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Identification of Distant Drug Off-Targets by Direct
Superposition of Binding Pocket Surfaces
Marcel Schumann*, Roger S. Armen*

Department of Pharmaceutical Sciences, School of Pharmacy, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America

Abstract

Correctly predicting off-targets for a given molecular structure, which would have the ability to bind a large range of
ligands, is both particularly difficult and important if they share no significant sequence or fold similarity with the respective
molecular target (‘‘distant off-targets’’). A novel approach for identification of off-targets by direct superposition of protein
binding pocket surfaces is presented and applied to a set of well-studied and highly relevant drug targets, including
representative kinases and nuclear hormone receptors. The entire Protein Data Bank is searched for similar binding pockets
and convincing distant off-target candidates were identified that share no significant sequence or fold similarity with the
respective target structure. These putative target off-target pairs are further supported by the existence of compounds that
bind strongly to both with high topological similarity, and in some cases, literature examples of individual compounds that
bind to both. Also, our results clearly show that it is possible for binding pockets to exhibit a striking surface similarity, while
the respective off-target shares neither significant sequence nor significant fold similarity with the respective molecular
target (‘‘distant off-target’’).
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Introduction

Searching for off-targets is very important for modern drug

design and for ongoing efforts to understand the complex

polypharmacology of well-known drugs. This search can be

performed either in a ligand- or target-focused way. In the former

case, the goal is to identify proteins to which an individual ligand

might bind. Approaches to this include topology comparisons of

ligands of different proteins and molecular receptor-ligand

docking. In case of target-centered off-target searches, which will

be the focus of this paper, the goal is to identify proteins (templates)

whose ligand binding criteria are very similar to the ones of the

molecular target of interest (query). Thus, many ligands of the

query protein could be expected to also bind to the template

protein.

Identification of off-targets in such a way would allow to

potentially speed-up and rationalize drug design in several ways:

drug targets that exhibit very many or very ‘dangerous’ off-targets

(i.e. those potentially leading to severe medical problems in the

patient), could be discarded as molecular targets. Alternatively, if a

protein with identified off-targets is selected as molecular target, an

emphasis can be placed in successive drug design steps to predict

and verify the behavior of drug candidates on all those off-targets

and inform the rational design of desired selectivity. In such way,

side-effects of drugs could be prevented or detected early-on, long

before entering clinical trails. Additionally, many rarer side-effects

(that depend on a population subgroup or use of other drugs)

might not even be encountered in clinical trials, but might in

principle be detectable this way. Last but not least, off-target

identification would also allow to better understand ligand

selectivity relationships between proteins and the reason for side-

effects of already commercially available drugs.

Several attempts have been made in the past to identify off-

targets of a given protein target. A number of authors [1–5] have

created fingerprints for description of the overall properties of a

pocket and quick comparison of pockets. Spitzer et al. [6] have

developed a procedure to compute surface similarities of

superposed proteins. This approach does not focus on performing

the actual superposition of the utilized proteins. As such, it can be

used in combination with simple backbone-based superposition

approaches or one of the procedures mentioned below in order to

assess the binding pocket surface similarity of closely related

proteins. In case of distant off-targets, it may on the other hand be

desirable to directly and efficiently superpose the surfaces, which is

the problem this paper focuses on. Similarily, Xie et al. [7] used a

Gaussian density function on Ca atoms to generate a statistical

description of the similarity of the pockets of two given proteins,

after employing a protein profile alignment based approach to

superimpose these proteins. These authors have used this

methodology for example to identify several nuclear hormone

receptors as putative off-targets of CETP inhibitors [8]. However,

due to the reliance of the method on sequence similarity, these off-

targets still retain reasonable sequence similarity to the respective

query protein.

Approaches performing an actual superposition of binding

pockets onto each other commonly use a set of pseudo-centers,

usually one per residue, to describe each pocket and then utilize a

graph-matching algorithm to find a mapping of template protein

pseudo-centers onto query pseudo-centers. The first such ap-
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proach was described in Kuhn et al. [9], which was modified and

extended in various way by several other authors [10–12].

However, all of those approaches display the same disadvantage

if the goal is to identify distant off-targets: these approaches might

suitably be described as local, pocket-centric fold comparison

algorithms. They do not focus directly on the binding pocket or its

surface, but use only a very rough representation in form of

pseudo-centers. The influence of side chains to the shape of the

binding pocket and to the ability of a ligand to bind to a protein,

are furthermore commonly ignored. Comparisons of what kind of

amino acids (or pseudo-centers) are found in what relative distance

to each other might reasonably be expected to infer knowledge

about local fold similarities of query and template proteins near

the binding pocket and can thus be expected to be helpful to detect

off-targets containing such a similarity to the query. While this is

definitely very useful, an even harder goal is finding potential off-

target that share neither significant sequence nor significant fold

similarity with the target of interest. Using the aforementioned

procedures towards this end would, for the described reason, most

likely not be helpful.

