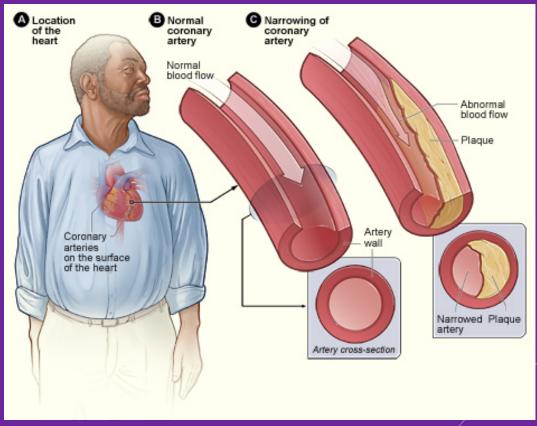


Reducing the Population Health Burden of Cardiovascular Disease

Joseph A. Ladapo, MD, PhD Assistant Professor of Medicine Department of Population Health NYU School of Medicine

Disclosures: K23 HL116787 Award from National Heart, Lung, and Blood Institute; Consultant for CardioDx, Inc

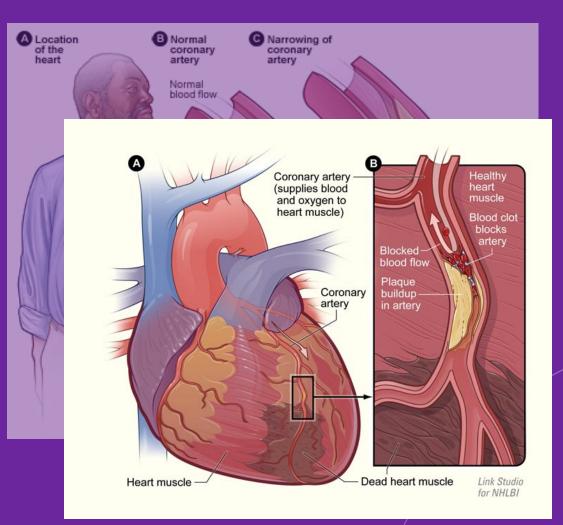
Learning Objectives


- 1. Describe the public health burden of cardiovascular disease in the US and the role of cardiovascular diagnostic testing
- 2. Explain the comparative cost and cost-effectiveness of diagnostic technologies vs. public health interventions for reducing cardiovascular disease morbidity and mortality
- 3. Identify the policy implications of recent utilization growth in diagnostic technologies for coronary heart disease, and the drivers of that growth
- 4. Discuss population health implications of the ACA for cardiovascular disease prevention and testing

Cardiovascular Disease (CVD) is a Major Public Health Challenge

Epidemiology

- 15.4 million adults in the US live with coronary heart disease (CHD) and 795,000 have a stroke each year
- CHD: 6.4% of adults overall; 7.9% of men and 5.1% of women
- CHD affects 20% of persons ≥ 65 years


Picture source: NHLBI

Cardiovascular Disease (CVD) is a Major Public Health Challenge

Epidemiology

- 15.4 million adults in the US live with coronary heart disease (CHD) and 795,000 have a stroke each year
- CHD: 6.4% of adults overall; 7.9% of men and 5.1% of women
- CHD affects 20% of persons ≥ 65 years

Risk Factors for Cardiovascular Disease

Diabetes

Smoking

Physical Inactivity

High Blood Pressure

Obesity

Morbidity and Mortality Attributable to Cardiovascular Disease in the United States

Morbidity/Quality of Life

 CVD accounts for 18% of total lost disability-adjusted life years (DALYs) in developed countries

Mortality

- CHD accounts for over 386,000 deaths annually (1 in 6 of all deaths)
- More than half of sudden cardiac deaths occur in people with no prior history of heart disease

Myocardial infarction

- Nearly one million new or recurrent heart attacks each year
- Early diagnosis is important because treatment & preventive practices significantly reduce morbidity and mortality

National Health Interview Survey, 2010; Go, *Circulation* 2013; WHO, Global Burden of Coronary Heart Disease, 2002

Healthcare Utilization and Costs Attributable to Coronary Heart Disease are Substantial

Healthcare utilization and costs

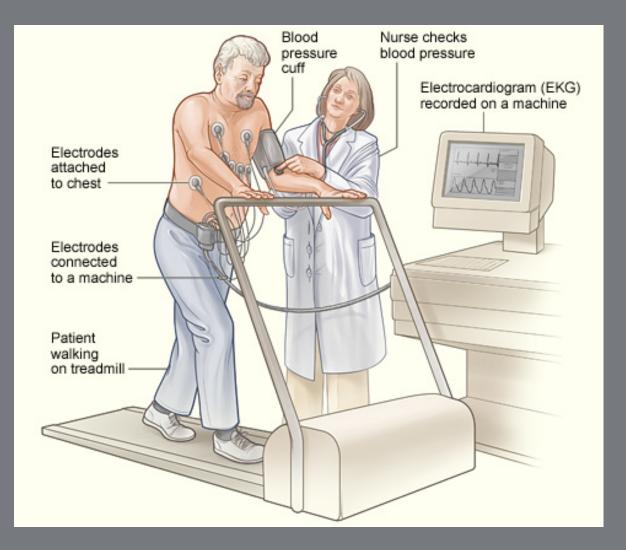
- CHD costs \$195.2 billion in direct and indirect costs annually (2009)
- In 2006, Medicare spent \$11.7 billion on inpatient care for CHD
- By 2030, medical costs for CHD (real 2010\$) projected to increase ≈100%

Ambulatory care

 In 2009, there were over 14 million ambulatory care visits with CHD as the first-listed diagnosis

