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Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that use NAD+ as a sub-
strate to synthesize polymers of ADP-ribose (PAR) as post-translational modifications of
proteins. PARPs have important cellular roles that include preserving genomic integrity,
telomere maintenance, transcriptional regulation, and cell fate determination. The diverse
biological roles of PARPs have made them attractive therapeutic targets, which have fueled
the pursuit of small molecule PARP inhibitors. The design of PARP inhibitors has matured
over the past several years resulting in several lead candidates in clinical trials. PARP
inhibitors are mainly used in clinical trials to treat cancer, particularly as sensitizing agents
in combination with traditional chemotherapy to reduce side effects. An exciting aspect
of PARP inhibitors is that they are also used to selectivity kill tumors with deficiencies in
DNA repair proteins (e.g., BRCA1/2) through an approach termed “synthetic lethality.” In
the midst of the tremendous efforts that have brought PARP inhibitors to the forefront
of modern chemotherapy, most clinically used PARP inhibitors bind to conserved regions
that permits cross-selectivity with other PARPs containing homologous catalytic domains.
Thus, the differences between therapeutic effects and adverse effects stemming from pan-
PARP inhibition compared to selective inhibition are not well understood. In this review, we
discuss current literature that has found ways to gain selectivity for one PARP over another.
We furthermore provide insights into targeting other domains that make up PARPs, and
how new classes of drugs that target these domains could provide a high degree of selec-
tivity by affecting specific cellular functions. A clear understanding of the inhibition profiles
of PARP inhibitors will not only enhance our understanding of the biology of individual
PARPs, but may provide improved therapeutic options for patients.

Keywords: PARP, selectivity, structure, inhibitor design

INTRODUCTION
ADP-ribosyltransferases (ARTs) comprise a family of structurally
conserved enzymes that catalytically cleave NAD+ and transfer
the ADP-ribose moiety to acceptor residues of target proteins
(1). Poly(ADP-ribosyl) polymerases (PARPs) are a subset of the
ART family that continue this reaction to create long chains of
linear and/or branched poly(ADP-ribose) (PAR). Currently, only
the first six members of this family (ARTs 1–6) are regarded as
having poly(ADP-ribosyl)ation activity: PARP-1, PARP-2, PARP-
3, PARP-4 (vPARP), PARP-5a (TNKS1), and PARP-5b (TNKS2)
(Figure 1). The remaining ARTs 7–17, although originally con-
sidered PARPs (PARPs 6–16) (2), are only capable of producing
mono-ADP-ribose modifications and are referred to as mono-
ARTs (MARTs). ARTs 9 (PARP-9; BAL-1) and 13 (PARP-13) have
yet to confirm any sort of catalytic activity like PARPs or MARTs.
The degree of ADP-ribosylation in cells is not only controlled by
ARTs, but also by PARG and ADP-ribosyl hydrolases that reverse
this modification [recently reviewed in Ref. (3)].

Poly(ADP-ribose) polymerase-1 has emerged as a prominent
target in chemotherapy due to its important role in maintenance
of genomic integrity. Its functional roles in the DNA damage

response and cell fate determination have fueled development of
PARP-1 inhibitors. Some of these compounds have entered clinical
trials with promising therapeutic applications toward treatment of
cancer. In combination with DNA damaging agents (e.g., temo-
zolomide, cisplatin) or irradiation, PARP-1 inhibitors are effective
chemosensitizers (4). As monotherapy, PARP-1 inhibitors selec-
tively kill tumors harboring DNA repair deficiencies such as
genetic deletion of genes involved in the BRCA1 and BRCA2
homologous recombination DNA repair pathway (5, 6). This phe-
nomenon referred to as “synthetic lethality” has attracted clinical
attention and has paved the way for a “personalized” approach to
cancer therapy (7).

Originally PARP-1 was the only known enzyme with poly(ADP-
ribosylation) activity, but as other PARPs began to emerge the
selectivity of PARP-1 inhibitors were called into question and
now they are typically referred to as PARP inhibitors. In fact, 185
PARP inhibitors were recently evaluated for binding to the catalytic
domain of several different PARPs, and revealed binding profiles
demonstrating a lack of specificity for any given PARP (8). Where
PARPs 1–3 seem to have an important role in maintaining genomic
integrity, other PARPs have roles such as telomere replication and
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Steffen et al. Selective targeting of PARPs

FIGURE 1 | Domains of human PARPs. A sequence and structural
representation of the six bona fide PARPs. Each PARP has a catalytic
domain containing an ADP-ribosyltransferase domain (ART) and conserved
catalytic glutamic acid residue. In addition PARPs 1–4 contain a helical
domain (HD) that serves in allosteric regulation. PARPs 1–3 contain a WGR
domain, which is important in DNA-dependent catalytic activation. The
breast cancer susceptibility protein-1 C-terminus (BRCT) domain is
commonly found in DNA repair and checkpoint proteins, and resides in the

automodification domain of PARP-1, and is also present in PARP-4.
Zinc-fingers Zn1 and Zn2 of PARP-1 are important in binding DNA, while the
third zinc-finger (Zn3) is important in DNA-dependent catalytic activation.
Other domains and sequences represented include: centriole-localization
signal (CLS), vault protein inter-alpha-trypsin (VIT), von Willebrand type A
(vWA), major vault particle interaction domain (MVP-ID), His-Pro-Ser region
(HPS), ankyrin repeat clusters (ARCs), sterile alpha motif (SAM), and nuclear
localization signal (NLS).

