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OPEN

Depletion of pre-mRNA splicing factor Cdc5L inhibits
mitotic progression and triggers mitotic catastrophe

R Mu1,4, Y-B Wang1,4, M Wu1, Y Yang1, W Song1, T Li1, W-N Zhang1, B Tan1, A-L Li1, N Wang1, Q Xia1, W-L Gong1, C-G Wang2, T Zhou1,
N Guo3, Z-H Sang*,1 and H-Y Li*,1

Disturbing mitotic progression via targeted anti-mitotic therapy is an attractive strategy for cancer treatment. Therefore, the
exploration and elucidation of molecular targets and pathways in mitosis are critical for the development of anti-mitotic drugs.
Here, we show that cell division cycle 5-like (Cdc5L), a pre-mRNA splicing factor, is a regulator of mitotic progression. Depletion
of Cdc5L causes dramatic mitotic arrest, chromosome misalignments and sustained activation of spindle assembly checkpoint,
eventually leading to mitotic catastrophe. Moreover, these defects result from severe impairment of kinetochore-microtubule
attachment and serious DNA damage. Genome-wide gene expression analysis reveals that Cdc5L modulates the expression of a
set of genes involved in the mitosis and the DNA damage response. We further found that the pre-mRNA splicing efficiency of
these genes were impaired when Cdc5L was knocked down. Interestingly, Cdc5L is highly expressed in cervical tumors and
osteosarcoma. Finally, we demonstrate that downregulation of Cdc5L decreases the cell viability of related tumor cells. These
results suggest that Cdc5L is a key regulator of mitotic progression and highlight the potential of Cdc5L as a target for cancer
therapy.
Cell Death and Disease (2014) 5, e1151; doi:10.1038/cddis.2014.117; published online 27 March 2014
Subject Category: Cancer

Targeting the mitotic stage of the cell cycle is increasingly
recognized as an effective approach for cancer therapy.1–4

Anti-mitotic therapeutic strategies have been proposed that
induce mitotic catastrophe, which is always accompanied by
some degree of mitotic arrest. However, effective and widely
used anti-mitotic therapies such as microtubule-targeted
drugs exhibit dose-limiting toxicities and that restrict their
use. Thus, we aimed to identify alternative targets for anti-
mitotic drugs for cancer therapy.

Mitotic catastrophe is an oncosuppressive mechanism to
prevent genomic instability in response to DNA damage or
perturbations of the mitotic machinery.5 Perturbations could
include damage to the chromosomes themselves or
the machinery that ensures their faithful segregation. The
accurate chromosome segregation is monitored by the
spindle assembly checkpoint (SAC).6 The SAC is continu-
ously activated by sustained kinetochore localization of SAC
proteins (Mad2, BubR1 and Bub3) until all the kinetochores
are properly attached to the microtubules.7 Multiple kineto-
chore- and microtubule-associated proteins are responsible
for the initiation and stabilization of kinetochore microtubule
attachments, including the motor protein dynein and its
activator, dynactin.7,8 The cytoplasmic dynein complex is
composed of heavy, intermediate and light chains and is a

microtubule-based minus end-directed molecular motor that
is responsible for stable kinetochore microtubule attachment,
orientation and alignment.9–12 Dynactin is another multi-
subunit complex that is required for the recruitment of dynein
at kinetochores.7,8 Perturbation of the components of dynein
or dynactin complexes, such as dynein cytoplasmic 1, heavy
chain 1(DYNC1H1), dynein light-chain roadblock-type 2
(DYNLRB2) or dynactin subunit (DCTN4)-4, may induce
unfaithful kinetochore microtubule attachment and subse-
quent SAC activation, leading to mitotic arrest and even
mitotic catastrophe.

