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Ginsenoside Rd Attenuates Myocardial Ischemia/
Reperfusion Injury via Akt/GSK-3b Signaling and
Inhibition of the Mitochondria-Dependent Apoptotic
Pathway
Yang Wang1., Xu Li1., Xiaoliang Wang2, Waynebond Lau2, Yajing Wang2, Yuan Xing1, Xing Zhang1,

Xinliang Ma2*, Feng Gao1*

1 Department of Physiology, Fourth Military Medical University, Xi’an, China, 2 Department of Emergency Medicine, Thomas Jefferson University, Philadelphia,

Pennsylvania, United States of America

Abstract

Evidence suggests Ginsenoside Rd (GSRd), a biologically active extract from the medical plant Panax Ginseng, exerts
antioxidant effect, decreasing reactive oxygen species (ROS) formation. Current study determined the effect of GSRd on
myocardial ischemia/reperfusion (MI/R) injury (a pathological condition where ROS production is significantly increased) and
investigated the underlying mechanisms. The current study utilized an in vivo rat model of MI/R injury and an in vitro
neonatal rat cardiomyocyte (NRC) model of simulated ischemia/reperfusion (SI/R) injury. Infarct size was measured by Evans
blue/TTC double staining. NRC injury was determined by MTT and lactate dehydrogenase (LDH) leakage assay. ROS
accumulation and apoptosis were assessed by flow cytometry. Mitochondrial membrane potential (MMP) was determined
by 5, 59, 6, 69-tetrachloro-1, 19, 3, 39-tetrathylbenzimidazol carbocyanine iodide (JC-1). Cytosolic translocation of
mitochondrial cytochrome c and expression of caspase-9, caspase-3, Bcl-2 family proteins, and phosphorylated Akt and GSK-
3b were determined by western blot. Pretreatment with GSRd (50 mg/kg) significantly augmented rat cardiac function, as
evidenced by increased left ventricular ejection fraction (LVEF) and 6dP/dt. GSRd reduced myocardial infarct size, apoptotic
cell death, and blood creatine kinase/lactate dehydrogenase levels after MI/R. In NRCs, GSRd (10 mM) inhibited SI/R-induced
ROS generation (P,0.01), decreased cellular apoptosis, stabilized the mitochondrial membrane potential (MMP), and
attenuated cytosolic translocation of mitochondrial cytochrome c. GSRd inhibited activation of caspase-9 and caspase-3,
increased the phosphorylated Akt and GSK-3b, and increased the Bcl-2/Bax ratio. Together, these data demonstrate GSRd
mediated cardioprotective effect against MI/R–induced apoptosis via a mitochondrial-dependent apoptotic pathway.
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Introduction

Ginseng, the root of Panax ginseng C.A. Mayer (Araliaceae), is

a popular traditional Chinese medicinal herb. Although the

mechanisms responsible for ginseng’s various effects remain largely

unknown, several active ingredients termed ginsenosides have

been isolated from the plant [1–3]. Ginsenoside Rd, Dammer-

24(25)-ene-3b, 12b, 20(S)- triol-(20-O-b-D-glucopyranosyl)-3-O-b-

D-glucopyranosyl-(1R2)-b-D-gluco-pyranoside (GSRd,

C48H82O18?3H2O, molecular weight 1001, Figure 1), one of the

major P. ginseng isolates, scavenges free radicals [4,5], inhibits

Ca2+-influx via receptor and store-operated Ca2+ channels [6],

and protects against neuronal apoptosis [4,7]. Therefore, in

addition to being highly lipophilic and capable of easily diffusing

across biological membranes, GSRd may have significant advan-

tageous cardiac effects. However, it has not been investigated

whether GSRd exerts protective effect against myocardial

ischemia- reperfusion (MI/R) injury, or by what potential

mechanisms.