cellular transport (9, 10). With such a large family of enzymes
carrying out distinct biological functions, drug targeting of the
conserved catalytic site of PARPs has raised questions concerning

intended pharmacological outcomes. This has led some groups to
pursue development of PARP inhibitors with increased selectivity
to better understand the biology of targeting individual PARPs.
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Steffen et al. Selective targeting of PARPs

The aim of this review is to describe the structural relationships
among PARPs and the drug design efforts that have found ways
to engineer PARP selectivity. We bring attention to non-catalytic
domains that are contained within PARPs, and how targeting these
domains could provide increased selectivity. The differences in
therapeutic benefit and unwanted side effects of selective PARP
inhibition versus pan-PARP inhibition is not well understood,
and the development and use of more selective agents will ulti-
mately help answer these important questions concerning PARP
inhibitors as chemotherapy. For clarity and relevance purposes,
all structural comparisons regarding residues and numbering are
described based on human PARP-1 unless otherwise noted. The
locations of key binding or catalytic site residues have been given
position numbers in the text and figures to help guide the viewer
through the structural comparisons.

STRUCTURAL SIMILARITIES AND DIFFERENCES AMONG
PARPs
Poly(ADP-ribose) polymerases are multi-domain proteins that are
related through their highly conserved ART domain (Figure 1).
Outside of the ART domain, distinct domain architectures quickly
differentiate the structure and function of each PARP. The cat-
alytic domain crystal structures have been solved for all current
PARPs except for PARP-4 (vPARP). The crystal structures of some
non-catalytic domains of PARPs have been solved, although there
is no crystallographic data on any full-length PARP. The closest to
a full-length structure is a catalytically active complex of PARP-1
essential domains bound to DNA damage (11).

CATALYTIC DOMAIN
While the pairwise sequence identity among the catalytic domains
of human PARPs is under 50%, their structures are highly con-
served (Figure 1). The PARP catalytic domain contains an ART
domain composed of a donor site with a β-α-loop-β-α signature
motif that binds NAD+, an acceptor site where ADP-ribose chains
are extended, and a helical domain (HD) present in PARPs 1–4 and
some MARTs (Figure 2A). Although there is no crystal structure
of NAD+ bound to a human PARP, the diphtheria toxin struc-
ture (PDB: 1TOX) of NAD+ bound to a bacterial ART domain
(12) along with homology modeling of PARP-1 (13) provides
insight into the likely binding mode. Within the donor site is a
nicotinamide-binding pocket and an ADP-ribose binding pocket.
PARPs share an H-Y-E triad sequence motif in their active site that
is altered in MARTs. These residues along with other residues con-
served among PARPs are critical for the initiation, elongation, and
in some instances branching of PAR synthesis (14). Substrate bind-
ing in the acceptor site is also not completely understood, since the
only structural data shows a portion of a bound non-hydrolyzable
NAD+ analog (carba-NAD, cNAD) that provides insights into how
PAR might bind (15).

HELICAL DOMAIN
The HD consists of six α-helices (A through F) that form a
hydrophobic core, with helix αA contributing to the fold of the
ART domain (Figure 2A, HD region). The HD structures of PARP-
2 and PARP-3 superimpose with PARP-1 very well, and overall have
a high sequence similarity (Figure 2B). In PARPs 1–3 (and likely

PARP-4) helix αF is adjacent to the donor NAD+ binding site.
In PARP-1, structural rearrangement of the N-terminal Zn1, Zn3,
and WGR domains in response to DNA damage detection causes a
destabilization of the HD that ultimately triggers catalytic hyper-
activation (11, 16). While PARP-4 has a putative HD based on
sequence alignment, tankyrases do not contain a HD. Outside of
PARP-1 DNA-dependent activation, other mechanisms that could
destabilize the HD remain unknown. DNA-independent PARP-1
activation from phosphorylation has been reported (17), but the
mechanisms that trigger catalytic activation are unclear.

ART DOMAIN – DONOR SITE
In the PARP catalyzed reaction, the co-substrate NAD+ binds to
the ART domain and “donates” the ADP-ribose portion to an
amino acid residue or a growing PAR chain (Figure 2A,donor site).
The donor site is also the site where PARP inhibitors bind. The
donor site is composed of a nicotinamide-binding pocket (NI site),
a phosphate binding site (PH site), and an adenine-ribose bind-
ing site (AD site) (Figure 2D). The NI site consists of a structural
motif that is highly conserved among PARPs: two tyrosine residues
that form a π–π stacking interaction with the nicotinamide ring
(Figure 2D, positions 14 and 17), and a hydrogen-bond network
between a serine hydroxyl (position 16) and glycine backbone
atoms (position 6) with the carboxamide of NAD+. In the AD
site of PARP-1 (Figure 2D), main-chain atoms of Gly876 (posi-
tion 10) and Arg878 (position 11), and side-chains of Asp770
(position 3), His862 (position 5), and Ser864 (position 7) are pre-
dicted to interact with the adenosine portion of NAD+. In the
PH site (Figure 2D), Asp766 (position 2) and Glu763 (position
1) are situated near the pyrophosphate group of NAD+. Based
on modeling predictions, the catalytic conserved residues (H-Y-E
motif) residing at the NI site include Glu988 (position 18) that
binds to the 2′-hydroxyl group of the nicotinamide ribose posi-
tioning NAD+ for nucleophilic attack by the acceptor substrate
(Figure 2D, NI site), His862 (position 5) that binds to the 2′

adenine-ribose hydroxyl (Figure 2D, AD site), and Tyr896 (posi-
tion 14) that stacks with the nicotinamide ring (Figure 2D,NI site).
Similarly, the rest of the donor site is very much the same among
PARPs 1–3 with a few minor variations (Figures 2B,C): (i) in the
NI site Ser864 (position 7) is replaced with Thr386 (PARP-3), (ii)
in the PH site Glu763 (position 1) is replaced with Gln319 (PARP-
2), Asp284 (PARP-3), and Arg354 (PARP-4), and (iii) Asp766 in
PARP-1 (position 2) extends to Glu322 (PARP-2), Leu287 (PARP-
3), and Val357 (PARP-4). Other observations near the donor site
that could influence drug selectivity include variations in PARP-3
with respect to PARP-1, such as Val390/Asn868 (position 8) and
Met402/Ala880 (position 12).