In addition to perturbations of the mitotic machinery,
accumulation of unrepaired DNA damage can also lead to
mitotic catastrophe.5 Cells respond to DNA damage by
triggering the activation of many factors, including the
phosphorylation of histone H2AX (g-H2AX) at the sites of
DNA double-strand breaks (DSBs).13 The formation of g-H2AX
foci is required for the recruitment of repair-associated
proteins such as cell cycle checkpoint protein RAD1,
BRCA1-associated RING domain protein 1 (BARD1) and
DNA damage-binding protein 2. RAD1 is a component of the
9-1-1 (RAD9-RAD1-HUS1) cell cycle checkpoint response
complex that has a major role in DNA damage repair.14

BARD1 interacts with the RING domain of BRCA1 and
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coordinates a diverse range of cellular pathways to maintain
genomic stability, including DNA damage repair.15 DNA
damage-binding protein 2 is a multifunctional protein that is
required for transcription-coupled nucleotide excision
repair.16 Downregulation of these repair-related genes may
lead to the accumulation of severe DNA damage and
eventually activate cell death pathways.

Cell division cycle 5-like (Cdc5L) protein, a mammalian
homolog of Schizosaccharomyces pombe Cdc5,17–19 is a
core component of the human Prp19 (hPrp19)/Cdc5L com-
plex, which includes Prp19, PLRG1 and SPF27, and is
required for pre-RNA processing.20–24 However, it remains
unclear whether Cdc5L contributes to mitotic regulation. Here,
in a siRNA screen, we determined that Cdc5L is an essential
regulator of mitotic progression. Knockdown of Cdc5L in
tumor cells causes dramatic mitotic arrest and chromosome
misalignments, which eventually lead to mitotic catastrophe.
Furthermore, we demonstrate that Cdc5L regulates the
expression and splicing efficiency of a set of genes involved
in the kinetochore-microtubule attachment and DNA damage
repair. Interestingly, Cdc5L is overexpressed in cervical
tumors and osteosarcoma and its depletion decreases cell
viability of related tumor cells. These results suggest that
Cdc5L is a key regulator of mitotic progression and highlight
the potential of Cdc5L as a target for cancer therapy.

Result

Cdc5L deficiency causes mitotic arrest and chromosome
misalignment. Dysregulation of mitosis results in mitotic
cell death or the generation of tumorigenic aneuploidy
daughter cells, which lead to cancer.25,26 In a separate
mitosis screening study, we found that Cdc5L knockdown
markedly impaired the ability of cells to resume mitotic
progression after release from treatment with the mitotic
inhibitor nocodazole (Supplementary Figures 1a and b). To
confirm if Cdc5L was involved in mitotic progression, we
transfected asynchronized HeLa cells with two individual
siRNAs against Cdc5L. Cell cycle distribution and the
proportion of mitotic cells (mitotic index) were analyzed.
We found that the percentage of cells in G2/M phase
increased from 14.16% in control siRNA-transfected cells to
24.63% and 21.71% in Cdc5L siRNA no.1- and no.2-
transfected cells, respectively (Figure 1a). The mitotic index
of Cdc5L siRNA-transfected cells was much higher than that
of control siRNA-transfected cells (Figure 1b). Consistently,
the expression of the mitotic marker Ser 10-phosphorylated
histone H3 was dramatically increased in Cdc5L-knockdown
cells (Supplementary Figure 1c). To further investigate the
function of Cdc5L in mitosis, we monitored mitotic progres-
sion by time-lapse imaging of HeLa cells stably expressing
green fluorescent protein (GFP)-tagged histone H2B, which
revealed that Cdc5L knockdown caused prolonged mitotic
arrest compared with control siRNA (Figure 1c). The
percentage of mitosis-incompetent cells that were still in
M phase 90 min after nuclear envelope breakdown (NEB)
increased from 7.60% in control siRNA-transfected cells to
90.79% and 94.76% in Cdc5L siRNA no.1- and Cdc5L siRNA
no. 2-transfected cells, respectively (Figure 1d). Interestingly,
we observed that Cdc5L knockdown induced severe

