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Abstract: A thorough understanding of needle-tissue interaction mechanics is necessary to optimize needle design, achieve 

robotically needle steering, and establish surgical simulation system. It is obvious that the interaction is influenced by numerous 

variable parameters, which are divided into three categories: needle geometries, insertion methods, and tissue characteristics. A 

series of experiments are performed to explore the effect of influence factors (material samples n=5 for each factor) on insertion 

force. Data were collected from different biological tissues and a special tissue-equivalent phantom with similar mechanical 

properties, using a 1-DOF mechanical testing system instrumented with a 6-DOF force/torque (F/T) sensor. The experimental 

results indicate that three basic phases (deformation, insertion, and extraction phase) are existent during needle penetration. 

Needle diameter (0.7~3.2mm), needle tip (blunt, diamond, conical, and beveled) and bevel angle (10°~ 85°) are turn out to have a 

great influence on insertion force, so do the insertion velocity (0.5~10mm/s), drive mode (robot-assisted and hand-held), and 

insertion process (interrupted and continuous). Different tissues such as skin, muscle, fat, liver capsule and vessel are proved to 

generate various force cure, which can contribute to the judgment of needle position and provide efficient insertion strategy.   

Keywords: Needle insertion; interaction forces; needle geometry; insertion method; tissue characteristic. 

1. Introduction 

Brachytherapy for lung cancer or liver cancer using surgical tools are common minimally invasive 

procedures, in which medical needles are widely used (Abolhassani and Patel 2007). The curative effect 

is highly dependent on the accuracy of penetration (Misra et al. 2010). Therein, tissue deformation and 

needle deflection that influence the curative effect are affected by the needle-tissue interaction forces 
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(DiMaio and Salcudean 2005). The magnitudes of insertion forces and tissue indentation have been 

investigated considering different parameters before. Thus, a thorough understanding of needle-tissue 

interaction mechanics is presented, which is beneficial to realistic surgical simulation, preoperative 

planning and robot-assisted mechanical procedures. Gerwen et al. (2012) provided an extensive 

overview of experimental insertion-force data available in the literature and investigated the numerous 

factors that influence the needle-tissue interaction. Okamura et al. (2004) characterized the effects of 

needle diameter and tip type on insertion force using a silicone rubber phantom. Forces for larger 

diameter needles are higher due to increased cutting and friction forces. Mahvash et al. (2010) showed 

that increasing the velocity of needle insertion will reduce the force of rupture event when it increases the 

energy release rate. To simulate the multilayer insertion during surgery, Yan et al. (2006) performed the 

extensive experiments in various phantoms, including pure gelatin phantoms and animal tissue phantoms. 

Lewis et al. (2000) investigated the effect of bevel orientation on force required to puncture human dura 

using a Tuohy needle. In addition, the needle sharpness, rotating needle insertions (Meltsner et al. 2007), 

lubrication (Stellman 2009), and decay time (Choy et al. 2002) have been investigated. Nevertheless, a 

systematic research about influence factors of needle-tissue interaction is still imperative and necessary. 

Therefore, a comprehensive investigation has been performed on the basis of the experimental data. The 

numerous variable parameters in the research include needle geometries, insertion methods, and tissue 

characteristics. 

The paper is organized as follows: Section 2 is dedicated to introduce the experimental material, 

experimental equipment, the needle-tissue interactions model and a statistical analysis method. The 

analysis of experimental results and discussion are described in Section 3. Finally, we summarize the 

main contribution of this research and talk about future work in Section 4. 
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2. Materials and Methods 

2.1. Experimental material 

A transparent Poly (vinyl alcohol) (PVA) hydrogel was adopted as tissue-equivalent material in a 

series of experiments, especially in tests which investigate needle geometries and insertion methods. 