Najmanovich et al. [13], on the other hand, developed an

approach that uses graph-matching on all-atoms models of

binding sites. Therefore, this procedure is not prone to the

aforementioned problems acquired by a very rough description of

the binding pocket. Nonetheless, this approach in a first steps

explicitly searches the best superposition of template Ca atoms

onto query Ca atoms, and only performs all-atoms graph matching

on atoms that are near to each other as a result of the first step.

Thus, this method effectually is a backbone matching procedure

with subsequent minor, all-atom optimization. As such, it may be

interesting for some cases; not so however if the goal is to find

distant off-targets that share no fold similarity with the target

structure.

An interesting approach by Hoffmann et al. [14] uses an all-

atom model without utilizing a graph-matching. This procedure

therefore does not depend on fold similarity and should be able to

accurately model a pocket. However, the authors eliminate the

need for a mapping of template onto query atoms (as performed

by the aforementioned graph-matching algorithms) by simply

calculating the similarity between two pockets as the sum over all

distances between pairs of query and template atoms. This

similarity is then optimized by use of a graph-based procedure. In

order for a superposition of two pocket surfaces to be perfect, there

is in general of course no need for this sum over all pairwise

distances to be minimal. Thus, by use of this similarity for the

application of off-target finding, the authors make the assumption

that the entire template and query pockets are very similar with

respect to shape, size and distribution of atoms. If some of these

assumptions turn out to be false, as can reasonably be expected to

be the case for the large majority of all possible pocket pairs, the

approach, due to the utilized similarity function, has to end up

simply placing the template pocket at the center of mass of the

query pocket. This problem is furthermore aggravated by the fact

that binding pockets can have significantly different (automatically

determined) sizes and matching of sub-pockets is not possible this

way.

Here, we present an approach to finding distant off-targets by

direct superposition of protein binding pocket surfaces. We use a

well-established ligand selectivity data set to show that our

approach, although having being developed for detection of

distant off-targets, can predict close off-targets as well as the state-

of-the-art approach for that goal. We then apply our approach to a

set of well-studied target proteins, searching the entire PDB for

similar binding pockets, and for each of them thus reveal a

convincing distant off-target candidate that shares no significant

sequence or fold similarity with the respective target. Furthermore,

the usefulness of these off-target definitions is confirmed by

topology comparison of available, experimentally confirmed

ligands for the respective target and off-target.

Materials and Methods

Our approach superimposes two binding pockets, represented

by atoms contributing to their SES (solvent-excluded surface), and

afterwards scores the obtained superposition. We will first describe

how we automatically determine the size of a binding pocket and

will then explain how atoms are selected that should be used for

the subsequent matching step. Afterwards, we will outline how the

superposition is performed and how the final result is scored.

Note that if any water molecules are present near the ligand

(within a convex hull of 5 Å) in the crystal structure, they will first

of all be protonated, rotationally optimized and only water

molecules that interact strongly with receptor and/or reference

ligand are retained. For details about this, please see Schumann

et al. [15].

Determination of binding pocket size
Since the definition of the boundaries of the binding pocket has

an impact on the following atom extraction step and since a

binding pocket can be significantly larger than the area next to a

specific reference ligand, we use an automatic procedure to

determine the binding pocket size.

First, spheres are placed above the receptor surface in positions

where they are deeply buried in the protein (i.e., in positions that

are located above the SES surface and that have a high number of

neighboring receptor atoms). We then sort these spheres according

to their ascending distance to the geometrical center of the

reference ligand. Starting with the sphere having the smallest

distance, we add spheres to our pocket definition as long they have

a distance smaller than 1.5 Å to at least one already selected

sphere. Placing a bounding box around all spheres obtained this

way reveals the size of the binding pocket. An example for the

determination of the binding pocket size is shown in Fig. 1.

Statistics about the size of the detected pockets of the query

proteins for our distant off-target searches are shown in Table S1

in the Supplementary Material.

The spheres obtained by this procedure will also be used to

define the solvent-exposed interior of binding pockets during the

surface superposition step, as described below.

Extraction of relevant surface atoms
In order to obtain the relevant binding pocket surface atoms, we

first compute the SES for the given protein. Then, all protein

atoms that do not contribute to the SES (according to a calculation

with Conolly’s analytical SES procedure [16]) are discarded.

Afterwards, we check for each remaining atom whether its

distance to the pocket bounding box (created as described above)

or a bounding box placed around the reference ligand is smaller

than 4 Å.

Superposition of surfaces
In order to superpose template and query binding pocket

surfaces, we developed a modification and extension of Katchalski-

Katzir’s [17] approach to protein-protein docking. In contrast to

Kalchalski-Katzir, we will not aim to find the superposition

resulting in the best docking pose of two proteins, but the one

yielding the best binding pocket overlay.