chromosome misalignment compared with control siRNA
(Figure 1c). More than 70% of Cdc5L-knockdown cells
entering mitosis were unable to properly align their chromo-
somes at the spindle equator to form a stable metaphase
plate (Figure 1e). To rule out off-target effects of Cdc5L
siRNA, HeLa/GFP-H2B cells were co-transfected with red
fluorescent protein-tagged siRNA-resistant wild-type Cdc5L
or control vector together with Cdc5L siRNA. The misalign-
ment of chromosomes during prometaphase induced by
Cdc5L knockdown was reversed by the expression of siRNA-
resistant wild-type Cdc5L (Figure 1f and Supplementary
Figure 2a). The levels of ectopically expressed Cdc5L protein
were comparable to those of endogenous Cdc5L
(Supplementary Figure 2b). The no.1 siRNA was used in
the Cdc5L RNAi experiments in this study unless otherwise
indicated. Taken together, these data suggest that Cdc5L
knockdown causes severe chromosome alignment defects
and mitotic arrest.

Cdc5L knockdown leads to mitotic catastrophe following
sustained mitotic arrest. To deeply analyze the
dynamics and outcome of chromosome misalignments
induced by Cdc5L knockdown, we observed mitosis in
Cdc5L-knockdown cells using time-lapse imaging assay.
We observed that the control siRNA cells faithfully
progressed from NEB to anaphase onset with an average
duration of 56.5±2.7 min (Figures 2a and b). However,
Cdc5L-knockdown cells bearing chromosome alignment
defects continuously arrested at prometaphase and under-
went cell death. Cdc5L siRNA no.1- and Cdc5L siRNA
no.2-transfected cells had prolonged average durations of
489.3±45.2 min and 405.6±36.8 min, respectively (Figures
2a and b). Moreover, the percentage of cells undergoing
mitotic cell death strikingly increased to approximately 70%
in Cdc5L-knockdown cells entering mitosis (Figure 2c). The
mitotic cell death induced by Cdc5L knockdown was
effectively rescued by the expression of siRNA-resistant
wild-type Cdc5L, but not by control vector (Figure 2d). To
confirm the Cdc5L depletion-induced mitotic cell death
observed by time-lapse imaging, we detected the proportion
of annexin V-FITC-positive cells, caspase-3 and PARP
cleavage in HeLa cells. Indeed, we found that cell death
was obviously increased in asynchronized Cdc5L-knock-
down cells (Supplementary Figures 2c and d). Because in
asynchronized cells, increased cell death can result from
cells in all stages, we synchronized cells at mitosis and
examined the mitotic-induced cell death after releasing from
nocodazole arrest. We found that the percentage of Annexin
V-FITC-positive cells and caspase-3 activation were
obviously increased in Cdc5L-knockdown cells following
sustained mitotic arrest (Figures 2e and f). Taken together,
our findings suggest that Cdc5L knockdown leads to mitotic
catastrophe following sustained mitotic arrest.

Depletion of Cdc5L results in kinetochore-microtubule
attachment defects and DNA damage. To determine how
Cdc5L knockdown blocks chromosomes aligned at the
metaphase plate, we first performed immunofluorescence
staining with an anti-a-tubulin antibody to examine the mitotic
spindle. The mitotic spindle dynamically controls assembly
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and disassembly of microtubules that are required for
chromosome alignment and segregation during mitosis.27,28

We observed that both control and Cdc5L siRNA cells
formed a bipolar spindle structure, but the length of the
spindle was much longer in Cdc5L siRNA cells
(17.29±0.45 mm) than in control cells (13.78±0.30 mm;
Figure 3a and Supplementary Figure 2e). This result
suggested that Cdc5L knockdown leads to the absence of
pulling forces from kinetochore,29 which might result from
impaired kinetochore-microtubule attachment. Thus, we next
performed a cold-stable microtubule assay30 to analyze
kinetochore-microtubule attachment. Indeed, Cdc5L-knock-
down cells exhibited obvious reduction in the amount of
kinetochore-attached microtubules compared with control
cells (Figure 3b). These results suggest that Cdc5L knock-
down resulted in a kinetochore-microtubule attachment
defect. Improper kinetochore-microtubule attachment will
lead to constitutive activation of the SAC and sustained
localization of SAC proteins to kinetochores, and thus we
next investigated whether these events occurred in Cdc5L-
knockdown cells. Control or Cdc5L siRNA-transfected HeLa
cells were treated with proteasome inhibitor MG132 to
prevent anaphase onset after release from thymidine block
and analyzed the localization of SAC proteins to kineto-
chores. The kinetochore signals of SAC proteins Bub1 or
BubR1 were markedly decreased in control cells compared
with Cdc5L-knockdown cells (Figures 3c–f). Meanwhile,
Cdc5L did not localize to kinetochores or form obviously
spindle-shaped structures from NEB to metaphase
(Supplementary Figure 3b). Thus, our results suggest that
the abnormal chromosome arrangement and subsequent
mitotic cell death caused by Cdc5L depletion might be due to
the lack of stable kinetochore-microtubule attachments.