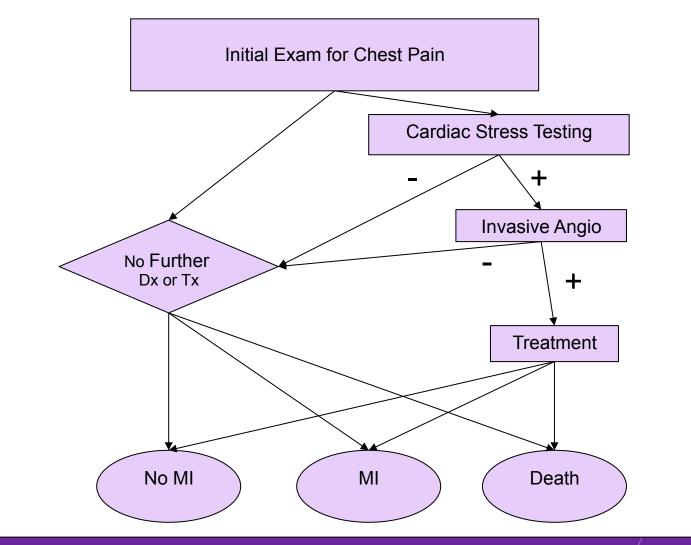
Hospital care

- 1.3 million hospital admissions with CHD listed as the first diagnosis
- 954,000 percutaneous coronary interventions (PCIs), 397,000 cardiac bypass surgeries, 1.03 million diagnostic cardiac catheterizations

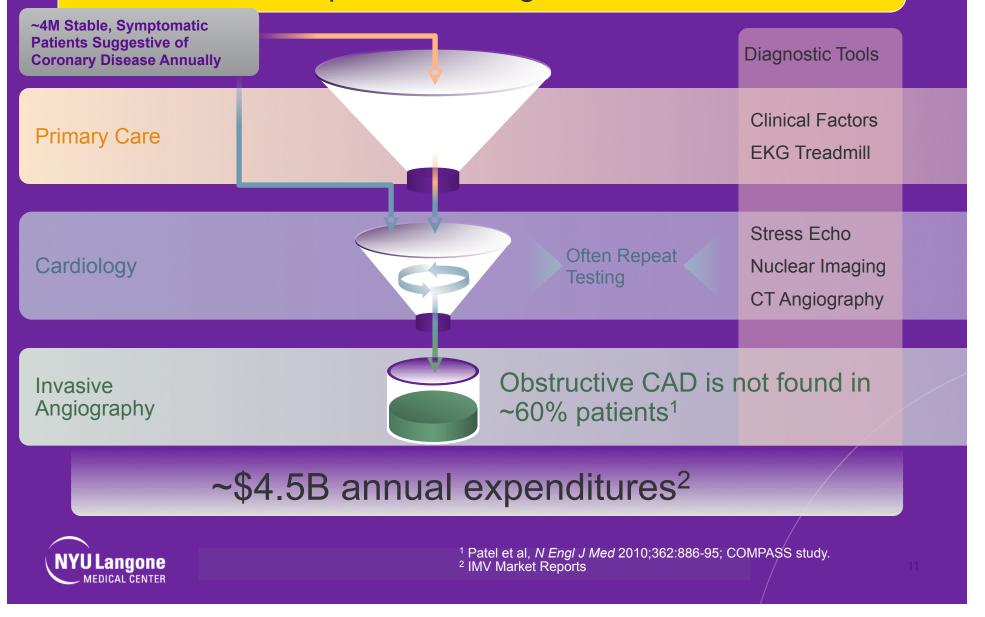


National Health Interview Survey, 2010; Go, Circulation 2013

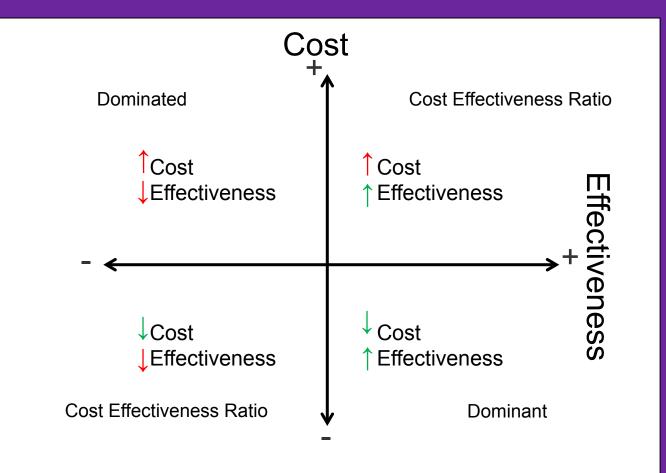
In Men And Women Without A History Of CHD, Noninvasive And Invasive Testing Are Central To Making A Diagnosis



