

 

It is important to point out that receptor-mediated endocytosis of chelated Gd
3+

 has been 

proposed previously (41).  Franano observed acid dependent metabolism of chelated Gd
3+

 typical 

of lysosomal degradation at very low pH.  Thus it is possible that release of profibrotic cytokines 

precedes the lysosomal degradation of GBCA taken up by receptor-mediated endocytosis.  

Consequently the formation of tissue retained insoluble Gd
3+

-species may be secondary or a 

“footprint” of a receptor mediated cell response (Figure 2).  Such a mechanism is entirely 

consistent with the identification of Gd
3+

-species localised in areas of dermal inflammation rich 

in macrophages in NSF (19) and the detection of insoluble Gd
3+

-species of <1µm in diameter 

confined to areas of fibrosis in NSF tissue (20).    

 

Taken together the above data raise questions about the relevance of dechelated Gadolinium as a 

trigger in the development of NSF simply because chelated-Gd appears to be capable of 

stimulating the proinflammatory and profibrotic responses in cells that are able to perform 

endocytotic functions – fibrocytes, fibroblasts, macrophages and monocytes (Figure 1).  It was 

previously hypothesized that transmetallation, a process in which Gd
3+

 is displaced from the 

chelate complex, may drive Gd
3+

 accumulation in the tissues and, therefore provide the only 
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trigger for NSF.  However, since it has been shown that direct exposure of human fibroblasts, 

monocytes and macrophages to GBCA stimulates profibrotic and proinflammatory responses 

within minutes of exposure (37,40), so it is possible that chelated-Gd
3+

 is not as biologically inert 

as was previously thought.  Such data suggest that Gd-chelate could be a bioactive species 

associated with NSF in susceptible patients.  Such data raise questions about the roles of de-

chelated and retained gadolinium as trigger factors in the development of NSF.   Clearly such 

responses do not take place in every patient, thus some form of patient susceptibility is likely.  

Nevertheless, these data do help explain why cofactors such as high GBCA dose, SIRF and 

ESRD, dependent oedema and pre-existing inflammation might predispose patients receiving 

GBCA to develop NSF.  In this regard: 

 

� High single dose rather than repeated standard doses of GBCA carries the greatest risk in 

vivo (5, 11) accords with the concentrations of GBCA that are required to stimulate 

inflammatory cells and fibroblasts in vitro (36, 37, 38, 39, 40).   

� The increased exposure of interstitial tissue to GBCA brought about by the extended half life 

in ESRD and SIRF (2) accords with the effect of GBCA on macrophages and fibroblast 

inflammatory and fibrotic reactions in vitro (36, 37, 38, 39, 40).  

� The occurrence of NSF in temporal proximity to inflammatory and thrombotic episodes in 

affected patients (9, 42) suggests that macrophages and inflammatory cells may have been 

primed by these events and, thus, capable of an enhanced or exaggerated response to noxious 

agents accords with the observations that monocytes and macrophages can be directly 

stimulated by GBCA in vitro (36, 37). 
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� Dependent oedema / fluid overload leading to enhanced exposure of interstitial tissue to 

GBCA in vivo (6) accords with the observation that fibroblasts can elicit a profibrotic 

response in vitro (38, 39, 40).   
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Table 1: 

Thermodynamic Stability (Ktherm) constants of 5 GBCA. 

 Dotarem 

Gadoterate 

meglumine 

ProHance 

Gadoteridol 

MultiHance 

Gadobenate 

dimeglumine 

Magnevist 

Gadopentetate 

dimeglumine 

Omniscan 

Gadodiamide 

Stability 

Log 

(Ktherm) 

25.4 22.8 22.6 22.1 16.8 
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Table 2: 

Conditional Stability (Kcond) constants of 5 GBCA. 

 Dotarem 

Gadoterate 

meglumine 

ProHance 

Gadoteridol 

MultiHance 

Gadobenate 

dimeglumine 

Magnevist 

Gadopentetate 

dimeglumine 

Omniscan 

Gadodiamide 

Stability 

Log 

(Kcond) 

19.0 17.1 18.4 17.7 14.9 
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Figure 1: 

The following schematic of the proposed mechanism shows how the retention of chelated 

gadolinium, occurring after high dose, ESRD and pre-existing inflammation, might stimulate 

proinflammatory and profibrotic responses that are consistent with those seen in NSF.     

 

 

Figure 2: 

The following schematic suggests that the release of profibrotic cytokines following receptor 

mediated endocytosis of chelated gadolinium might precede and bring about the formation of 

tissue retained insoluble Gd
3+

 in NSF.  
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