In addition to unfaithful kinetochore-microtubule attach-
ment, the accumulation of DSBs and genome instability were
shown to trigger mitotic catastrophe.5 To test whether Cdc5L
knockdown leads to DNA damage, we stained the cells with
an antibody against phosphorylated histone H2AX (gH2AX), a
marker of DSBs.31 A markedly increased number of gH2AX
foci were observed in Cdc5L-knockdown cells compared with
control cells, indicating that Cdc5L knockdown induced DNA
damage (Figures 3g and h, Supplementary Figure 2f).
Collectively, our results suggest that kinetochore-microtubule
attachment defects and DNA damage at least partially explain
the mitotic cell death caused by Cdc5L depletion.

Downregulation of three other components of the
hPrp19/Cdc5L complex leads to chromosome misalign-
ment in mitosis. Cdc5L, Prp19, PLRG1 and SPF27 are the
core components of the human Prp19 (hPrp19)/Cdc5L

complex, which is essential for pre-RNA processing.23 To
determine whether this complex is required for mitotic
progression, we depleted the other three core components
and observed the mitotic phenotype by time-lapse imaging in
HeLa/GFP-H2B cells. We observed that individual Prp19,
SPF27 and PLRG1 knockdown led to chromosome mis-
alignment and prolonged mitotic progression; the defects
were similar to those observed in Cdc5L-knockdown cells
(Figures 4a–f). Western blot analyses of knockdown
efficiency indicated that the protein expression of each
hPrp19/Cdc5L complex component was regulated by the
other components; by contrast, their mRNA levels were not
decreased. SPF27 and PLRG1 expression levels were
disturbed to a greater extent than Prp19 and Cdc5L
expression (Figure 4g and Supplementary Figure 3a). This
effect might be due to the requirement for each component to
maintain complex stability. Because each component is
essential for the RNA processing activity of the hPrp19/
Cdc5L complex,20,23,32 depletion of each component
impaired RNA splicing. Thus, these results indicate that
Cdc5L may regulate mitotic progression through its role in
RNA metabolism.

Cdc5L regulates the expression and splicing efficiency
of a set of genes involved in mitotic progression and the
DNA damage response. To determine whether Cdc5L
affects mitotic progression by regulating RNA processing,
we first performed microarray analysis of HeLa cells
transiently transfected with Cdc5L siRNA. Our results
revealed that the expression levels of 854 genes changed
by more than 1.5-fold with statistical significance (Po0.05) in
response to Cdc5L knockdown. Four hundred and seven
genes were decreased and four hundred and forty-seven
genes increased in Cdc5L knockdown cells compared with
control cells (Figure 5a). By analyzing the biological functions
of these 854 genes as previously described,33 we found that
depletion of Cdc5L caused deregulation of genes involved in
various biochemical processes, including cell death and
survival, cancer, cell cycle and the DNA damage response
(Figure 5b). Impaired RNA processing may directly lead to a
reduction in mature mRNA; therefore, we focused on genes
that were downregulated by Cdc5L knockdown. A set of
downregulated genes was highly associated with the cell
cycle and DNA damage response, suggesting that the
decreased expression of these genes may directly contribute
to the observed phenotypes in Cdc5L-knockdown cells.
Quantitative real-time PCR analyses (qRT-PCR) validated
the microarray results for a panel of downregulated genes,
including mitotic progression-related genes (DYNC1H1,
DYNLRB2 and DCTN4), the transcriptional activator MYB