The PVA hydrogel with specified formula was prepared by means of physical and chemical 

cross-linking. It has been demonstrated that when PVA concentration is 8g/dl with a mix water/NaCl/ 

DMSO solvent, prepared with 7 freeze/thaw cycles, the material has similar biomechanical 

characterizations and morphological structure with porcine liver (Jiang and Liu 2011). The force profile 

acquired from linearly penetration into porcine liver and PVA hydrogel was shown in Fig. 1(a). The test 

data of PVA hydrogel showed a resemblance to that measured from porcine liver without capsule, 

which provided evidence that the PVA phantom can be used in ex vivo insertion test with 

tissue-mimicking properties. Moreover, PVA phantoms can offer a controlled environment for 

repeatable experiments and a clear observation owing to its transparency. Therefore, at the time of 

testing, PVA samples (n=5 for each factor) were sized into 60*60*60mm
3 
cubes using razor blades and 

were kept in closed containers when not in use to prevent dehydration (Fig. 1(b)). Mean forces can be 

calculated from data that measured from the 5 tests designed for each factor to eliminate the influence 

of externalities.  

 

 

 

 

 

 

 

 

(a) (b) 



5 

 

 

Fig. 1. (a) shows the comparison result of experimental interactive forces loaded on porcine liver and on PVA hydrogel, while (b) 

is the PVA hydrogel with similar mechanical properties to porcine liver and transparent effect. 

2.2. Experimental equipment 

A 1-DOF mechanical testing system was used for biomechanical testing of needle insertion (Fig.2). 

The PVA phantom was placed within a test chamber in front of the horizontal actuator, which allowed 

for control of sample test locations. A horizontal actuator was equipped with a 6-DOF force/torque (F/T) 

sensor (Nano-17 from ATI Industrial Automation) to measure the forces and torques acting on the needle 

and a custom needle mount to hold flexible needles (7G, bevel tip) and allow for penetration into the 

materials. The commercially available puncture needles with different types were adopted in the 

experiments to discuss the influence of needle geometry during the insertion phases. A servo motor 

(MINAS A4 from Panasonic Corporation of China) was used to drive needle into phantoms by the 

lead-screw mechanism at different velocities, and specified insertion velocity during penetration was 

maintained using a proportional derivative controller for the transverse platform.  

 

Fig. 2. The experimental setup for data collection. 

2.3. Analysis of needle-tissue interactions model  
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In order to build the insertion force model accurately, we make the needle-tissue interaction force 

divided into three parts: stiffness force, friction force, and cutting force (Okamura et al. 2004).  

The stiffness force is due to the skin viscoelasticity or the elastic properties of organ capsule during 

the puncture in the surface. We employ a contact model (Fig. 3(a)) here that calculates the 

force-deformation response of a needle in contact with a soft tissue. The contact mechanics problem can 

be solved from a systematic use of Hankel transforms and the theory of dual integral equation. The 

elementary solution enables us to derive the expressions (Sneddon et al. 1965): 
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following equation:
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Fig. 3. The sketch of needle-tissue interaction force model. (a) Contact mechanics model for stiffness force, (b) Modified Winkler’s 

foundation model for friction force. 

 

(a) (b) 
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where 1E , 2E and 1 , 2 are the Young’s modulus and the Poisson ratio of needle and soft tissue, 

respectively. Although the expression (2) is the solution to the axisymmetric Boussinesq problem, the 

beveled-tip needle is analogous to the conical punch in that they are point contact with the soft tissue. For 

simplifying the formula of the stiffness force, we take xxf )(  where  cota for normal 

penetration by a bevel angle 15 . Then the function )(xf can be written as: 

cot)( axxf 
                              

(4) 

Substituting the expression (4) and (1) into equation (2), the stiffness force is: 

2)tan(
2

hrEf stiffness 
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(5)

                                  

 

Combine Eq. (3) and Eq. (5), a new stiffness force formula is derived: 
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where h and l represent the axial length and transverse length of bevel tip (Fig. 4), respectively. Since 

we only change the needle diameter, the Young’s modulus and the Poisson ratio of needle and soft tissue 

remains constant, and then the stiffness force of each needle with different diameter can be reduced to 

equation as follows: 
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where id and iz stand for the diameter of insertion needle (that is, maximum transverse length of 

bevel tip) and maximum axial length of bevel tip (Fig. 4), respectively. The peak value of stiffness 

force can be expressed below: 
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Fig. 4. Penetration into soft tissue using needles with different diameters and the same bevel angle. 