Off-Target Search by Pocket Surface Superposition

PLOS ONE | www.plosone.org 2 December 2013 | Volume 8 | Issue 12 | e83533



First, we transform the set of atoms and spheres obtained in the

previous steps into two separate three-dimensional grids (with a

resolution of 1 Å) for query and template protein. Each cell of

these grids will contain information, represented by numerical

values, about whether its location is part of protein surface, directly

(1 Å) above the surface, inside the binding pocket, or elsewhere on

the outside of the protein. The grids thus contain a detailed

representation of the three-dimensional shape and size of the

binding pockets.

Each cell of the grid for the query protein is filled according to

Eq. 1 in which x, y and z together denote a position in relative

atomic units. Here, a grid cell is regarded as being part of the

protein surface, if it has a distance smaller than 1.8 Å to any of the

query protein atoms selected in the previous step. Similarly, a cell

is defined as representing the interior of the binding pocket of the

query protein if this cell has a distance smaller than 1.8 Å to any of

the previously created spheres.

A(x,y,z)~

{5 pointpartofsurface

1 pointdirectlyabovesurface

5 pointinsidebindingpocket

0 else

0
BBBBBB@

ð1Þ

In a similar manner, a three-dimensional grid is filled for the

template protein according to Eq. 2.

B(x,y,z)~

{1 pointpartofsurface

1 pointdirectlyabovesurface

1 pointinsidebindingpocket

0 else

0
BBBBBB@

ð2Þ

A correlation score describing the quality of a potential

superposition obtained by transforming grid B according to a

given translation vector (a, b, c) and a given rotation r, can thus be

computed according to Eq. 3.

corr,a,b,c(A,B)~
PN
x

PN
y

PN
z

(A(x,y,z):

Br(xza,yzb,zzc))

ð3Þ

Values have been assigned to A and B in the way shown in

Equations 1 and 2 since they yield a positive correlation

contribution (according to Eq. 3) in cases when either surfaces

are matched onto each other or pocket areas are superimposed.

Overlaying a surface with a pocket area, on the other hand, will be

penalized this way, by means of a negative correlation contribu-

tion.

We then need to find the set of r, a, b and c that yields the

largest correlation value (Eq. 4). Naively, this could of course we

achieved by iterating over all possible translations (a,b,c~f1:::Ng)
and rotation angles (r~f1:::Kg). This would however require a

total of approximately K �N6 compute steps, so that the run-time

using the naive implementation would in practice be much too

high.

best cor(A,B)~ arg max
r,a,b,c

corr,a,b,c(A,Br) ð4Þ

However, since a discrete Fourier transform (DFT) for a three-

dimensional function has the form shown in Eq. 5, we can, as

Katchalski-Katzir [17] discovered, utilize it to solve this kind of

problem more efficiently.

DFT(B)(a,b,c)~
PN
x

PN
y

PN
z

(B(x,y,z):

e{2p
ffiffiffiffiffiffi
{1
p

(axzbyzcz)=N )

ð5Þ

Thus, we can compute the correlation of A and B, depended

only on a given rotation, as

Cr~IFT(DFT�(A):DFT(Br)) ð6Þ

where IFT denotes the inverse Fourier transform and DFT� the

conjugate of the DFT. Fourier and inverse Fourier transformations

can be performed by the fast Fourier transform algorithm [18]

Figure 1. Pocket size detection. left) reference ligand in binding pocket; center) Place spheres in positions where they are relatively deeply burial
in the receptor; right) Final pocket description, obtained by iteratively selecting spheres that are near to previously selected spheres, starting at
geometrical center of ligand.
doi:10.1371/journal.pone.0083533.g001

Off-Target Search by Pocket Surface Superposition
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(FFT), which requires only about N3:ln(N3) steps to transform our

functions.

Thus, the best correlation can be found by only iterating over all

rotations (instead of iterating over all translations and rotations, as

shown in Eq. 4)

best cor(A,B)~ arg max
r,a,b,c

Cr(a,b,c) ð7Þ

Values r, a, b and c that yield this result are the optimal rotation

and translation steps, respectively. In total, superposing the two

grids this way hence requires only on the order of K :N3:ln(N3)
compute steps. For our evaluations, we discretize the rotations

around the global X, Y and Z axis into steps of 20u. Run-time for

superposing two binding pocket surface thus amounts to approx-

imately ten seconds (on an AMD Opteron 6134).

Scoring of superposition
To obtain a similarity score for two given binding pockets, we

apply the best superposition found in the previous step and then

compute the fraction of query surface that was matched to

template surface and then we penalize for query pocket areas

obscured by template protein:

sim~
Qmat

Qtot

: 1{
Sobs

Stot

� �2

ð8Þ

Here, Qmat denotes the number of query surface atoms that

have at least one template pocket surface atom within a distance of

1.8 Å and Sobs (obscured pocket spheres) denotes the number of

query pocket spheres having at least one template surface atom

within a distance of 1.4 Å. The total number of query surface

atoms is represented by Qtot, and the total number of query pocket

spheres by Stot.

Availability
Created software tools are freely available as part of our

computer-aided drug design suite (CADDSuite) at http://

caddsuite.github.com.