Like PARPs 1–3, tankyrases contain an ART domain with the
catalytic signature (H-Y-E) motif including the active glutamic
acid residue essential for PAR synthesis. The NI site is very simi-
lar, however since tankyrases do not have an HD domain to form
the outer wall of the AD and PH site, residues vary greatly in
these regions. Instead, the donor site loop (D-loop, Figure 2A) of
tankyrases helps form this outer wall creating a more restricted
environment in its closed conformation. Perhaps the most inter-
esting feature of the tankyrase catalytic domains is that they
contain a CHCC-type zinc-finger that is not known to be present
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Steffen et al. Selective targeting of PARPs

FIGURE 2 | Structure and sequence comparisons of the PARP catalytic
domain. The PARP-1 catalytic domain [(A); center] is used as a template to
compare specific regions among other PARPs. All other PARPs were
structurally aligned using Pymol (www.pymol.org/). In (A), all numbering
positions corresponding to the protein sequence are labeled at the Cα of
the residue in PARP-1. The helical domain [(A); left] present in PARPs 1–4,
consists of six alpha helices numbered A–F. At the core of this domain are
several hydrophobic residues, which are highly conserved among PARPs
(B). The acceptor and donor sites [(A); right] display binding of NAD+

(modeled) and the ADP portion of co-crystallized carba-NAD (cNAD) (PDB
ID: 1A26). The donor site that binds NAD+ is highly conserved (C) among

all PARPs, although the acceptor site is much less conserved (acceptor
loop and loop A). The D-loop assumes varying structural conformations and
is also less conserved, which is an indication of where selectivity may be
best achieved. The donor site is composed of three regions that bind to
NAD+ (D) the NI site (left), the PH site (middle), and the AD site (right).
Multiple sequence alignments were carried out using ClustalW2 [(83);
www.ebi.ac.uk/Tools/msa/clustalw2/], and the sequences of human
PARPs were analyzed using Jalview [(84); www.jalview.org/]. Structures
used for comparisons include: PARP-1 (PDB ID: 3GN7), PARP-2 (PDB ID:
3KCZ), PARP-3 (PDB ID: 3FHB), TNKS1 (PDB ID: 2RF5), and TNKS2 (PDB
ID: 3U9H).
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Steffen et al. Selective targeting of PARPs

in any other ART domain (18). The importance of this motif is
only speculative, but could be used for structural stability or medi-
ating protein or DNA interactions. The sequence identity between
TNKS1 and TNKS2 are highly conserved, with variable residues
located mostly outside of the NAD+ binding site.

ART DOMAIN – ACCEPTOR SITE
Despite the lack of structural data on substrates bound to the
acceptor site of PARPs, a structure has been reported for a transi-
tion state analog of NAD+ bound to the acceptor site of chicken
PARP-1 (15). From this structure of bound cNAD (Figure 2A,
Acceptor site), it can be projected that His826 (position 4), Lys903
(position 15) and the backbone amides of 985 and 986 form a H-
bond network with the acceptor PAR pyrophosphates. The ribose
hydroxyl groups H-bond to Tyr907 (position 17) and Glu988
(position 18), and the adenine base stacks against Met890 (posi-
tion 13). These residues are conserved in other PARPs with the
exception of PARP-3 that does not contain the Met890, which
is replaced with an arginine (408) that forms a salt bridge with
Asp455 (19). This amino acid change could contribute to the
smaller polymers produced by PARP-3 (20, 21). A highly variable
region among PARPs is in the acceptor loop (Figure 2A, acceptor
site and Figure 2C). PARP-2 has a similar alignment as PARP-1 but
contains an additional three residues in this loop, most notably an
additional tyrosine residue (Tyr539) that projects into the acceptor
site based on the structure of mouse PARP-2 (22). Both tankyrases
have a much shorter acceptor loop and diverge in their structural
alignment with PARP-1. These differences in the acceptor loop
across PARPs could potentially specify a preference for particular
proteins that are targeted for modification.

ART DOMAIN – D-LOOP
The D-loop lines the donor site and partially the acceptor site,
and represents structural diversity among PARPs due to varia-
tions in conformations observed across structures (Figure 2A).
The D-loop in PARPs 1 and 2 are near identical; in contrast,
the D-loop of PARP-3 (Gly398-Lys411) is smaller than PARP-1,
which leaves the donor site more open (19). The major differences
comparing PARP-3 to PARP-1 include the Met402/Ala880 (posi-
tion 12) and Gly406/Tyr889 changes. The D-loop of tankyrases is
frequently observed in a closed conformation, which blocks the
NAD+ binding site, although it is likely that this loop is dynamic
to allow NAD+ access (18). The sequence conservation between
tankyrases is very similar, although in structures of TNKS1 the
D-loop is positioned closer to the nicotinamide-binding pocket
and in TNKS2 it closes near the ADP-ribose binding pocket. The
differences between TNKS1 and TNKS2 may reflect an inherent
mobility of the tankyrase D-loops.