Figure 2 Cdc5L knockdown causes mitotic catastrophe following sustained mitotic arrest. (a–c) HeLa/GFP-H2B cells transfected with control or Cdc5L siRNA were
observed by time-lapse imaging for 36 h. (a) Representative time-lapse images are shown. The time on the images is in minutes. A, anaphase; M, metaphase; NEB, nuclear
envelope breakdown. Scale bar, 10 mm. (b) A box-and-whisker plot showing the duration from NEB to anaphase onset or cell death in HeLa/GFP-H2B cells with control
(n¼ 50 cells) or Cdc5L knockdown (n¼ 51 cells). Outliers are indicated by open circles, extremes by asterisks. (c) The proportion of mitotic cell death was analyzed. The
proportion of mitotic cell death is the ratio between the number of cells undergoing mitotic cell death and the number of total mitotic cells. Data are representative of three
independent experiments; error bars indicate S.D. (d) Complementation of red fluorescent protein (RFP)-Cdc5L in knockdown HeLa/GFP-H2B cells rescues mitotic cell death.
RFP-positive cells entering mitosis described as in Figure 1f were observed by time-lapse imaging and analyzed for the percentage of mitotic cell death. Data are
representative of three independent experiments, error bars indicate S.D. (e and f) HeLa cells transfected with control or Cdc5L siRNA were synchronized at mitosis by
thymidine–nocodazole treatment and released into fresh medium for the indicated times. (e) Cells were collected and analyzed by FACS for annexin V-FITC/-propidium iodide
(PI) staining. (f) Immunoblot analysis of cleaved caspase-3 and PARP
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and DNA damage response-related genes (RAD1, BARD1;
Figure 5c). Expression of DCTN1 was unchanged by
knockdown of Cdc5L, consistent with the microarray results
(Figure 5c). The DYNC1H1 antibody yielded clear staining at
kinetochores in control prometaphase cells, but staining was
severely reduced at kinetochores in Cdc5L-knockdown
prometaphase cells (Supplementary Figures 3c and d). As
Cdc5L knockdown could obviously affect the mRNA levels of
many genes, we next estimated whether Cdc5L was required
for efficient pre-mRNA splicing of the downregulated genes.
qRT-PCR analyses were performed to measure the relative
levels of spliced and unspliced mRNAs using exon–exon and
intron–exon junction-specific primers. The ratio of spliced/
unspliced transcripts was used to estimate the splicing
efficiency.34,35 We determined that the splicing efficiency of
DCTN4, DYNC1H1, DYNLRB2 and RAD1 was reduced by
Cdc5L knockdown (Figure 5d). Taken together, our data
suggest that Cdc5L regulates mitotic progression and cell
death by modulating the expression and splicing efficiency of
a set of genes involved in the cell cycle and DNA damage
response.

Cdc5L is overexpressed in cervical tumors and osteo-
sarcoma and its depletion decreases cell viability of
related tumor cells. To investigate the potential clinical role
of Cdc5L in cancer, we examined Cdc5L expression levels in
human somatic tumors, including cervical tumors and
osteosarcoma. Cdc5L expression was significantly higher in
cervical tumors and osteosarcoma tissues compared with
non-neoplastic tissues (Figures 6a and b). As silencing of
Cdc5L expression leads to mitotic catastrophe following
sustained mitotic arrest, we investigated whether Cdc5L
knockdown inhibits the viability of cervical tumor and
osteosarcoma cell lines. HeLa and U2OS cell lines were
transiently transfected with control or Cdc5L siRNA, and cell
viability was measured by an MTS assay. Indeed, upon
knockdown of Cdc5L, cell viability was markedly inhibited at
96 h post transfection (Figures 6c). Consistently, morpho-
logical analysis showed that the monolayer confluence of
indicated cells was dramatically decreased due to mitotic
arrest and mitotic catastrophe when Cdc5L was knocked
down (Figures 6d). These results suggest a possible role of
Cdc5L in the development of cancer-targeted therapy.