Results/Discussion

Closely related off-targets
Although our approach is aimed at finding distant off-target that

share no significant sequence or fold similarity with the respective

target structure, we first of all evaluate our procedure on the data

set utilized by Milletti [12] in order to show that we can indeed

also adequately find relatively closely related kinase-kinase off-

targets. This data set, a subset of the Ambit 2008 [19] panel,

contains activity data for 17 compounds on 189 kinases, obtained

by in vitro competition binding assays [19]. Given a co-crystal

structure of a kinase with an inhibitor, the goal here is to predict

which other kinases act as off-targets for the respective target

structure.

Comparison of the performance of our approach with the one

by Milletti [12] as shown in Figure 2 in blue vs. gray, proves that

we can predict close off-targets as well as the state-of-the-art

approach for that goal. The average ROC AUC of Milletti over

the 17 query pockets is 0.64, and our performance of 0.63 is not

significantly different. (ROC curves for the individual targets are

shown in Figure S1 in the Supplementary Material.)

However, is has to be noted that Milletti’s ‘‘ligand centered’’

way of defining true off-targets may be considered suboptimal for

evaluation of binding pocket comparisons. Milletti classifies a

protein as a true off-target if the affinity of the target structure

ligand to it was lower than 10 uM. The goal of pocket

comparisons on the other hand is to find proteins that display a

very similar binding pocket and might thus serve as off-target for a

range of ligands, not just one particular ligand. As specificity of

binding can vary considerably between different ligands, we

perform a separate analysis of our results taking into account all

ligands with available binding affinity data for target and off-target

candidate. In our ‘‘target centered assessment’’, we classify a

protein as a true off-target, if it shares with the target protein at

least half of their nano-molar inhibitors. Our average ROC AUC

for all 17 query pockets, obtained by this target centered analysis,

is 0.676. This shows that, even according to this more appropriate

metric, our approach is able to find closely related off-targets well.

It is furthermore noteworthy that comparing results obtained by

ligand vs. target centered analysis may be interesting in order to

try to infer some knowledge about ligand selectivity and

promiscuity. In eight out of 17 cases (1M17, 3BLR, 3GVU,

1UU3, 1UNL, 3G0F, 2F4J, 2IVU), the ROC AUC (receiver-

operating characteristic area-under-the-curve) obtained by target

centered analysis (shown in orange in Figure 2) was much larger

than the one obtained with ligand centered assessment. This

difference is most likely is due to strong and specific binding of the

respective reference ligand to the target structure, whereas many

other ligands bound less selectively. Therefore, the reference

ligand, in contrast to other ligands, may not bind to most other

examined proteins that do exhibit high binding pocket surface

similarity. On the other hand, in three cases (3FZS, 2EWA,

1NVR) the quality was judged to be less good with the target

centered analysis. Here, the explanation may lie in less selective

binding of the reference ligand, compared to all other ligands of

the respective target. This explanation can be easily rationalized

by considering 1NVR, which is a co-crystal structure of

staurosporine, the single most promiscuous kinase inhibitor. Thus,

many ligands of the respective target may not bind to other

examined proteins that show significant surface similarity, whereas

the reference ligand was able to do so.

Distant off-targets
In order to analyze the performance of our approach for

identification of distant off-targets, we select a number of well-

studied, medically relevant, kinase and non-kinase proteins as

Figure 2. Evaluation of performance for identification of
closely related off-targets of our approach (blue, orange) in
comparison to Mellitti’s [12] procedure (gray).
doi:10.1371/journal.pone.0083533.g002

Off-Target Search by Pocket Surface Superposition
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target structures and investigate whether we can find interesting

and meaningful distant off-targets for them.

Therefore, binding pockets for all co-crystal structures in the

PDB containing a ligand with a molecular weight between 300

and 800 g/mol are prepared in the aforementioned way. Each

query pocket, after having being processed in a similar way, is then

matched to each obtained PDB pocket (template) by our

algorithm. Template proteins exhibiting a sequence identity

greater than 40% or a secondary structure identity greater than

60% are ignored in these experiments in order to simplify the

analysis of results since our goal is to find distant off-targets.

Secondary structure identity is hereby calculated as the fraction of

residues being part of an identical secondary structure type

according to DSSP [20] after global alignment of query of

template protein sequence. All superpositions generated for one

query protein are subsequently ranked according to their pocket

similarity scores as shown in Eq. 8. The approximately best ten

matches are then analyzed manually in order to confirm surface

similarity and fold dissimilarity.

For all examined query proteins, we could identify template

proteins that share neither significant sequence nor fold similarity

with the target but exhibit a high binding pocket surface similarity.