NON-CATALYTIC DOMAINS
Poly(ADP-ribose) polymerase-1 is the founding member and
most studied of the PARP family. PARP-1 and PARP-3 are the
only PARPs for which structures of all domains are known
(Figure 1). PARP-1 has a modular domain architecture comprising
five domains in addition to the catalytic domain: N-terminal Zn1
and Zn2 domains which are homologous zinc-finger domains that
recognize damaged DNA ends (23), a third zinc-finger domain

(Zn3) that is important in DNA-dependent activation (24), a
central BRCA C-terminus-like fold (BRCT) domain that medi-
ates protein–protein interactions and serves as a substrate for
PAR automodification (25), and a tryptophan-glycine-arginine
(WGR) domain that interacts with DNA and is important for
DNA-dependent activation.

As in PARP-1, both PARP-2 and PARP-3 share a homologous
WGR domain positioned N-terminal to the catalytic domain. In
PARP-1 the WGR domain is important for DNA-dependent acti-
vation and interacts with DNA (11). The function of WGR in
PARP-2 and PARP-3 is not well evaluated, although it likely inter-
acts with DNA based on homology to PARP-1. Neither PARP-2 or
PARP-3 have zinc-finger binding domains or a BRCT domain, but
PARP-2 has a highly basic N-terminal region that could mediate
interaction with DNA.

Originally characterized by its association with major vault pro-
tein (MVP) through its MVP interaction domain (MVP-ID) (26),
the structure and function of PARP-4 is one of the least understood
of the PARPs. Other PARP-4 domains include vault protein inter-
alpha-trypsin (VIT) and von Willebrand type A (vWA) domains
that are also found together in the inter-alpha-trypsin inhibitor
(ITI) family, but are not completely understood in connection
with PARP-4. It is not known to contain zinc-fingers or a WGR
domain, but contains an N-terminal BRCT domain homologous
to PARP-1 (26).

While tankyrases contain a catalytic domain that is capable
of producing PAR, they do not share any other domains with
the other PARPs. With regard to the PARPs, tankyrases have the
following unique domains: an ankyrin repeat region that binds
acceptor proteins, a sterile alpha motif (SAM) domain that medi-
ates oligomerization, and a histidine-proline-serine rich (HPS)
domain unique to TNKS1 with unknown function (9). The series
of ankyrin repeats are arranged into five ankyrin repeat clusters
(ARCs). With the exception of ARC3, each ARC is reported to
bind acceptor proteins that carry the tankyrase consensus bind-
ing sequence RXXPDG (27). The tankyrase targets, Axin1 and
peptides derived from several other target proteins, have been
co-crystallized with individual ARCs, and the structures illus-
trate the key features of the binding interaction (28, 29). The
overall conformation of the five ARCs and possible structural
arrangements upon mediating protein–protein interactions is not
currently understood. TNKS2 is nearly identical to TNKS1 except
that it does not have an HPS region and has a seven amino
acid insertion after the ankyrin repeat region with unknown
importance (30).

DEVELOPMENT OF SELECTIVE PARP INHIBITORS
Nearly 30 years ago inhibitors of PARP-1 were discovered, and
shown to sensitize cells to DNA damaging agents (31). These
early PARP inhibitors, such as the benzamides and isoquinoli-
nones, established a core pharmacophore from which future PARP
inhibitors would build (32, 33). Co-crystallization of the cat-
alytic domain of chicken PARP-1 with these inhibitors showed
anchoring into the nicotinamide-binding pocket of PARP-1, con-
sistent with the nicotinamide-mimicking pharmacophore (13, 34).
The carboxamide functional group of nicotinamide makes three
hydrogen-bond interactions with the serine hydroxyl and glycine
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Steffen et al. Selective targeting of PARPs

FIGURE 3 | PARP inhibitors bound to the catalytic domain of PARPs.
Non-selective inhibitors such as nicotinamide [(A), non-selective] only interact
with the nicotinamide pocket (NI site), which is a highly conserved region.
Most developed PARP inhibitors have been designed to bind the NI site and
adjacent sites to gain potency and selectivity. The compound FR257517
contains a fluorophenyl that reaches into the ADP-ribose binding site (AD site)
of PARP-1 (PDB ID: 1UK0) to gain selectivity [(B), PARP-1 selective]. An
aligned PARP-2 structure (PDB ID: 3KCZ) shows how the AD site is very
similar to that of PARP-1, but the increased hydrophobicity of the PARP-1 AD
site is attributed to the observed PARP-1 selectivity. Compounds that interact
with E322 of PARP-2 (PDB ID: 3KJD) can gain selectivity over PARP-1 due to

the differences in distance between this acidic side-chain and drug
heteroatoms [(D), PARP-2 selective]. PARP-3 (PDB ID: 4GV4) has a
structurally similar AD site as PARPs 1 and 2, although residue variation
creates an environment distinct in polarity that guides selectivity [(C), PARP-3
selective]. Tankyrase inhibitors often demonstrate a much higher window of
selectivity from PARPs 1–4, although selectivity between TNKS1 and TNKS2
is difficult to obtain. IWR-1 is a non-traditional PARP inhibitor in that it does
not target the nicotinamide site of TNKS2 [(E), Tankyrase selective]. PARP-1
(PDB ID: 1UK0) was aligned with the co-crystallized TNKS2 structure
containing IWR-1 (3UA9) to demonstrate that the quinoline ring clashes into
the AD site of PARP-1 due to the presence of its helical domain.

backbone atoms of the NI site, and the benzene ring makes
π–π stacking interactions with surrounding tyrosine residues
(Figure 3A). The chemotherapeutic potential of PARP inhibitors

prompted medicinal chemistry efforts aimed at designing newer
PARP inhibitors with improved potency and pharmacokinetic
properties. These efforts spurred development of several small
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Steffen et al. Selective targeting of PARPs

molecule nicotinamide-like scaffolds with modified side groups
reaching outside of the pocket and into regions such as the donor
AD site that improved potency, selectivity, and bioavailability
(Table 1). For more information on this development the reader
is referred to an in-depth review focusing on the optimization of
PARP inhibitors (35).