Discussion

Anti-mitotic drugs are an intervention strategy for cancer
therapy. Multiple chemical drugs that perturb mitotic progres-
sion, such as microtubule toxins, have demonstrated success
in the clinical treatment of cancer.1,3 However, the side effects
of microtubule-targeted drugs limit their use and prompted us
to search for alternative targets for anti-mitotic drugs. To
explore new anti-mitotic targets, we used a high-throughput
RNAi screen. We determined that Cdc5L has an important
role in mitotic progression. Knockdown of Cdc5L induces
mitotic arrest because of severe defects in chromosome
attachment, ultimately leading to mitotic catastrophe. Further-
more, we demonstrated that Cdc5L regulates the expression
and splicing efficiency of a set of genes involved in mitosis and
DNA damage repair. Moreover, Cdc5L is highly expressed in

osteosarcoma and cervical carcinoma; the function and
mechanism of elevated Cdc5L expression in cancer cells
requires further investigation. Because downregulation of
Cdc5L can kill proliferating tumor cells in mitosis and mitotic
catastrophe is considered as the end point for cancer
therapy,5,36,37 inhibition of Cdc5L has potential as a targeted
anti-mitotic cancer therapy.

Knockdown of each component of the hPrp19/Cdc5L
complex results in chromosome misalignment. Thus, we
hypothesize that Cdc5L regulation of mitosis may depend on
its RNA processing role. Using gene expression microarray
analysis, we observed that Cdc5L downregulates the expres-
sion and splicing efficiency of genes involved in mitotic
progression and DNA damage repair such as dynein, dynactin
and RAD1. Downregulation of DNA damage repair-related
genes such as RAD1 could result in a defective S-phase
checkpoint and a weakened G2/M checkpoint with a delay of
mitotic entry, ultimately leading to mitotic catastrophe. This
finding is consistent with previous reports that Cdc5L
contributes to the repair of UV damage and the G2/M
transition by an unknown molecular mechanism.38,39

Perturbations of the mitotic machinery, such as that of the
dynein/dynactin complex, also greatly contribute to mitotic
catastrophe upon Cdc5L knockdown. Dynein/dynactin
complex is a large, multi-subunit cytoskeletal motor com-
plex, including gene products of DYNC1H1, DYNLRB2 and
DCTN4, which is required for proper kinetochore-micro-
tubule attachment during prometaphase. Downregulation of
the components of dynein/dynactin complex may contribute
to unstable kinetochore-microtubule attachment, which
leads to SAC-sustained activation presented as SAC
protein such as Bub1 and BubR1 kinetochore retention.10,12

Therefore, the downregulated expression of dynein and
dynactin may partially explain the chromosome misalign-
ment and subsequent SAC-sustained activation observed in
Cdc5L-knockdown cells. These data indicate that multiple
functions of Cdc5L in mitosis and DNA damage response
contribute to the mitotic catastrophe observed upon Cdc5L
knockdown.

Although cell cycle progression may be functionally
associated with RNA processing, how regulation of pre-mRNA
splicing contributes to cell cycle progression is largely
unknown. Recently, the splicing cofactor SON was reported
to modulate cell cycle progression via constitutive splicing of a
specific set of cell cycle-related genes containing weak splice
sites.37 Another splicing factor, SKIP, is critical for both basal
and stress-induced expression and splicing of the cell cycle
arrest factor p21. Downregulation of SKIP predisposes cells to
undergo p53-mediated apoptosis.38 The severe chromosome
alignment defects and mitotic cell death observed upon Cdc5L
knockdown are distinct from the results of SON knockdown or
SKIP knockdown. This indicates that gene expression
patterns are differently modulated by these splicing factors.
This conclusion is supported by the microarray results; the set
of genes regulated by SON does not overlap with the set of
genes changed upon Cdc5L knockdown.