In the following, we will discuss the results for all performed pocket

searches. We will in each case describe the, in our opinion,

(A) CLK3 (green) and PPARγ (blue)

(B) VEGFR2 (green) with sorafenib and DHFR (blue)

(C) KIT (green) with sunitinib and HIV-1 protease (blue)

(D) CK2α (green) with emodin and DNA topoisomerase I (blue)

(E) PDE5A (green) with sildenafil and phospholipase A2 (blue)

Figure 3. Identification of distant off-target candidates by search of PDB pockets. The query protein is shown in green; the template
protein in blue. Columns 1–3 show the binding pocket surfaces of query, template, template and query, respectively, together with the query
structure’s reference ligand. Were necessary, surfaces have been cut open for better view. Column 4 depicts the fold dissimilarity near the binding
pocket. Part 1 of 2.
doi:10.1371/journal.pone.0083533.g003

Off-Target Search by Pocket Surface Superposition
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medically most relevant off-target candidate. Each of them was

encountered at the very top of the rank list (within the

approximately top 10). To further strengthen the suggested

connection between target and off-target, we will then compare

experimentally confirmed strong binders (affinity lesser than

5 mM) of the target with those of the off-target using data available

in BindingDB [21]. The basic intent of these searches for similar

binding pockets is, as mentioned before, to find proteins that could

realistically acts as off-target for a range of ligands of a given

molecular target, not to predict the binding or selectivity of any

individual ligand.

CLK3. The first search for potential distant off-targets is

performed for CDC-like kinase 3 (CLK3). CLK3 acts as a dual

specificity, serine/threonine and tyrosine kinase that phosphory-

lates serine- and arginine-rich splicing factors and is thus assumed

to be involved in the regulation of mRNA splicing and alternative

splicing [22,23].

Analysis of the results obtained for CLK3 (PDB ID 2WU6)

shows a striking similarity, shown in Figure 2a, of its binding

pocket to the one of peroxisome proliferator-activated receptor

gamma (PPARc, PDB ID 3R8I). PPARc is a nuclear receptor that

activates the acyl-CoA oxidase transcription and thereby has a

important impact on fatty acid metabolism [24]. CLK3 and

PPARc show a very low sequence identity of only 23% but their

binding pockets exhibit a very similar shape and size. Further-

more, the folds of the two proteins near the superposed binding

pockets are completely dissimilar, as can be clearly seen in

Figure 3a (See also Figure 4). Thus, PPARc may be considered a

distant off-target candidate for CLK3. Comparison of known

strong binders for CLK3 with those for PPARc reveals

compounds, shown in Figure 5a, with a very high topological

similarity. Furthermore, this pair of ligands is also very similar to

reference ligand in the utilized co-crystal for CLK3. Taken

together, these findings indicate that it may be very helpful to

consider PPARc as an off-target when trying to develop drugs for

CLK3 (or vice versa) and thus try to predict and/or experimen-

tally measure the affinity of potential drug candidates to both

proteins.

Furthermore, in other pocket searches, we have observed

numerous examples of similarity between other human kinase

enzyme pockets (that are themselves similar to our CLK3 query

protein 2WU6) and PPARc. Thus, we hypothesize that various

classes of kinase inhibitor scaffolds may have the potential to

exhibit PPARc partial agonist activity. One literature example of a

drug candidate molecule that displays this behavior is ertiprotafib,

which was initially developed as a PTP1B inhibitor, and later

found to act as partial agonist of PPARc [25,26] and potent

inhibitor of IkappaB kinase beta (IKK-beta) [27].

Observations regarding other drug classes also help to

substantiate the hypothesis that the binding pocket of PPARc

exhibits remarkable flexibility resulting in high pocket similarities

to a significant number of other unrelated proteins. The

sulfonylurea class of commonly prescribed antidiebetic agents

(glipizide, glyburide, glimepride) primarily target the sulfonylurea

receptor stimulating insulin release, where the thiazolidinedione

class of antidiebetic agents (pioglitazone) primarily act as partial

agonists of PPARc improving insulin resistance through the

transcription of the insulin-sensitive genes involved in the control

of glucose and lipid metabolism. A very interesting paper by Scarsi

et al. [28], demonstrated convincing evidence that glipizide (the

most commonly prescribed of the sulfonylurea class) exhibits

PPARc partial agonist activity as well as having primary activity at

the sulfonylurea receptor, thus showing Glipizide’s theraputic

efficacy may have origins in dual activity for both drug targets.

Interestingly, there is recent evidence from the literature for

biologically relevant PPARc partial agonist off-target activity for

examples from three other different major drug target classes.

Partial agonist activity for PPARc has recently been reported for

an angiotensin receptor antagonists (telmisartan) [29], the most

commonly used ACE inhibitor (lisinopril) [30, 31], and in the

COX 1/2 inhibitor indomethacin [32]. The observation that

drugs from four different classes (glipizide, telmisartan, lisinopril,

and indomethacin) all exhibit partial agonist activity for PPARc,

support our observation that agonist-bound conformations of the

PPARc pocket in particular may exhibit similarity to other drug

target pockets.

VEGFR2. Vascular endothelial growth factor receptor 2

(VEGFR2) is a tyrosine protein kinase that serves as a receptor

for growth factors and thus has a strong influence on endothelial

cell growth, migration and differentiation [33].