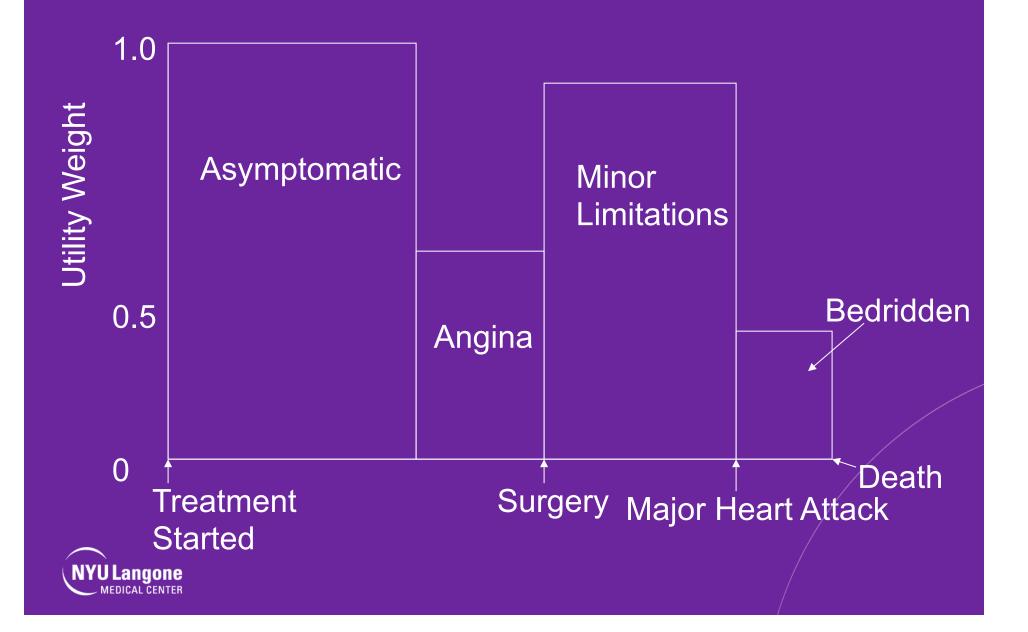
Cardiac Stress Testing

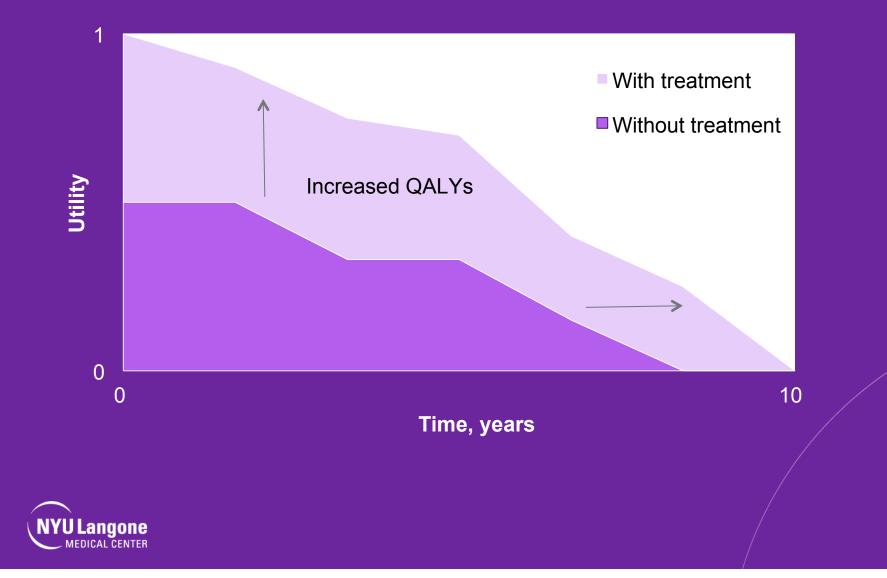

Clinical Decision Pathway for Patients Evaluated for CHD

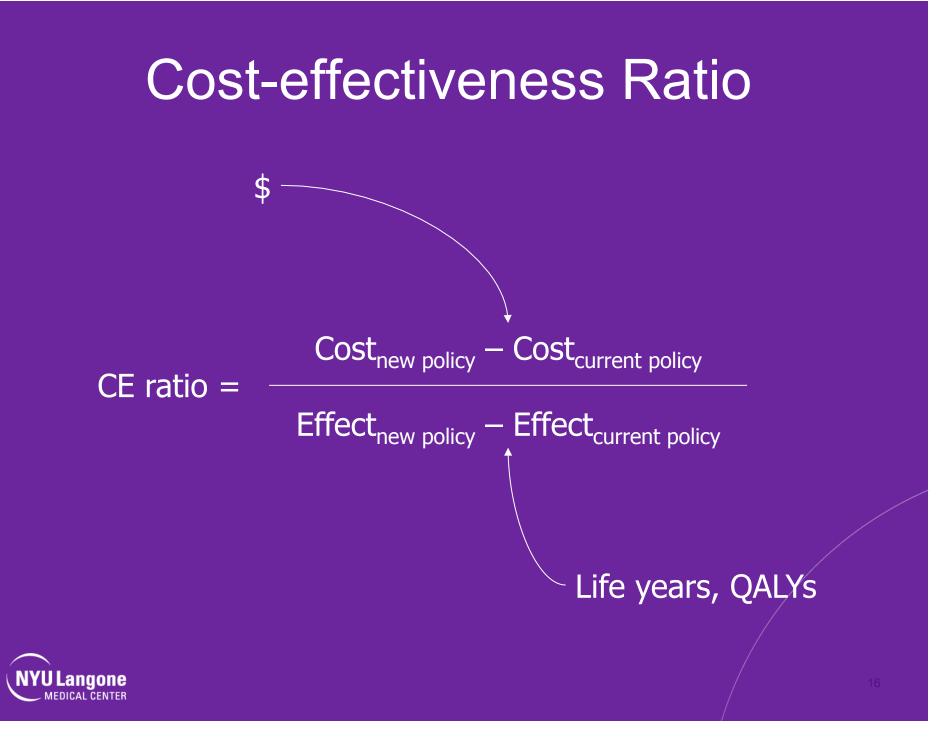
Abbreviations - Dx: Diagnosis, Tx: Treatment, MI: Myocardial Infarction



Primary Care Physicians Routinely Manage Patients With Suspected or Diagnosed CHD