The needle force distribution indicates that axial forces between the needle and the tissue phantom 

are relatively uniform along the needle shaft (DiMaio and Salcudean 2003), so it is reasonable to assume a 

linear lateral force response for small displacement. Thus, the distributed force along the needle axis 

could be modeled as a modified Winkler’s foundation (Yankelevsky et al. 1989) (Fig. 3(b)) with linear 

stiffness coefficient:
  

 khFn                                     
(9)

 

where nF is the normal force along the needle shaft due to the tissue deformation,  is the settling amount,

k is the foundation modulus and h refers to the contact length. 

Biot (1937) has developed the expressions of foundation modulus of the elastic beam k: 
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where  and  are the working condition coefficient. Here we chose 65.0 , 
12

1
 , the foundation 

modulus, k, used in needle-tissue interaction has been expressed as: 
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where I and b are moment of inertia of the needle and foundation width, respectively. The friction force 

acts on the side wall of the needle shaft in the axial direction is viewed as Coulomb friction. Then, the 

friction force can be expressed as: 

nfriction Ff 
                                          

(12) 

 is the friction coefficient between needle and the soft tissue. Substituting this expression (9), (11) into 
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Eq. (12). In this work, the friction is simplified using 2D and Db  , D is the outer diameter of 

needle. The friction force model can be written as: 
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Hing et al. (2006), found that the stable cutting force is more or less constant, in porcine liver ex 

vivo, with some fluctuations due to rupture, depending on the level of inhomogeneity of the tissue. Thus, 

the cutting force can be expressed as: 

Cfcutting                                             
(14) 

The complete insertion force model profile is established by summing up equations obtained above. 
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Where Az is the position of the undeformed tissue surface, Bz is the position of the maximally 

deformed tissue surface before puncture, Cz is the maximal insertion depth, and Dz is the position where 

the needle separates from the soft tissue. 

2.4. Statistical analysis 

Data was analyzed using an analysis of variance (ANOVA) and a standard statistical software 

package (SPSS 19.0, IBM SPSS, NY, USA). For biomechanical analysis, multiple comparisons were 

made within levels of independent variables. p-values were calculated for a significance level α=0.05. 

The null hypothesis (i.e., equal mean at all factor levels) was used to determine if the mean values of 

different factors (e.g., needle geometries, tissue characteristics and insertion methods) were statistically 

different. The null hypothesis was rejected for p<0.05. 

3. Results 
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During needle penetration, three basic phases of interaction (Fig. 5) are distinguished as follows: 

(a) Deformation phase (from A to B): Tissue deformation occurs when the needle comes into 

contact (A) with the skin or organ capsule until it ruptures, and the insertion force reaches a peak value 

(B). In this phase, the insertion force is equal to the stiffness force. 

(b) Insertion phase (from B to C): The needle penetrates into soft tissue. During insertion phase, the 

measured insertion force is a summation of friction and cutting force, which is called total force. 

(c) Extraction phase (from C to D): The needle is extracted from the soft tissue. The extraction force 

is due to the friction force because there is no incision in this phase. 

Fig. 5. The force profile of needle-tissue interaction forces at 3mm/s. 

3.1. Influence of needle geometry 

To discuss the effect of needle geometries on insertion force, we choose needles with different 

diameters, tip shapes, and bevel angles. Table 1 lists the tip types, tip angles and diameters. The 

experiments for each factor are done for 5 times and each test is conducted in different positions of the 

same PVA phantom, and insertion velocity is constant at 4mm/s in order to avoid the influence of other 

factors. The insertion needle and force profile is shown in Fig. 6. The stiffness force is found to increase 

remarkably with diameter (Fig. 6(a), p≈0), and it can be observed that the slope of total force is almost 
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parallel to each other.  