SELECTIVITY BETWEEN PARP-1 AND OTHER PARPs
By the late 90s, the identification of a second PARP, termed PARP-
2, was reported (36). Since PARP-2 carries out the same catalysis
as PARP-1, uses the same co-substrate, and is highly homolo-
gous, it is not surprising that most PARP inhibitors show similar
inhibition potency between both PARPs. The nicotinamide pock-
ets of PARP-1 and PARP-2 are nearly identical, and there are
only minor differences in their ADP-ribose binding pockets. The
minor sequence variation, Glu763/Gln319 in HD helix αF, and
the presence of Tyr539 of PARP-2 in the acceptor loop, have
been noted as important differences in which selectivity could
be achieved (22).

Soon after the discovery of PARP-2, several nicotinamide-
mimicking inhibitors discovered through a high-throughput cell-
based assay identified that most had similar inhibition between
PARP-1 and PARP-2, although minor selectivity was noted with
certain compounds (37). These findings demonstrated that PARP
selectivity could be achieved despite nearly identical binding sites.
Although infrequently reported, most compounds that inhibit
PARP-1 have little to no preference for PARP-1 over PARP-
2. Attempts to improve selectivity resulted in nicotinamide-
based compounds that also target outside of the NI site. The
quinazolinone-based inhibitor (FR257517) binds the PARP-1
nicotinamide pocket and further interacts with Asn767, Asp770,
Asp766, Asn868, and Ala880 in the AD site through its extended
substitution (38) (Figure 3B). Interestingly, the extended por-
tion of the molecule induces a conformational change in Arg878
that opens a new hydrophobic pocket surrounded by residues
Leu769, Ile879, and Pro881 (Figure 3B). It is thought that a
Leu769/Gly325 variation in the induced hydrophobic pocket
creates a more hydrophobic environment in PARP-1, which is
why this compound is 10-fold more selective for PARP-1 (39,
40). Further modifications of this compound near the NI site
accomplished selectivity for PARP-1 up to 39-fold, indicating
that selectivity may also be adjusted through modifications near
the nicotinamide pocket. Another example is an isoquinolin-
dione compound (BYK204165) that was identified with a 100-
fold PARP-1/PARP-2 selectivity (41). Unfortunately there is no
co-crystal structure data of this compound to understand this
preference.

Most inhibitors developed target PARP-1 and PARP-2 closely,
but there are also varying degrees of selectivity for the other PARPs
due to the similarities in active sites (although much less fre-
quently reported). Small, basic PARP inhibitors that target the
nicotinamide site (such as 3-amino-benzamide) are very unselec-
tive across PARPs, and even MARTs. Potent PARP-1 inhibitors with
bulky side groups or extensions typically gain selectivity against
other PARPs (especially the tankyrases) due to steric clash that
can be easily rationalized considering the noticeable structural
differences outside of the NI site (Figure 2A).

SPECIFIC PARP INHIBITORS
Poly(ADP-ribose) polymerases-2 selective inhibition was seen
early on with quinoxaline based inhibitors (39). Preference for
PARP-2 over PARP-1 is seen based on residue variations between
the two. The modified quinoxaline phenyl ring of compound 2
(Table 1) more favorably interacts with the space between Gln319
and Glu322 in PARP-2 over the Glu763 and Asp766 in PARP-
1 (as seen in Figure 3D for ABT-888). Also, PARP-2 forms a
water-mediated hydrogen-bond with the inhibitor through its
acidic residue Glu322, which is not formed by PARP-1, thus cre-
ating a stronger affinity for PARP-2. In PARP-1 this residue is a
shorter Asp766 residue that is further from the NI site, which may
explain the preference for PARP-2 selectivity through a closer, thus
stronger interaction (40). Crystallographic studies of ABT-888 also
suggest a closer proximity of Glu335 over Asp766 in PARP-1 to the
side group N-heteroatom of ABT-888 setting up a potentially more
favorable interaction (Figure 3D) (42). Interaction with this acidic
residue is essential for potency in many compounds, and may in
part explain the near 1000-fold higher selectivity of ABT-888 for
PARP-1 and PARP-2 over TNKS1 and TNKS2, which do not have
this residue (43).

A library of isoquinolinone derivatives was reported to dis-
play selectivity for PARP-2 up to 60-fold (44). This discrimination
is thought to be due to a single residue variation of Glu763 in
PARP-1 to Gln319 in PARP-2. Interestingly, desaturation of the
nicotinamide-mimicking portion also increased PARP-2 selectiv-
ity, indicating that even though these sites are highly conserved,
small steric effects can have a significant impact on selectivity (44).

Although there is a lack of data on PARP-3 inhibition, recently
reported quinazoline derivatives, such as ME0328 (Table 1;
Figure 3C), have been shown to have up to sevenfold selectivity for
PARP-3 over PARP-1 (45). These compounds anchor into the NI
site and extend into the AD donor site of PARP-3, which is slightly
larger and more hydrophobic. Differences in polarity and geome-
try of the AD sites of PARP-3 and PARP-1 are likely guiding factors
in the observed selective inhibition. Co-crystallization studies of
PARP inhibitors with PARP-3 also indicate that the sequence
variation and D-loop conformation changes in the AD site cre-
ate distinguishing environments for designing PARP-3 selective
inhibitors (19). Modifications of the core scaffold that reach out
into the acceptor site could target Arg408 (which is a methionine
residue in other PARPs) in order to achieve selectivity.