Mitotic catastrophe has been extensively used as a term to
indicate cell death resulting from aberrant mitosis. It has been
proposed that mitotic catastrophe acts as an oncosuppressive
mechanism for avoiding genomic instability, which can drive

Cdc5L regulates mitotic progression and cell death
R Mu et al

10

Cell Death and Disease



tumor formation in certain contexts. We demonstrated that
knockdown of Cdc5L results in chromosome misalignment
and mitotic cell death. Meanwhile, Cdc5L is highly expressed
in some human somatic tumors, such as cervical tumors and
osteosarcoma. It is reported that frequent Cdc5L genomic
DNA amplification was identified in osteosarcoma.40,41

Besides gene amplification, gene mutation, deregulation of
gene transcription and protein turnover may also be the
contributing mechanisms that need to be further investigated
in our future study. Therefore, it is possible that Cdc5L
overexpression facilitates tumorigenesis. Future studies are
needed to further explore the potential role of Cdc5L
dysregulation in tumorigenesis.

Materials and Methods
Plasmids and regents. Cdc5L insert was subcloned into pcDNA3.0-Flag
vector. Site-directed mutagenesis was done by standard methods. Mouse anti-
Cyclin B1 (1 : 1000) and anti-Actin (1 : 2000) were from Santa Cruz Biotechnology
(Santa Cruz, CA, USA); rabbit polyclonal antibody against SPF27 (1 : 1000) and
anti-Prp19 (1 : 1000) were from Abcam (Cambridge, UK); mouse anti-Tubulin
(1:5,000), rabbit anti-Bub1were from Sigma (St. Louis, MA, USA); mouse anti-
Cdc5L (1 : 1000) was from BD Biosciences (San Jose, CA, USA); rabbit anti-
PARP, anti-cleaved-Caspase3 were from Cell Signaling Technology (Danvers,
MA, USA); rabbit anti-PLRG1 (1 : 1000), rabbit anti-BubR1 were from Bethyl
Laboratories Inc. (Montgomery, AL, USA); rabbit anti-phospho-histone H3 (Ser 10;
1 : 5000) and anti-gH2AX (1 : 100) were from Merck-Millipore (Boston, MA, USA);
human anti-ACA (1 : 100) was from antibodies (Antibodies Inc., Davis, CA, USA);
human anti-DYNC1H1 was from Proteintech (Chicago, IL, USA; 1 : 100).

RNA interference. The siRNAs to target Cdc5L, Prp19, SPF27 or PLRG1 are
chemosynthesis and transfected into cells using Lipofectamine RNAiMAX
Transfection Reagent (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s protocol. The sequences of siRNAs used in this study are listed
in Supplementary Table 1.

Cell lines and time-lapse imaging. HeLa, U2OS, HeLa/GFP-H2B cells
were maintained at 37 1C in a humidified atmosphere of 5% CO2 in DMEM,
supplemented with 10% FBS. HeLa/GFP-H2B stable cell line was seeded in an
eight-chambered cover glass (Lab-Tek Chambered no 1.0 Borosilicate Cover Glass
System, Nunc, Thermo Fisher Scientific Inc., Waltham, MA, USA), CO2-independent
DMEM (Gibco, Life Technologies Corporation, Carlsbad, CA, USA). From 48 h after
siRNA transfection, images were collected every 5 or 6 min using a 0.1-s exposure
for 36 h using a � 40 lens objective on inverted fluorescence microscope (Nikon
Eclipse Ti-E, Tokyo, Japan) with an UltraView spinning-disc confocal scanner unit
(Perkin Elmer, Boston, MA, USA). The temperature of the imaging medium was kept
at 37 1C. Image sequences were viewed using Volocity software (PerkinElmer Inc.,
Waltham, MA, USA), and cell behavior was analyzed manually.