The stiffness force enlarged with the increasing of bevel angle, which is consistent with Eq. (5), 

while the total force is found to decrease quickly (Fig. 6(b), p=3.0834E-210, p<0.001). The total force 

appears periodic fluctuation when the bevel angle is larger than 30°, and the amplitude of the fluctuation 

is equal to 0.2471±0.056N. 

 

Table1 

Diameters, tip types and bevel angles of needles used in experiments, with puncture forces and the slope of axial insertion forces. 

Needle Type 

Diameter Puncture  Force Force density 

(mm) (N) (N/mm) 

30°bevel 0.7 0.1456 0.017 

30°bevel 0.9 0.2391 0.021 

30°bevel 1.2 0.3087 0.022 

30°bevel 1.8 0.5441 0.025 

30°bevel 3.2 1.4542 0.026 

30°Cone 0.7 0.2892 0.053 

30°diamond 0.7 0.3239 0.045 

30°Bevel 0.7 0.507 0.021 

blunt 0.7 1.169 0.010 

10°bevel 0.7 0.2312 0.045 

30°bevel 0.7 0.2438 0.027 

45°bevel 0.7 0.4491 0.012 

60°bevel 0.7 0.5132 0.011 

 

The needle tip type factor is used to be an illustrative example to show the analysis of variance 

(Table 2). In deformation phase, the blunt needle tip has the largest stiffness force, while the conical 

needle tip is diametrical (Fig. 6(c), p=1.0289E-137, p<0.001). In insertion phase, the conical tip has the 

highest insertion force growth rate, while the blunt tip is distinct. In addition, the conical and triangular 

tips which are symmetrical show a steady increase in insertion force, but the beveled and blunt tips which 
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are asymmetrical exhibited periodic fluctuation. Moreover, microscopic observations using SZX7 series 

of stereoscopic microscope are carried out to investigate the interactions at needle tip and effects on 

insertion force. The triangular pyramid tip creates triangular shaped crack, blunt needle generates a ring 

crack and conical needle and bevel needle initiates a planar crack (Fig. 6(d)). It can be seen that the 

damage degree of tissue caused by conical needle is minimum while the blunt needle is maximum, and it 

goes conversely with the value of total insertion force. 
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(a) 
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Fig. 6. The insertion forces versus displacement during insertion with different needle geometries into PVA phantom at 4mm/s. (a) 

Diameter, (b) Bevel angle, and (c) Tip shape. (d) Crack shapes in PVA phantom. Left-to-right: triangular tip, blunt, conical, bevel 

angle. 

Table 2  

Analysis of variance table for illustrative example. 

Source of variation df SS MS F P 

Between treatments  3  140.786 46.929 238.122 1.0289E-137 

Error (within treatments) 2820  555.760 0.197 

 

 

Total 2823 696.546 

  

 

df, degrees of freedom; F, test statistic; MS, mean squares; SS, sums of squares.  

3.2. Influence of tissue characteristics 

To investigate the influence of tissue characteristics on penetration, different biological tissues are 

used to substitute PVA phantoms. Needle-tissue interaction forces are depicted in detail, including the 

porcine skin (samples n=5, Fig. 7(a)), muscle and fat (n=5, Fig. 7(b), p≈0), liver capsule and vessel 

(n=5, Fig. 7(c), p≈0). Results with skin present two peaks of force curve, which stand for the peak force 

of stratum corneum and dermis, respectively (Jee and Komvopoulos 2014). It can be seen that the peak 

force of dermis is 1.6 times larger than that of stratum corneum, with the same result of literature 

shown by Frick et al. (2001). And it suffered a sharp decrease before it reached an equilibrium 

(d) 
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(0.5136N with a fluctuation of ±0.0356N), which is the same as literature shown by Butz et al. (2012) 

owing to the penetration from dermis to hypodermis. Experimental results suggest that insertion forces 

are growing linearly and the peak force of muscle and fat are 0.6078N and 0.2040N, respectively. For the 

capsule and vessel of porcine liver, the stiffness forces are equal to 0.1623N and 0.5912N and the 

corresponding deformations are 11.74mm and 7.456mm, respectively. It is obvious that the insertion 

force of skin and muscle is larger than fat, and probably it triples the stiffness peak force of fat. The 

experimental force data can be used to identify the location of needle tip and tissue-type. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The insertion forces of different tissues. (a) Skin, (b) Muscle and Fat, (c) Capsule and Vessel. 