Cost-effectiveness of Diagnostic Tests vs. Public Health Interventions for CHD





Quality-Adjusted Survival: Heart Attack Example

QALYs

Cost-effectiveness of Diagnostic Tests vs. Public Health Interventions for CHD

NYU Langone MEDICAL CENTER Sources: Ladapo et al, *JACC* 2009; Kuntz et al, *Annals* 1999; Phelps et al, *AHJ* 2014; Bibbins-Domingo, *NEJM* 2010; Weintraub et al, *Circulation* 2011

Cost-effectiveness of Diagnostic Tests vs. Public Health Interventions for CHD

Public health interventions tend to be more costeffective but individual patients benefit from diagnostic tests, and diagnosis often cannot be made without them

Sources: Ladapo et al, *JACC* 2009; Kuntz et al, *Annals* 1999; Phelps et al, *AHJ* 2014; Bibbins-Domingo, *NEJM* 2010; Weintraub et al, *Circulation* 2011

Challenges With Cardiac Stress Test Use: Clinical, Payer, and Policy Concerns

1. Too much low-value, high-intensity testing
 → less cost-effective at population level

 \Box 2. Poor diagnostic accuracy \rightarrow missed diagnoses

□ 3. Unnecessary radiation \rightarrow radiation-related cancers

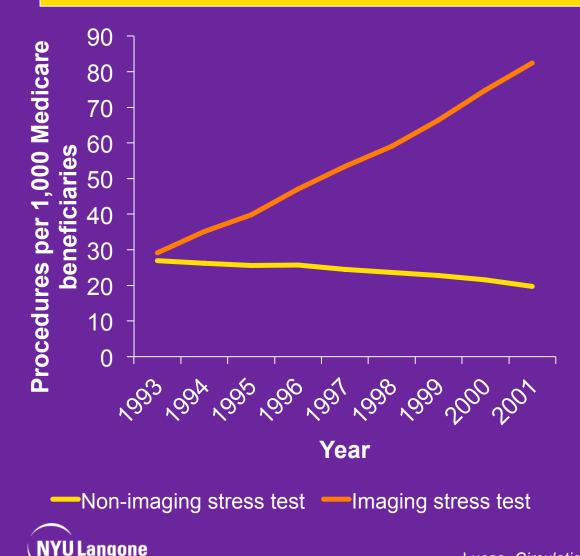
Trend Toward Use of Increasingly Intensive Technologies in Patients Evaluated for CHD

Then

Trend Toward Use of Increasingly Intensive Technologies in Patients Evaluated for CHD

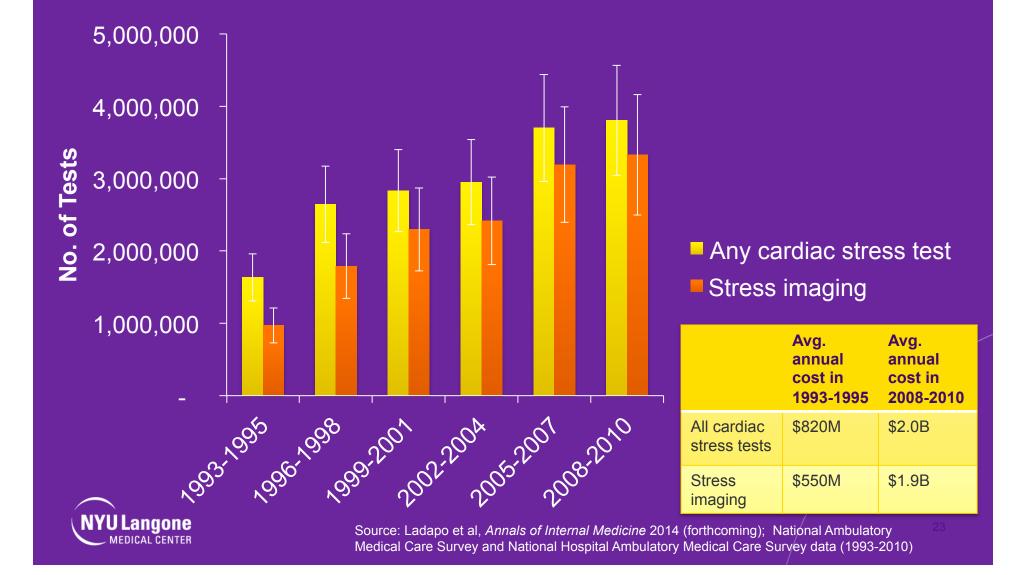
Now

Then



Source of pictures: NYU School of Medicine, Bleiglass at the English language Wikipedia

Utilization of Cardiac Imaging Stress Tests Has Grown Tremendously



Medicare population

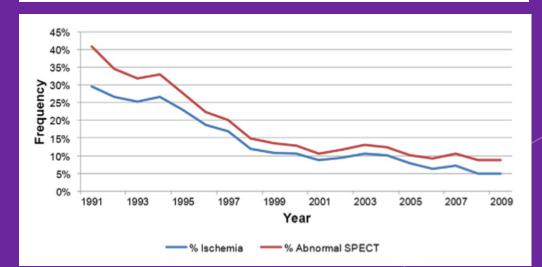
- Between 1993 and 2001, nearly 300% increase in use of imaging stress tests (stress echocardiography, ECHO; myocardial perfusion imaging, MPI)
- Rose from 29 to 82 per 1,000 beneficiaries
- Rate of non-imaging stress tests fell modestly
- Rate of PCI doubled from 6 to 12 per 1,000 beneficiaries

Lucas, Circulation 2006

Ambulatory Care: Cardiac Stress Tests In Patients Without CHD, From 1993 To 2010

Unnecessary Testing is Common

Our Threshold for Testing Patients May be Falling


- 39,515 patients undergoing stress MPI between 1991-2009 at Cedars Sinai
- Incidence of abnormal scans
 fell from 41%→9%
- Incidence of ischemic scans fell from 30%→5%
- Only 3% of patients who did not have typical angina and could exercise had an abnormal scan