The VEGFR2 binding pocket (as observed in PDB entry 4ASD)

is revealed by our approach to have a very high similarity, shown

in Figure 3b, to the one of dihydrofolate reductase (DHFR, PDB

ID 3SA1). DHFR converts dihydrofolic acid to tetrahydrofolic

acid, a key step in the folic acid pathway that is necessary for

generation of precursors of DNA and glycine [34]. Sequence

identity between the utilized VEGFR2 and DHFR structures is

just 22% and Figure 3b furthermore reveals that the two proteins

(F) estrogen receptor β (green) with estradiol and carbonic anhydrase II (blue)

(G) glucocorticoid receptor (green) with dexamethasone and ileal lipid binding protein (blue)

Figure 4. Identification of distant off-target candidates by search of PDB pockets. Part 2 of 2.
doi:10.1371/journal.pone.0083533.g004
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share no fold similarity that could serve as a trivial explanation for

the high observed pocket similarity. Although it is not the intent of

our procedure to predict the activity of individual compounds, it is

noteworthy that the VEGFR2 reference ligand, sorafenib, seems

in principle to be well accommodated by the DHFR pocket. Even

if sorafenib itself turned out not bind to DHFR in vivo, this still

visualizes that DHFR might act as off-target for other compounds

(related to sorafenib) that act on VEGFR2 (or vice versa). This

connection between VEGFR2 and DHFR is also strengthened by

the fact that some very similar ligands, depicted in Figure 5b, have

already been proven to bind to either of them with similar affinities

(2 mM and 1.9 mM, respectively). A superposition of the DHFR

pocket that was found in the search (PDB ID 3SA1) with the E and

Z derivatives of the compound shown in Figure 5b (PDB ID 3K45

and 3K47) [35] bound to human DHFR shows that the binding

modes of all three DHFR inhibitors are quite similar within the

pocket that was matched in the search. The authors of the crystal

structures [35] are rationally developing these compounds as dual

inhibitors of tyrosine kinases and DHFR.

KIT. KIT is a tyrosine protein kinase acting as a receptor for

cytokines that is involved, via various pathways, in (among others)

cell survival, migration, differentiation and melanogenesis [36].

A strong binding pocket similarity is detected utilizing our

approach between KIT (PDB ID 3G0E) and HIV-1 protease

(HIVPR, PDB ID 3NLS), as can be seen in Figure 3c. HIVPR

cleaves polyproteins of human immunodeficiency virus (HIV) into

separate proteins that then make up the viral envelope (virion) of

HIV and is thus necessary for HIV infectivity [37]. The KIT and

HIVPR structures exhibit a sequence identity of only 21% and no

fold similarity (see Figure 3c). The observed pocket of HIVPR is

slightly shorter than the KIT pocket in the direction of the

fluorobenzene group of sunitinib shown in the superpositions, but

otherwise displays very high similarity. Thus, it might be desirable

to keep KIT in mind as potential off-target when trying to develop

drug for HIVPR. Figure 5c furthermore shows that indeed a

compound that is very similar to the HIVPR inhibitor indinavir

has already been proven to strongly bind to KIT. The affinities of

both molecules are in the low nano-molar range (0.24 nM in case

Figure 5. Known ligands for each of the query proteins, together with known ligands of each suggested off-target.
doi:10.1371/journal.pone.0083533.g005
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of indinavir [38] and 5.7 nM [38] in case of the similar KIT

inhibitor). In addition, a very interesting paper by Xie et al. [39],

has recently computationally identified and then experimentally

verified that the HIVPR inhibitor nelfinavir indeed demonstrates

the ability to inhibit multiple kinases.

CK2 a. Casein kinase II subunit alpha (CK2a) is the catalytic

subunit of casein kinase II, a serine/threonine protein kinase

complex involved in many signaling cascades, including some

affecting cell cycle progression [53] and apoptosis [54].

Application of our pocket comparison approach reveals, as

shown in Figure 3d, that the pocket of DNA topoisomerase I (as

encountered in PDB entry 1SEU) has a highly similar shape and

size, compared to the CK2a binding pocket (PDB ID 3Q9X).

DNA topoisomerase I creates single-strand cuts of DNA and

subsequent reconnection after release of DNA supercoiling. Thus,

DNA topoisomerase I is important for DNA replication. CK2a

and DNA topoisomerase I share a sequence identity of only 21%

and no fold similarity, as depicted in Figure 3d, that could explain

the highly similar pockets. Examination of known CK2a and DNA

topoisomerase I binders furthermore revealed very similar

compounds (see Figure 5d), both of which are related to

staurosporine, that have been shown to bind with similar affinities

to either of the two proteins. The superposition of the human

topoisomerase I structure bound to the staurosporine related

indocarbazole shown in Figure 5d (PDB ID 1SEU) [55], with the

structure of the FDA approved drug hycamptin (PDB ID 1K4T),

reveals that the pocket match is to the biologically relevant binding

mode of the camptothecin class of topoisomerase I poisons [55].