Due to the smaller and more hydrophobic donor site of
tankyrases, selectivity over other PARPs can be more easily
achieved. The first selective tankyrase inhibitor to be discov-
ered was XAV939, which binds the nicotinamide pocket (46) and
has a 200-fold selectivity over PARP-1 (43). Therapeutic inter-
est in tankyrases prompted high-throughput screening (HTS)
assays leading to the discovery of IWR-1 (47), JW55 (48), and
flavones (49) as specific tankyrase inhibitors. IWR-1 and IWR-2
are non-traditional inhibitors that bind to the AD and PH site
but not the NI site of tankyrases, but still block NAD+ bind-
ing (Figure 3E) (50, 51). IWR compounds bind to the donor
site of TNKS1 making H-bond interactions with Tyr1213 and
Asp1198 (Tyr1060 and Asp1045 in TNKS2), and stacking inter-
actions between Phe1198 and His1201 (Phe1035 and His1048 in
TNKS2) (51, 52). In co-crystal structures, rearrangement of the
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Table 1 | Selectivity of PARP inhibitors. Published IC50 values of PARP inhibitors that have been tested against multiple PARPs.

PARP-1 SELECTIVE

Compound Structure Class PARP-1 PARP-2 PARP-3 PARP-4 TNKS1 TNKS2 Selectivitya Reference

IC50 (nM)

DR2313 Thiopyrano

pyrimidine

200 2,400 12 Nakajima et al.

(81)

1 Quinoxaline 30 90 3 Sunderland et al.

(85)

FR257517 Quinazolinone 13 500 39 Ishida et al. (40)

BYK204165 Isoquinolindione 45 4,000 89 Eltze et al. (41)

BYK49187 Imidazoquinolinone 4 20 5 Eltze et al. (41)

BYK20370 Imidazopyridine 400 2,000 5 Eltze et al. (41)

PARP-2 SELECTIVE

Compound Structure Class PARP-1 PARP-2 PARP-3 PARP-4 TNKS1 TNKS2 Selectivityb Reference

IC50 (nM)

Olaparib

(AZD-2281)

(KU-

0059436)

Pthalazinone 5 1 1,500 5 Menear et al. (86)

Veliparib

(ABT-888)

Benzimidazole 5 2 2.5 Penning et al. (87)
8.3 11 14,970 6,519 0.75 Huang et al. (43)

2 Quinoxaline 101 8 13 Ishida et al. (40)

3 Isoquinolinone 13,900 1,500 9 Sunderland et al.

(85)

4 Isoquinolinone 13,000 800 16 Pellicciari et al.

(44)

5 Isoquinolinone 9,000 150 60 Pellicciari et al.

(44)

PARP-3 SELECTIVE

Compound Structure Class PARP-1 PARP-2 PARP-3 PARP-4 TNKS1 TNKS2 Selectivityc Reference

IC50 (nM)

ME0328 Quinazolinone 6,300 10,800 890 >30,000 >30,000 >30,000 7 Lindgren et al.

(45)

(Continued)
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Table 1 | Continued

PARP-1 AND PARP-2 SELECTIVE

Compound Structure Class PARP-1 PARP-2 PARP-3 PARP-4 TNKS1 TNKS2 Selectivityd Reference

IC50 (nM)

GPI6150 Isoquinolinone ∼100 ∼100 n.d.f Zhang et al. (82)

Niraparib

(MK-4827)

Indazole 3.8 2.1 1,300 330 570 87–342 Jones et al. (88)

5-AIQ Isoquinolinone 940 1,050 n.d.f Sunderland et al.

(85)

PJ-34 Phenanthridine 600 1,000 n.d.f Pellicciari et al.

(44)

DPQ Isoquinolinone 4,500 5,300 n.d.f Pellicciari et al.

(44)

6 Benzo-

naphthyridinone

1 1 50 440 3,500 50–3,500 Torrisi et al. (89)

TANKYRASE SELECTIVE

Compound Structure Class PARP-1 PARP-2 PARP-3 PARP-4 TNKS1 TNKS2 Selectivitye Reference

IC50 (nM)

XAV939 Pyrimidinone 2,194 114 11 4 200 Huang et al. (43)

620 14 8 44 Karlberg et al. (53)

120 46 >10,000 11 8 11 Larsson et al. (90)

7 Isoquinolinone >10,000 >10,000 >10,000 860 52 12 Larsson et al. (90)

IWR-1 Tetrahydro-

Phthalimide

>18,750 >18,750 131 56 >143 Huang et al. (43)

>85,000 >170,000 150 39 >567 Bregman et al.

(54, 55)

8 Oxazolidinone >85,000 >170,000 1 >85,000 Bregman et al.

(54, 55)

9 Quinazolinone 931 8 2 116 Bregman et al.

(54, 55)

aFold selectivity for PARP-1 vs. PARP-2 (PARP-2 IC50 / PARP-1 IC50).
bFold selectivity for PARP-2 vs. PARP-1 (PARP-1 IC50 / PARP-2 IC50).
cFold selectivity for PARP-3 vs. PARP-1 (PARP-1 IC50 / PARP-3 IC50).
dFold selectivity for PARP-1 vs. PARP-3, PARP-4, and TNKS1 (PARP-1 IC50 / PARP-3, PARP-4, or TNKS1 IC50).
eFold selectivity for TNKS1 vs. PARP-1 (PARP-1 IC50 / TNKS1 IC50).
fNot determined.