Immunofluorescence. For microtubule-ACA double staining, cells were
permeabilized in PHEM buffer (25 mM HEPES at pH 6.9, 10 mM EGTA, 60 mM
PIPES and 2 mM MgCl2) containing 0.5% Triton X-100 for 5 min at room
temperature followed by incubation with ice-cold 100% methanol for 10 min at
� 20 1C. For immunostaining, rabbit anti-BubR1 polyclonal antibody (1 : 100),
rabbit anti-Bub1 (1 : 100), mouse anti-tubulin monoclonal antibody (Sigma,
1 : 100), human anti-ACA (1 : 100), rabbit anti-DYNC1H1 (1 : 100) were used.
For DNA damage assay, cells were fixed with 4% paraformaldehyde for 15 min,
followed by permeabilization using PBS with 0.5% Triton X-100 for 10 min at room
temperature. The cells were incubated with anti-gH2AX antibody (1 : 100) at
room temperature for 1 h or at 4 1C overnight, propidium iodide (PI; Sigma-Aldrich,
St. Louis, MA, USA), and cross-adsorbed secondary antibodies from Molecular
Probes (Eugene, OR, USA) were used. Fluorescence was detected using a Zeiss
LSM 510 (Zeiss, Jena, Germany) equipped with a � 100 objective. Images of Bub
and BubR1 on kinetochores were acquired at 0.2mm steps and collected by using
identical imaging settings. For quantification of Bub and BubR1 signals on
kinetochores, ACA staining was used as reference as previously described in
detail.42 The intensity of Bub1, BubR1 and ACA was analyzed using Volocity
software.

FACS analysis. Cell death was detected using an Annexin V/PI staining kit
(BD Biosciences) according to the manufacturer’s protocol. Mitotic cells were
detected using Alexa Fluor 488-Conjugated Phospho-Histone H3 (Ser10; 1 : 50,
Cell Signaling Technology) and PI (Sigma) double staining after fixation by 75%
ethanol and analyzed by flow cytometry.

RNA isolation and qRT-PCR. Total RNAs were isolated using TRIZOL
(Invitrogen) and were subjected to DNA-free kit (Ambion) treatment before reverse
transcription using SuperScript II Reverse Transcriptase Kit (Invitrogen) following
manufacturer’s protocol. The resulting cDNAs were subjected to qRT-PCR with
the indicated primer sets (Supplementary Table 2). Values were normalized to
those of GAPDH.

Microarray and functional analysis. HeLa cells were grown on 100 mm
dishes and transfected with negative control siRNA or Cdc5L siRNAs. Then, cells
were harvested after 60 h, RNAs were isolated, and microarrays were performed
using Human Microarray (OneArray, PhalanxBio, Inc., San Diego, CA, USA). Data
were obtained from three independent transfections. Samples were analyzed as
previously described.33 Genes with a differential expression P-value of 0.05 or less
and an absolute fold change of 1.5 or more were loaded into Ingenuity Pathway
Analysis (IPA) 8.0 software (http://www. ingenuity.com) to conduct biologic
network and functional analyses.

Tissue array and immunohistochemistry. The tissue arrays include
an osteosarcoma and human normal bone tissue array (OS804, BO244a; BioMax,
Rockville, MD, USA), Cervix squamous cell carcinoma and normal tissue array
(CR484, CR245, CR805; BioMax). Immunohistochemistry staining for Cdc5L was
performed on the paraffin-embedded tissue, followed by secondary antibody and
3,30-diaminobenzadine disclosure, and microscopic imaging and analysis. Nuclei
were counterstained with hematoxylin. Images were captured using an
NanoZoomer Digital Pathology system (Hamamatsu Photonics, Hamamatsu,
Japan). Cdc5L expression levels were semiquantitatively assessed in tissue
samples as described previously.43 Both the extent and intensity of Cdc5L
immunostaining were taken into consideration when analyzing the data. The
intensity of staining was scored from 0 to 3 and the extent of staining was from 0
to 100%. The final quantitation of each staining was obtained by multiplying the
two scores. The slides were analyzed by two independent pathologists.

Statistics. Statistical comparisons between only two groups were carried out
by Student’s t-test or the Mann–Whitney rank sum test when a normal distribution
could not be assumed. Statistical calculations were carried out using SPSS 21.0
(SPSS, Chicago, IL, USA). We tested data for normality and variance and
considered a P-value of less than 0.05 significant.
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