To make sure the influence of liver structure on insertion force, 5 samples of porcine liver were 

used to perform the experiment. Force curve profiles of penetrations into porcine liver can be seen in 

Fig.8 (p=1.2386E-98, p<0.001). No obvious fluctuation appeared in penetration process, which 

(b) (c) 

(a) 

1 

2 



15 

 

indicates that vital vessels were inexistent in insertion trajectory. Whereas, there are two evident peak 

forces in position A and B, and the increment is larger than 0.6N. A precipitate drop appears in position C, 

which dues to the pass-through from vascular wall to vascular cavity until to vascular wall. There is a 

precipitate drop in position D but the variation is small, which is because of the asymmetry of tissue 

density. Force in position E has much bigger fluctuation frequency due to the insertion into vascular 

intensive areas.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The insertion force curves of twice insertions into porcine liver. (a) Safe insertion into porcine liver without meeting vital 

tissues, (b) Dangerous insertion into porcine liver, meeting some vital tissues, and (c) is a porcine liver, which is less than eight 

hours in vitro. A and B represent fascia and aortic endothelial vessel, while C and D stand for smooth surface and cross section, 

respectively. 

(a) (b) 

(c) 
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To imitate the intraoperative insertion process, 5 groups of multi-layer pork and PVA phantoms 

were used as materials in test. Each group of PVA phantoms was prepared with the thickness of 20mm, 

20mm and 25mm, which was used to simulate the fat, muscle and target, respectively. The insertion 

force curve of needle penetration through several tissue layers is shown in Fig.9 (p=2.6239E-136, 

p<0.001). Three rupture events occurred in penetration process, which can be inferred that a sharp force 

increase emerged when needle started to insert into another tissue. Stiffness force was nonexistent in Fig. 

9(b), since the multi-layer pork was peeled and there was no large deformation. Sudden enlargement of 

insertion force indicates that the needle punctures into new organization structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Insertion forces acting on the needle when inserted through three layers that have different mechanical properties. (a) PVA 

phantom, (b) biological tissue. 

3.3. Comparisons with experimental results  

(a) 

(b) 
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From Eq. (8) (13) and Fig. 6(a) it is clear that the stiffness force and friction force are increasing 

with diameter. Therefore the experimental insertion data obtained from different needle diameter is 

consistent with the result obtained from theoretical analysis. Figure 6(b) is found to be consistent with 

Eq. (5), because the stiffness force both enlarged with the increasing of bevel angle. The tissue density 

of fat is much less than muscle, that is musclefat EE 22  . In addition, fat has an effect on lubrication, 

which reduces the friction coefficient between tissue and needle ( musclefat   ). Seen by Eq. (13), the 

insertion force of fat is much less than muscle which is consistent with the experimental data. In 

general, the experimental result is basically coincident with the theory analysis expect for some slight 

data fluctuation, which may be caused by the insertion method. 

4. Discussion   

During the experimental process the interaction between needle and tissue is found to be 

influenced by the way the needle is inserted. For example, manual insertion will yield different results 

than automated insertion. Likewise, interrupted insertion results will be different from the continuous 

insertion, and force may be influenced by insertion velocity. 

As illustrated in Fig.10, three groups of experiments are performed using a 7G bevel needle and 

PVA phantoms (n=5 for each group) with different insertion velocities, drive mode, and insertion 

processes. Experimental results show an increase slope of the force-position curve with the increasing of 

insertion velocity, which is from 0.5 mm/s to 20 mm/s (Fig. 10(a), p=3.9871E-129, p<0.001). 

Exponential growth appears initially, but total insertion force starts to remain constant when speed is up 

to 5 mm/s or higher than that. However, the stiffness force seems to be independent of insertion velocity.  