tankyrase D-loop (Ala1202–Ala1210 in TNKS1; Ala1049–Ala1057
in TNKS2) is observed in which Tyr1203 (Tyr1050 in TNKS2)
flips outward allowing access to the binding site, and movement
of Phe1198 (Phe1035 in TNS2) creates an induced pocket that

accommodates binding (18, 51, 52). In the absence of inhibitor or
NAD+, Tyr1203 lies across the NAD+ binding pocket and forms a
hydrogen-bond to the main-chain of Tyr1224 (Y1071 in TNKS2),
which effectively blocks access of NAD+ to the binding pocket.
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The opening of this site is similar to the effects seen with XAV939
binding to TNKS2 and TNKS1 (46, 53). In PARPs 1–4 the outer
wall is formed in part by the HD that would creates steric clash
with these compound (as observed with the aligned PARP-1 struc-
ture in Figure 3E). While this molecule is a useful tool for selective
tankyrase inhibition, it suffers from poor cellular potency and
efforts are being made to improve its potency and pharmacoki-
netic and pharmacodynamic properties (compounds 8 and 9 from
Table 1) (54, 55).

OTHER PARP INHIBITORS THAT DO NOT MIMIC NICOTINAMIDE
While tankyrase inhibitors appear to be paving the way for non-
nicotinamide-based PARP inhibitors, we make note of a few other
non-traditional scaffolds. For example, imidazoquinolinones and
imidazopyridine based compounds do not contain the carbox-
amide feature, but are potent inhibitors of both PARPs 1 and 2
(41). These compounds inhibit competitively, meaning they block
NAD+ from binding and thus would likely have similar challenges
as most PARP inhibitors in optimizing selectivity.

Metabolites of coumarin derivatives made way for C-nitroso
derivatives that irreversibly inhibited PARP-1. These compounds
were observed to eject the zinc ion from the first zinc-finger
domain (Zn1), presumably through oxidation of the coordinating
cysteine residues resulting in disulfide bond formation (56). This
mechanism was noted to act selectively on Zn1 and not Zn2, which
fell in line with the loss in catalytic activity but remaining DNA
binding (57). These compounds showed promising chemothera-
peutic potential as they induced apoptosis in human tumor cells
(58). Further development of this molecule resulted in 4-iodo-3-
nitroso-benzamide (INO2BA; iniparib), a clinical candidate that
showed clinical benefit in treating metastatic triple negative breast
cancer (TNBC) (59); however a larger phase 3 trial failed to repro-
duce prolonged survival in TNBC. Iniparib was later demonstrated
to have poor selectivity and potency for PARP-1 zinc-fingers (60,
61), and thus is not a “bona fide” PARP inhibitor. Unfortunately
this drug provided an inaccurate representation of true PARP
inhibitors to the community, and its failure does not reflect the
therapeutic potential of PARP inhibitors.

POTENTIAL FOR ALTERNATIVE INHIBITORS AS ISOFORM SPECIFIC
PARP INHIBITORS
High-throughput screening for PARP catalytic site inhibitors and
substrate mimicry are two typical strategies taken to develop
new PARP inhibitors. When PARP selectivity is desired, chemical
manipulations by side group modification or scaffold optimiza-
tion are used to target the slight differences in the NAD+ binding
site. With development of new screening assays, we will be capable
of searching for compounds that inhibit non-catalytic domains of
PARPs. For example, our group has recently developed an HTS
assay to detect allosteric regulation of PARP-1 (62). Since the
domains involved in allosteric regulation are unique to PARP-1,
identified inhibitors would likely be highly selective. In addition
to isoform specificity, inhibition of allosteric regulation may only
affect certain functions of PARP-1. For instance, we find that
inhibition of allosteric regulation affects DNA-dependent acti-
vation without affecting androgen receptor-mediated transcrip-
tional activities. It is likely that other PARP-1 mediated functions

would also not be affected by disruption in allosteric regulation,
which could be beneficial in terms of pharmacological efficacy and
adverse effects.

Structural characterization of PARP non-catalytic domains in
complex with protein or DNA has provided grounds for ratio-
nal drug design approaches. Despite difficulties in development
of inhibitors that target protein–protein or protein–DNA inter-
faces, identification of clustered protein interface regions of high-
affinity, known as “hot spots,” has been a guiding concept in the
inhibition of protein interactions with small molecules (63). From
the structure of the essential domains of PARP-1 in complex with
DNA damage, there are several domain–domain interfaces that
form critical contacts that are required for PARP-1 activation
(Figure 4). All-atom molecular modeling analysis of the energetic
contribution of individual residues to these protein–protein inter-
faces predicts that hot spots exist between the domains of PARP-1
(unpublished data). Our analysis using the CHARMM force field
and the GBMV implicit solvent model (64, 65) suggested that the
majority of binding free energy between the Zn1 and Zn3 domain
comes from a few local residues (e.g., R78 and W79 of Zn1). Inter-
estingly, mutation of either of these residues is detrimental to
PARP-1 DNA-dependent catalytic activity (62). A small nearby
hydrophobic groove exists next to these residues, which could
potentially bind and disrupt the interaction between the Zn1 and
Zn3 domains (Figure 4). Moving forward, a better understanding
of the dynamics of PARP-1 domain arrangements in a cell-based
context will be important in any kind of rational drug design
approach that targets interdomain interfaces. Furthermore, addi-
tional structural studies that can locate the positions of the Zn2
and BRCT domain might also reveal additional domain interfaces.