PDE5A. Phosphodiesterase 5A (PDE5A) is a phosphodiester-

ase that converts cGMP into GMP and is thereby (among others)

involved in the relaxation of smooth muscles [56].

A very high pocket similarity, displayed in Figure 3e, is revealed

by our approach between the sildenafil-bound PDE5A pocket

(PDB ID 1TBF) and the binding pocket of phospholipase A2

(PLA2, PDB ID 1FXF). Phospholipase A2 hydrolyzes the sn-2 acyl

bond of arachidonyl phospholipids, releasing arachidonic acid. Its

function is implicated in the initiation of the inflammatory

response and thus has been the target of drug discovery efforts

[57] for anti-inflammatory agents, especially for neurological [58]

and cardiovascular [59,60] indications. PDE5A and PLA2 contain

only 20% sequence identity have no fold similarity near the

superimposed pockets, as can be seen in Figure 3e. Also, molecules

with significant topological similarity to each other and to

sildenafil are known to bind strongly to PDE5A, respectively

PLA2 (see Figure 5e).

Phospholipase A2 inhibition has also been identified as off-

target activity in some commonly used drugs. Non-pancreatic

secretory phospholipase A2 (membrane associated) is inhibited by

diclofenac [61,62], and cytosolic phospholipase A2 is inhibited by

the commonly prescribed corticosteroid fluticasone propionate

[63,64], as well as epirubicin [65] and niflumic acid [66].

Estrogen receptor b. Estrogen receptor b (ERb) is a nuclear

receptor that activates the transcription of genes containing

estrogen response elements. Its estradiol-bound pocket (PDB ID

3OLL) is shown by our pocket comparison to be highly similar (see

Figure 4f) to the pocket of carbonic anhydrase II (CAII, PDB ID

3OKV). CAII is no nuclear steroid receptor but the ubiquitous

enzyme that catalyzes the conversion carbon dioxide to carbonic

acid. As such, it shares only a sequence identity of 24% with ERb.

Furthermore, the high pocket similarity is not the result of any

significant fold similarity, as is clearly visualized in Figure 4f.

In contrast to all results discussed before, the ligand observed in

the co-crystal structure of the target and the one in the structure of

the suggested off-target have a very similar topology. Both

compounds are derivatives of estrogen. Therefore it is of interest

that the obtained pocket superpositions resulted in very close poses

for two ligands, shown in Figure 6. In cases in which reference

ligands of target and suggested off-target are highly similar, a

simply querying of the PDB for a given ligand topology could

arguably have yielded similar results. However, doing so would not

elucidate whether binding of similar ligands by target and off-

target is due to ligand promiscuity or binding pocket similarity.

Since we, after having used our pocket superposition based search,

now know that the pockets of ERb and CAII can assume very

similar shapes, we searched their respective BindingDB [21] data

sets for other known topologically similar ligands. We indeed

found strong inhibitors of CAII that are highly similar to strong

antagonists of ERb and that are not steroids, displayed in Figure 5f.

Glucocorticoid receptor. Glucocorticoid receptor (GR) is a

nuclear receptor regulating the transcription of genes containing

glucocorticoid response elements that is thereby involved in

modulating inflammatory response and other processes.

As can be seen from Figure 4g, the dexamethasone-bound

binding pocket of GR (PDB ID 3MNP) was found by our pocket

Figure 6. Crystal structure pose of estradiol in 3OLL (green) in
comparison to the pose of the ligand of 3OKV obtained by
superposing the latter onto the former by use of our
algorithm.
doi:10.1371/journal.pone.0083533.g006

Figure 7. Dexamethasone as observed in 3MNP (green) in
comparison to taurocholic acid in 1O1V after superposition of
the two pockets by our approach.
doi:10.1371/journal.pone.0083533.g007
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comparison to be highly similar to the pocket of ileal lipid binding

protein (ILBP, PDB ID 1O1V). ILBP is involved in the

transportation of bile acids. While bile acids as well as

glucocorticoids are steroids and thus this pocket search result

may come at no surprise, this example visualizes that our pocket

matching approach correctly superposes binding pockets that are

known to bind near identical ligands. The very low deviation

between the pose of the ILBP ligand and the GR-bound

dexamethasone pose, obtained after applying our pocket super-

position, is shown in Figure 7. Although the ligands of these two

proteins are, as stated, very similar, the pocket surface superpo-

sition was not trivial, since both proteins have a sequence identity

of only 23% and, as Figure 3g makes clear, share no fold similarity

that might have produced the high pocket similarity.

Comparison to other methods. As described above, and as

can be seen in Figures 3–4, all of our distant off-target matches

exhibit no significant backbone and no significant fold superpo-

sition. Thus, the use of an accurate description of the binding

pocket was important here for the superposition, so that simpler

approaches, for example, Ca atom-based procedures, would not

have sufficed to find these off-targets. To furthermore substantiate

this, we now perfomed all pocket superpositions between target

and repective proposed distant off-target using only Ca atoms.