Journal of the American College of Cardiology © 2013 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 61, No. 10, 2013 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2012.11.056

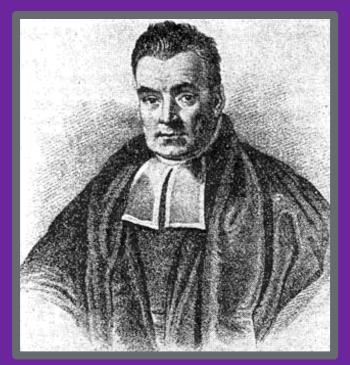
Temporal Trends in the Frequency of Inducible Myocardial Ischemia During Cardiac Stress Testing

1991 to 2009

Alan Rozanski, MD,* Heidi Gransar, MS,†‡ Sean W. Hayes, MD,†‡ James Min, MD,†‡ John D. Friedman, MD,†‡ Louise E. J. Thomson, MBCHB,†‡ Daniel S. Berman, MD†‡ New York, New York; and Los Angeles, California

Challenges With Cardiac Stress Test Use: Clinical, Payer, and Policy Concerns

✓ 1. Too much low-value, high-intensity testing \rightarrow less cost-effective at population level


2. Poor diagnostic accuracy \rightarrow missed diagnoses

□ 3. Unnecessary radiation \rightarrow radiation-related cancers

Uncertainty About How to Interpret Diagnostic Test Results is Common

• Bayes' theorem defines how pretest disease risk and diagnostic test performance can be used to guide interpretation of test results

Reverend Thomas Bayes

P(B|A)P(A)P(A | B)P(B)Missed or Correctly misdiagnosed identified negatives negatives positives positives care

Referral Bias Influences Diagnostic Accuracy and Test Interpretation

Referral bias

- Sometimes called "verification bias" or "workup bias"
- Occurs because higher-risk patients are preferentially referred to cardiac catheterization
- Bayesian methods needed to adjust diagnostic test performance for referral

Biases clinical decision-making

 Because it biases test performance, it may also bias clinical decision-making

Most studies do not account for referral

NYU Langone

 Studies of stress test performance do not adjust for this phenomenon so estimates of sensitivity and specificity biased

Journal of the American Heart Association

Clinical Implications of Referral Bias in the Diagnostic Performance of Exercise Testing for Coronary Artery Disease

Joseph A. Ladapo, Saul Blecker, Michael R. Elashoff, Jerome J. Federspiel, Dorice L. Vieira, Gaurav Sharma, Mark Monane, Steven Rosenberg, Charles E. Phelps and Pamela S. Douglas

Ladapo et al, JAHA 2013

Cardiac Catheterization Referral Rates After Normal Exercise ECHO or MPI Results

Study	No. referred/No. normal		Referral rate (95% CI)	% Weight
Cecil et al, 1996	44/1265	-	0.03 (0.02, 0.04)	5.83
Charvat et al, 2004	0/60	↔—	0.01 (-0.01, 0.03)	4.82
Diamond et al, 2008	98/3992	₩	0.02 (0.02, 0.03)	6.08
Hachamovitch et al, 2004	16/537	- B +	0.03 (0.02, 0.04)	5.54
Hannoush et al, 2003	7/215		0.03 (0.01, 0.06)	4.72
Hosie et al, 1993	2/57	← * ──	0.04 (-0.01, 0.08)	2.75
Jang et al, 2011	77/1192		0.06 (0.05, 0.08)	5.57
Kane et al, 2008	185/4637	*	0.04 (0.03, 0.05)	6.05
_auer et al, 1996	62/1667	-	0.04 (0.03, 0.05)	5.89
_auer et al, 1996	44/1215	-	0.04 (0.03, 0.05)	5.81
Miller et al, 2002	97/7528		0.01 (0.01, 0.02)	6.13
Nallamothu et al, 1995	53/2027	+	0.03 (0.02, 0.03)	6.00
Roeters van Lennep et al, 1999	5/207		0.02 (0.00, 0.05)	4.98
Roeters van Lennep et al, 1999	7/160		0.04 (0.01, 0.08)	3.99
Roger et al, 1997	65/1308	1	0.05 (0.04, 0.06)	5.73
Roger et al, 1997	26/1348	*	0.02 (0.01, 0.03)	5.98
Schwartz et al, 1993	268/1075		→ 0.25 (0.22, 0.28)	4.52
Vlachopoulos et al, 2005	0/39	< • · · ·	0.01 (-0.02, 0.05)	3.75
Vennike et al, 2010	0/141	€	0.00 (-0.01, 0.01)	5.86
Overall (I-squared = 96.3% , p = 0	.000)	\diamond	0.04 (0.03, 0.05)	100.00
NOTE: Weights are from random	effects analysis			
		1 I 0 .125	.25	

Referral rates are low after a normal study

 Range of ~1% to 5% generally

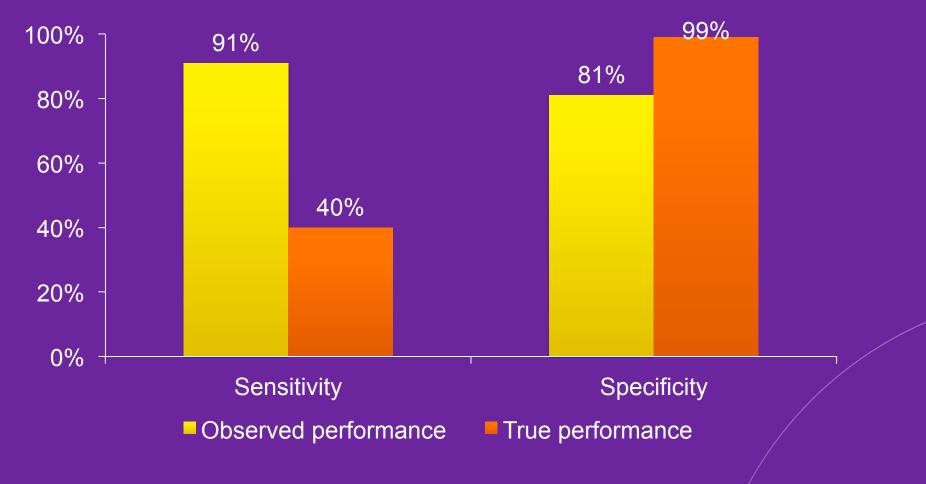
Homogenous

Geographic location and patient characteristics vary but little variation in referral rates