A contrast experiment between robot-assisted insertion and hand-held insertion is performed, and 

3D Guidance track STAR electromagnetic locator was used to measure hand-held insertion velocity. 
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Robot-assisted needle insertion has the similar stiffness force with manual insertion in deformation phase, 

while it has larger slope of force curve and less fluctuation in insertion phase. Hand-held insertion is 

unsteady yet, but it fluctuates around 5mm/s (Fig. 10(b), p≈0).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The insertion forces versus displacement or times during insertion with different insertion methods into PVA phantom.  
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(a) Insertion velocity, (b) Hand-held insertion vs. Robot-assisted insertion, and (c) Continuous insertion vs. interrupted insertion. 

As we know, to ensure the precision of seed implantation, surgeons usually halt for several 

seconds in insertion process to search the target under image guided navigation. It indicates that the 

interrupted insertion has a higher maximum insertion force (1.809N) and force density (0.0282 N/mm) 

than that of continuous insertion (1.278N, 0.0196 N/mm) (Fig. 10(c), p=2.8926E-156, p<0.001). An 

exponential decay in force was observed once the insertions halt, which is similar to the stiffness force in 

deformation phase. Obviously, the decay time of force is shorter when insertion velocity is faster, and the 

constant force is equal to 40% of the maximum force during interrupted insertion.   

5. Conclusion 

A systematic and experimental research was presented on needle-tissue interaction mechanics. 

Experiments are conducted where the needle geometric properties, insertion methods and tissue 

characteristics are varied. Analysis results of effect factors are shown in Table 3, in which the positive 

correlation, negative correlation or inconclusive correlation are remarked between stiffness force, 

friction force, and total force. Experimental results indicate that increasing needle diameter and 

insertion velocity results in larger insertion force. Varying needle tip shapes demonstrates that blunt 

needle produces largest puncture force and conical needle generates largest force slope. Different 

needle bevel angles from 10° to 85° result in insertion force decrease and stiffness force increase 

monotonically. Halting for 20s during insertion will enlarge insertion force. Robot-assisted needle 

insertion has a larger force compared with hand-held insertion. In view of tissue characteristics, when 

needle inserts into multi-layer tissue with different mechanical properties, several stiffness forces will 

emerge in the force curve. Insertion force of skin and muscle is larger than fat, and probably it triples the 

stiffness peak force of fat. If vessels occur in insertion trajectory, evident force variation and fluctuation 
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will appear, which will be harmful to vital tissues. 

 

 

 

 

 

Table 3  

Analysis results of influence factors and empirical value of each parameter. 

 

 

  

 

Empirical value 

Needle geometry Needle diameter  + 
 

+ 1.2~1.8mm 

Tip edges  - + + Beveled  

Bevel angle  + - - 10°~30° 

Insertion method Insertion velocity  
 

+ + 5~10mm/s 

Drive mode  
 

+ + Continuous  

Insertion process  0 + + Robot-assisted 

Tissue 

characteristic 

Muscle, fat vs. skin + + + Skin 

Liver capsule and vessel + 
 

+ Trajectory  

Multi-layer phantom 
   

 

Multi-layer tissue 
   

 

+, pos. correlation; -, neg. correlation; 0, no corr. or inconclusive. 

Influence factors presented in this study can be considered and added to construct more accurate 

needle-tissue interaction force models in future. The research on needle geometries can assist to 

optimize needle design (Groves et al. 2012) by using suitable diameter, needle tip, and bevel angle (see 

Table 3). The study of insertion methods is beneficial for robotically steering needles by means of 

choosing appropriate insertion velocity and operation strategy. The research on tissue characteristics 

could be favorable for providing the location of needle tip during penetration, which can be seen from 

stiffnessf cuttingfriction ff 
totalf
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the trend of force curve mentioned in Section 3. In this paper, the research was focused on discussing 

single influence factor, while future work will be extended to multivariate analysis, and the effects of 

variable parameters to needle deflection should be investigated.  
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