FIGURE 4 | Structure of PARP-1 in complex with DNA damage. PARP-1
binds DNA damage and activates catalytic activity nearly 500-fold. Only four
of the six domains of PARP-1 (Zn1, Zn3, WGR, and CAT) are essential for
DNA-dependent PARP-1 activation. This structure depicts complex
formation and protein–protein interactions between domains upon DNA
damage recognition (PDB ID: 4DQY). Disruption of these interdomain
protein interfaces could be of interest in selective, allosteric targeting of
PARP-1. An understanding of the arrangement of PARP-1 domain
architecture in the absence of DNA damage recognition will be important
for rational drug design efforts targeting protein interactions.
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Another strategy to target PARPs specifically is through the
acceptor site in the catalytic domain. This region likely forms
contacts with target proteins to be modified with ADP-ribose.
The diversity of the region in comparison to the NAD+ bind-
ing site among PARPs presents a greater potential to achieve
selectivity. Unfortunately, the differences in protein target recog-
nition among PARPs are not well understood. It is likely that both
sequence and structure play a part in target recognition. We do
know that glutamic acid, aspartic acid, and lysine residues are the
preferred amino acids that get modified by PARPs (66–70). Small
peptides with an ADP-ribose modified glutamic acid or lysine
residue could serve as a prototype scaffold for development of
such inhibitors.

PERSPECTIVE ON THE THERAPEUTIC POTENTIAL OF
PAN-PARP INHIBITORS VERSUS SELECTIVE PARP
INHIBITORS
Comparisons between the effects of pan-PARP inhibitors and
selective PARP inhibitors are largely unknown. In the case of
PARP-1, the roles of recognition of DNA damage and repair in
the base excision pathway are well established (71). Generation
of single-strand breaks (SSBs) tend to accumulate in cells treated
with PARP inhibitors, but this is not the case in cells treated with
PARP-1 siRNA (72). RNAi technology however, requires care-
ful interpretation since it is a knockdown and not a complete
knockout, and even weak PARP-1 activity is enough for efficient
DNA repair (73). The residual DNA repair activities of PARP-
2 could explain SSB accumulation in cells treated with a PARP
inhibitor (that inhibits both PARP-1 and PARP-2), and not in
the case of PARP-1 depletion. Another model explains the reten-
tion of SSBs by proposing that PARP inhibitors trap PARP-1
and PARP-2 on SSB intermediates and prevent proper repair (72,
74, 75).

In terms of therapeutic potential, PARP inhibitors are more
effective at killing BRCA deficient cells than with PARP-1 knock-
down (5, 6). A number of clinical trials (Phase I–II) testing PARP
inhibitors (with proven activity against either PARP-1 alone or
both PARP-1 and 2) singly or in combination with chemother-
apy are ongoing (76). Some clinical trials are upfront selecting
for patients with known BRCA-deficiency or assessing biomark-
ers in a retrospective manner; and early reports suggest that
selected BRCA-mutant patients do gain the best clinical bene-
fit (77). The selectivity and usefulness of leading clinical PARP
inhibitors (veliparib, olaparib, rucaparib) will soon become appar-
ent as clinical trials successfully accrue patients. Moreover, as the
research community discovers more BRCA2-related genes (such
as the Fanconi Anemia genes) and pathways disrupted in can-
cers (78) two new opportunities will be: (i) to select patients’
tumors that would be optimal for a synthetic lethal approach
using PARP inhibitors and (ii) defining new targets within this
pathway (79). Additionally, we are hopeful that with an in-
depth understanding of the structure-function of each PARP
family member, better and more specific targeting strategies will
emerge. Finally, we may be better able to enhance PARP inhibitor-
based therapies by taking into account the interplay between
the DNA damage response and cell cycle dynamics (e.g., WEE1
inhibitors) (80).

CONCLUSION
Over 40 years of research invested from groups worldwide has
advanced our understanding of poly(ADP-ribosyl)ation in can-
cer, identifying PARP-1 as a promising therapeutic target. As
the family originating with PARP-1 has grown into a superfam-
ily of PARPs and related MARTs, new therapeutic opportuni-
ties have surfaced along with new therapeutic challenges. Since
most PARP inhibitors have varying selectivity among PARPs
(8), interpretation of biological effects can present difficulties.
Only recently have we begun to understand how different PARP
inhibitors affect individual PARP function, and whether added
therapeutic benefits result from pan-PARP inhibition remains to
be determined.

Selectivity of compounds for one PARP over another is infre-
quently shown, although selectivity between PARP1 and PARP2,
and in some instances other PARPs, is becoming more frequently
reported. The use of selective agents will be extremely important in
understanding each PARPs function. For example, the selectivity
of compounds between PARP1, PARP2, and PARP3 is especially
needed to clarify roles in response to DNA damage. Methods for
screening the family of PARPs has become more prevalent, which
will help accelerate the development of selective inhibitors. Cross-
inhibition with other enzymes that use NAD+ as a substrate or
cofactor (such as ADP-ribosylcyclases and sirtuins) is an important
concern, but is not typically seen (81, 82).

On the road to PARP selective inhibitors, most efforts will
likely continue to focus on modifications of the nicotinamide-
based inhibitors. The newer tankyrase selective compounds (such
as IWR-1) that target the AD and PH sites but not the NI site
present exciting new alternatives to nicotinamide-based inhibitors.
It will be interesting to see if similar approaches are effective in
other PARPs to promote selectivity. The acceptor sites among
PARPs contain varying degrees of differences, which could guide
the specificity of modifying target proteins. Targeting features of
this region, such as the unique Arg408 residue in PARP-3, could
be another way to obtain selectivity. Finally, we bring attention to
targeting non-catalytic domains as a route to achieving selectivity.
PARPs are the most diverse outside of their catalytic domain, and
it is becoming increasingly appreciated that these domains make
DNA and protein interactions important for proper function.
Targeting non-catalytic domains may even allow us to target spe-
cific PARP functions, opening up a new dimension of therapeutic
opportunities.
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