Cardiac Catheterization Referral Rates After Abnormal Exercise ECHO or MPI Results

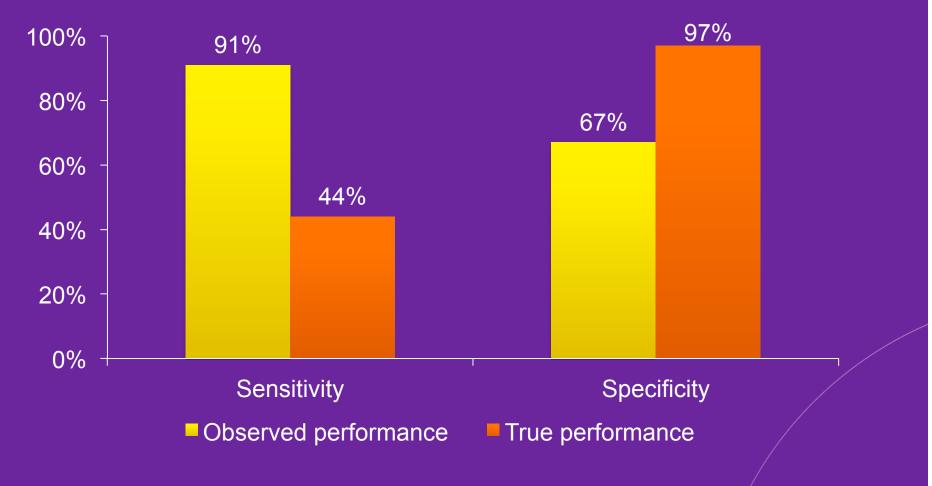
Study	No. referred/No. abnormal				Referral rate (95% CI)	% Weight
Cecil et al, 1996	427/1423				0.30 (0.28, 0.32)	5.83
Charvat et al, 2004	34/66		•		0.51 (0.40, 0.63)	4.86
Hachamovitch et al, 2004	355/733	-	•		0.48 (0.45, 0.52)	5.76
Hannoush et al, 2003	44/119				0.37 (0.28, 0.46)	5.30
Hosie et al, 1993	6/18				0.33 (0.12, 0.55)	3.48
Jang et al, 2011	77/95				0.81 (0.73, 0.89)	5.39
Kane et al, 2008	651/2164	*			0.30 (0.28, 0.32)	5.84
Koistinen et al, 1990	25/31		_	→	0.81 (0.67, 0.95)	4.59
Lauer et al, 1996	257/684				0.38 (0.34, 0.41)	5.76
Lauer et al, 1996	38/103				0.37 (0.28, 0.46)	5.22
Miller et al, 2002	1756/6745				0.26 (0.25, 0.27)	5.86
Nallamothu et al, 1995	242/673				0.36 (0.32, 0.40)	5.76
Roeters van Lennep et al, 1999	17/85				0.20 (0.11, 0.29)	5.32
Roeters van Lennep et al, 1999	28/157				0.18 (0.12, 0.24)	5.58
Roger et al, 1997	179/657				0.27 (0.24, 0.31)	5.78
Roger et al, 1997	70/366				0.19 (0.15, 0.23)	5.74
Schwartz et al, 1993	386/540		-	•	0.71 (0.68, 0.75)	5.75
Vlachopoulos et al, 2005	9/12			*	0.73 (0.49, 0.97)	3.19
Wennike et al, 2010	44/59	1		•	0.74 (0.63, 0.85)	4.99
Overall (I-squared = 98.2%, p =	\Diamond	>		0.43 (0.36, 0.49)	100.00	
NOTE: Weights are from random	effects analysis					
	0	ר ^י ר 4!	5	۱ 9.)	

Referral rates higher after an abnormal test


 Range of ~20% to 50% generally

Heterogeneity

 Significant variation in referral rates


Observed vs. True Diagnostic Performance of Exercise ECHO

True performance = observed performance after adjustment for referrals

Observed vs. True Diagnostic Performance of Exercise MPI

True performance = observed performance after adjustment for referral

Morbidity and Mortality Attributable to Missed Diagnoses of CHD in the US

4 million patients/yr x 20% CHD prevalence x 60% false negative rate \approx 500,000 missed diagnoses

Approx. 2,200 preventable cardiac events

Challenges With Cardiac Stress Test Use: Clinical, Payer, and Policy Concerns

I. Too much low-value, high-intensity testing → less cost-effective at population level

 \checkmark 2. Poor diagnostic accuracy \rightarrow missed diagnoses

3. Unnecessary radiation \rightarrow radiation-related cancers

The New Hork Eimes

Health

Go

WORLD U.S. N.Y. / REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SPORTS OPINION

Search Health 3,000+ Topics

THE RADIATION BOOM X-Rays and Unshielded Infants

Journal of the American College of Cardiology © 2010 by the American College of Cardiology Foundation Published by Elsevier Inc.