Thus, all previously utilized residues are now used as well, but

instead of using all atoms that contribute to the pocket surface (and

pocket spheres), we now used only those residues’ Ca atoms.

Afterward performing the superpositions, they are scored in the

normal way, according to Eq. 8. The average pocket superposition

score when using only Ca atoms for the matching, was 0.095,

compared to 0.614 when using the normal superposition

approach. (Scores for individual superpositions are shown in

Table S2 in the Supplementary Material.) Visual examination

furthermore showed that when using only Ca atoms for the

superposition, the interior of the superposed off-target protein

obscured large parts of the target’s pocket (or vice versa), rendering

these Ca atom-based superpositions practically useless. This

confirms that inclusion of an accurate pocket (surface) description,

utilizing all relevant atoms (including side chain atoms), was

crucial for identification of the off-targets proposed here.

Additionally, we checked whether existing approaches would

have found any of the presented distant off-targets. Note however,

that existing approaches cannot be reasonably excepted to

discover distant off-targets, since they were not designed for this

and since they, in constrast to our method, rely on sequence- or

fold similarity, as explained in the introduction. First, we used

PoSSuM [5] (http://possum.cbrc.jp/PoSSuM/) without a limit

for the maximum number of hits to be reported, and searched the

entire PDB database for protein pockets similar to each of our

seven query proteins. For all seven cases, PoSSuM did not find the

off-target of the respective query protein. Next, we utilized ProBis

[11] (thttp://probis.cmm.ki.si) to individually compare each of our

query pockets to its respective presented off-target pocket. For six

out of seven cases, ProBis detected no similarity at all. In the case

of CK2a, ProBis found only a very low pocket similarity to DNA

topoisomerase I (z-score of 1.08). The three-dimensional super-

position of these two proteins generated by ProBis furthermore

mapped the CK2a pocket onto the interior of DNA topoisomerase

I, showing that no meaningful pocket similarity could be detected.

Conclusions

In this paper, we presented a new approach for identification of

distant drug off-targets. Protein atoms near the binding pocket

surface and information about the location of the interior of the

binding pocket are converted into numerical values and stored in a

three-dimensional grid. Performing this step separately for query

and template protein results in two grids, a multiplication of which

yields a score for a potential superposition of the pockets of the two

proteins. Fast Fourier transformation is then utilized to speed-up

the search for the best superposition by about three orders of

magnitude compared to a naive implementation and thus allows

for fast and efficient comparison of binding pockets.

We demonstrated that our approach is able find convincing

distant off-target candidates that share no significant sequence or

fold similarity with the respective molecular target. The connec-

tion between targets and suggested off-targets was additionally

strengthened by the high topological similarity between some

known strong binders of the target and the respective off-target,

and by literature examples of ligands that exhibit experimentally

confirmed activity to both respective proteins.

Thus, applying our approach in order to derive a list of off-

target candidates to be taken into account if trying to develop new

drugs may be very helpful. By doing so, the affinity of each drug

candidate to the suggested off-target can then be predicted or

experimentally measured. Drug candidates that are detected to

strongly interact with off-targets can hence be cast aside,

potentially speeding-up the process of development of new drugs

and helping to evade side-effects and toxicity. Furthermore,

significant flexibility of the query protein is not by itself

problematic due to two important methodological reasons. First,

our approach will always determine the best superposition of two

pockets, even if this results in only parts of the two pockets being

matched onto each other. Secondly, since we always search the

entire PDB database for similar template pockets, the search itself

allows for significant flexibility between different templates.

However, problems can arise if the template protein belongs to

a class of proteins for which there are only very few structures in

the PDB data base (e.g., transmembrane proteins). If it is suspected

that a given protein has (distant) off-targets that belong to such a

class, it might be of interest to perform the search as described in

this manuscript step-by-step for different parts of the pocket. A

variety of different techniques (e.g., elastic network models,

molecular dynamics) could be used to assess the flexibility of

different parts of the query pocket. For example, a search could

thus begin with the most static query pocket region, and

subsequent searches could be performed using diverse conforma-

tional states of other parts of the query pocket.

Although the presented approach, in its current form, is aimed

at finding off-targets that could potentially bind a large range of

target ligands and not to study individual compounds, future

combinations of this approach with successive molecular docking,

scoring and/or ligand pose optimizations (e.g. energy minimiza-

tions) could allow to also investigate the potential behavior of

individual ligands in more detail.

Supporting Information

Figure S1 ROC curves showing the performance of our
approach on identification of close off-targets for all 17
of Milletti’s [12] data sets. Results for target-centered

evaluation are shown in blue, results for ligand-centered

evaluation in orange (see text for explanation).

(PDF)

Table S1 Size and number of residues contributing to
pocket surface for all query proteins used for our distant
off-target searches.

(PDF)
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Table S2 Scores for distant off-target pocket superpo-
sitions performed by our approach in the normal way,
in comparison to when using only Ca atoms for the
superpositions. Superposition scores were calculated as shown

in Eq. 8.

(PDF)
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