EXPEDITED PUBLICATION

Cumulative Exposure to Ionizing Radiation from Diagnostic and Therapeutic Cardiac Imaging P

A Population-Based Analysis

Jersey Chen, MD, MPH,*§ Andrew J. Einstein, MD, Harlan M. Krumholz, MD, SM,*†‡§ Yongfei Wang, MS,§ Joseph S. Ross, MD, MHS,# Henry H. Ting, MD, MBA,** Nilay D. Shah, PHD,†† Khurram Nasir, MD, MPH,‡‡ Brahmajee K. Nallamothu, MD, MPH§§

New Haven, Connecticut; New York, New York; Atlanta, Georgia; Rochester, Minnesota; Baltimore, Maryland; Boston, Massachusetts; and Ann Arbor, Michigan

Radiation Concerns Rise With Patients' Exposure

By ALASTAIR GEE Published: June 12, 2012

The New York Times

Even in health care systems in

they administer, the use of diagnostic imaging like CT and PET scans has soared, as has patients' radiation exposure, a new study has found.

OOK

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

AUGUST 27, 2009

VOL. 361 NO. 9

Exposure to Low-Dose Ionizing Radiation from Medical Imaging Procedures

Reza Fazel, M.D., M.Sc., H Jersey Chen, M.D., M.P.H., He Andrew J. Eins

Unnecessary Radiation Exposure is a Growing Problem

Potential harms related to radiation exposure are poorly understood

- Stress MPI accounts for 22% of cumulative effective radiation from medical sources
- One MPI ≈ 1,000 chest x-rays ≈ 10-15 mSv
- Persons at risk for repeated radiation exposure, such as healthcare workers and the nuclear industry, typically restricted to max 100 mSv every 5 years

Columbia University Medical Center

- 1,097 consecutive patients, 8-10 years of follow-up
- Multiple MPIs performed in 424 patients (39%)
- Median cumulative effective dose from MPI was 29 mSv
- Median cumulative effective dose from medical sources was 64 mSv

Medicare population

• Between 1993-2001, 34% of enrollees underwent repeat testing

US nonelderly population

- 952,420 adults in 5 US markets (2005-2007)
- Among patients undergoing cardiac imaging, mean cumulative dose 16.4 mSv (1.5-190 mSv)
- MPI accounted for 74% of cumulative dose

Fazel, NEJM 2009; Einstein, JAMA 2010; Gerber, Circulation 2009; Lucas, Circulation 2006; Chen, JACC 2010

Reducing the Population Health Burden of Coronary Heart Disease: Clinical, Professional Society, and Policy Steps

1. Reduce unnecessary testing

□ 2. Improve diagnostic accuracy

□ 3. Promote prevention/Affordable Care Act

Improving Quality of Care: Reducing Unnecessary Testing

Appropriate use criteria

- Growing physician awareness of appropriate use criteria for diagnostic testing in patients suspected of having CAD
- ACC and United Healthcare registry reported that 34% of stress MPIs were inappropriate or of uncertain appropriateness

Insurer policies and regulation

- Prior authorization by radiology benefits managers
- Reductions in reimbursement

U Langone

 Medicare released national coverage decision requesting more evidence for coronary CT angiography (CTCA)

Patient/Professional education

Informed
 decision-making

An initiative of the ABIM Foundation

- Shared decision-making
- Professional society scrutiny

...Impact on health is unknown and needs to be studied

Shaw, JACC: CV Imaging 2010; Gibbons, JACC 2008

Reducing the Population Health Burden of Coronary Heart Disease: Clinical, Professional Society, and Policy Steps

1. Reduce unnecessary testing

2. Improve diagnostic accuracy

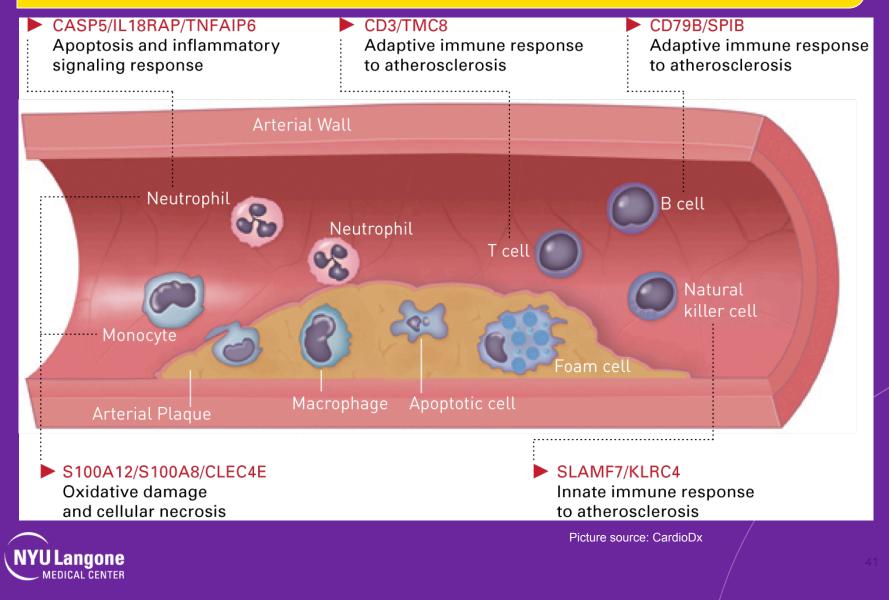
□ 3. Promote prevention/Affordable Care Act

Improving Quality of Care: Optimizing Diagnostic Accuracy

Research on diagnostic accuracy of stress testing that accounts for referral patterns to cardiac catheterization is needed

• Wider dissemination of accurate information about diagnostic performance

Coronary CT angiography


- High-resolution visualization of coronary anatomy
- Limitation: Ischemic heart disease occurs in absence of coronary stenosis

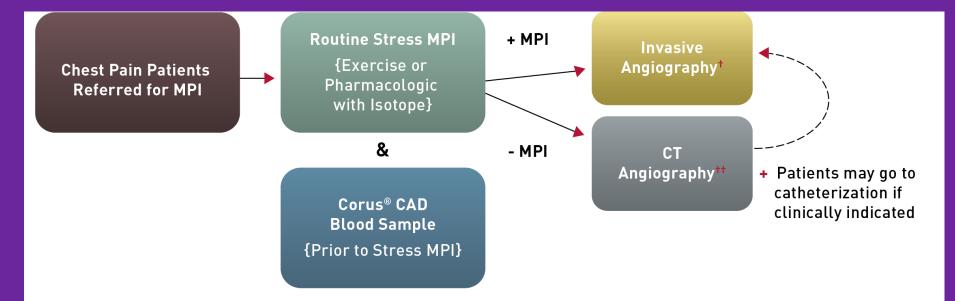
Blood-based gene-expression test for diagnosing obstructive CAD (Corus CAD)

- First clinically validated gene expression test for CAD
- Nondiabetic patients only

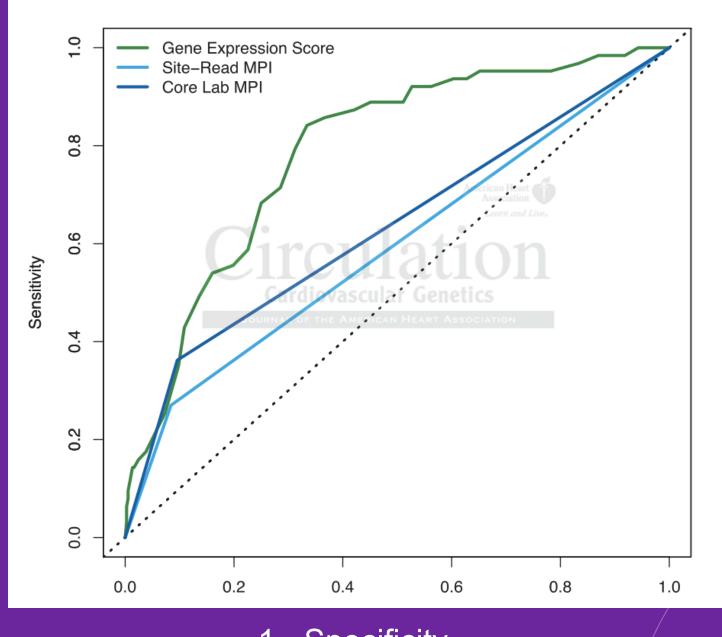
Blood-based Gene Expression Score (GES) Measures Expression of 23 Genes From Peripheral Blood Cells

JOURNAL OF THE AMERICAN HEART ASSOCIATION

A Blood Based Gene Expression Test for Obstructive Coronary Artery Disease Tested in Symptomatic Non-Diabetic Patients Referred for Myocardial Perfusion Imaging: The COMPASS Study


 Gregory S. Thomas, Szilard Voros, John A. McPherson, Alexandra J. Lansky, Mary E. Winn, Timothy M. Bateman, Michael R. Elashoff, Hsiao D. Lieu, Andrea M. Johnson, Susan E. Daniels, Joseph A. Ladapo, Charles E. Phelps, Pamela S. Douglas and Steven Rosenberg *Circ Cardiovasc Genet* published online February 15, 2013; DOI: 10.1161/CIRCGENETICS.112.964015
 Circulation: Cardiovascular Genetics is published by the American Heart Association. 7272 Greenville Avenue, Dallas, TX 72514
 Copyright © 2013 American Heart Association. All rights reserved. Print ISSN: 1942-325X. Online ISSN: 1942-3268

Thomas et al, Circ Card Genetics 2013


COMPASS Trial Design

COMPASS (Coronary Obstruction Detection by Molecular Personalized Gene Expression)

- Primary Endpoint: GES performance by ROC analysis
- Steering Committee: Greg Thomas, MD, MPH, John McPherson, MD, Alexandra Lansky, MD, Szilard Voros, MD
- 19 U.S. sites, 431 patients
 - ⁺ Data analyzed by Quantitative Coronary Angiography (QCA) core lab.
 - ⁺⁺ Data analyzed by CT Angiography core lab.

1 - Specificity

Reducing the Population Health Burden of Coronary Heart Disease: Clinical, Professional Society, and Policy Steps

1.Reduce unnecessary testing

✓ 2. Improve diagnostic accuracy

3. Promote prevention/Affordable Care Act

Implications For Cardiovascular Health: Healthcare Reform and Focus on Prevention

Affordable Care Act

- No more gender rating → women cannot be charged higher premiums than men
- Expansion of insurance access → more testing
- Elimination of cost-sharing for some preventive care

•

ACC/AHA Cholesterol Guidelines

- Lower thresholds for prescribing statins
- New risk equations for predicting CAD events

- Launched by Dept of Health and Human Services in 2011 to prevent 1 million heart attacks and strokes by 2017
- ABCS Aspirin, Bloodpressure control, Cholesterol management, and Smoking cessation

Conclusions

- Population health burden of cardiovascular disease is substantial, but many public health interventions and diagnostic tests are costeffective
- Cardiac stress testing, the principal test used to diagnose CHD, may be overused, inaccurate, and expose patients to unnecessary radiation
- Clinical guidelines, new technologies, and recent policy changes may improve the effective use of diagnostic technologies and reduce the population health burden of CHD

Thank you!

joseph.ladapo@nyumc.org 646-501-2561