Toxic reactive oxygen species (ROS) generated during MI/R

both directly and indirectly affect cardiomyocyte function,

promoting apoptosis and necrosis [8]. Mitochondria are both a

major endogenous source and target of ROS, including superox-

ide anions, hydrogen peroxide, peroxynitrite, and hydroxyl

radicals. Mitochondrial dysfunction increases ROS production,

exacerbating oxidant-induced apoptosis [9,10]. During early

reperfusion, ROS burst alters intracellular redox states, modifies

the inner mitochondrial membrane potential (MMP), and releases

mitochondrial-cytochrome c into the cytosol, ultimately activating

caspase-3 in the final apoptotic pathway [11,12]. Preventing ROS

production and preserving mitochondrial integrity are therefore

protective against MI/R injury. Clinical evidence demonstrates

GSRd potently suppresses ROS generation [4,13]. It remains

unknown whether GSRd may decrease MI/R-induced ROS
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generation, or whether GSRd may inhibit the mitochondrial-

dependent apoptotic pathway.

The phosphatidylinositol-3-kinase (PI3K)/Akt pathway is car-

dioprotective against MI/R injury [14–16]. Additionally, PI3K/

Akt pathway activation attenuates mitochondria-mediated apop-

tosis [17,18]. Serine/threonine kinase Akt is a primary mediator of

the downstream effects of phosphatidylinositol-3 kinase (PI3K),

preserving mitochondrial integrity by phosphorylating molecules

such as the Bcl-2 family and GSK-3b [19]. Glycogen synthase

kinase 3b (GSK-3b) is a serine/threonine kinase; phosphorylated

GSK-3b is cardioprotective against MI/R injury [20]. Although

GSRd has been demonstrated to be anti-apoptotic by activating

PI3K/Akt [21], whether GSRd suppresses mitochondrial-depen-

dent apoptosis during MI/R via PI3K/Akt/GSK-3b signaling

remains unknown.

Therefore, the aims of this study were: 1) to determine whether

GSRd exerts any cardioprotective effect against MI/R injury; 2) to

determine whether GSRd may decrease oxidative stress in rats

subjected to MI/R; and if so, 3) to investigate the responsible

underlying mechanisms.

Materials and Methods

Animals and reagents
This study was performed in adherence with the National

Institutes of Health Guidelines for the Use of Laboratory Animals,

and was approved by the Fourth Military Medical University

Committee on Animal Care. Male Sprague-Dawley (SD) rats

weighing 270–320 g were provided by the Experimental Animal

Center of the Fourth Military Medical University (Xi’an, China).

All animals were allowed free access to food and water, and were

maintained at 22–24uC under a 12 hour:12 hour light-dark cycle.

GSRd (purity 98%, Tai-He Biopharmaceutical Co. Ltd, Guangz-

hou, China) stock solutions were prepared in saline containing

10% 1, 3-propanediol (v/v). Fetal bovine serum (FBS) and

Dulbecco’s modified Eagle’s medium (DMEM) were from Gibco

(Grand Island, NY, USA). TUNEL apoptosis kit was from Roche

Diagnostics (Mannheim, Germany). Propidium iodide (PI),

Annexin-V, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide (MTT), 29,79-dichorofluoresceine diacetate (DCFH-

DA), and 5,59,6,69-tetrachloro-1,19,3,39-tetraethyl-benzimidazol-

carbocyanine iodide (JC-1) were from Sigma-Aldrich Inc. (St.

Louis, MO, USA). Antibodies against Bcl-2, Bax, caspase3,

caspase9, cytochrome c, and b-actin were from Santa Cruz

Biotechnology (Santa Cruz, CA, USA). Antibodies against Akt,

phospho-Akt (Ser473), GSK-3b, and phosphor-GSK- 3b (Ser9)

were from Cell Signaling Technology (Beverly, MA, USA). All

other reagents were of standard biochemical quality from

commercial suppliers.

Myocardial ischemia/reperfusion (MI/R) model in rats
Adult male Sprague-Dawley rats were fasted overnight, and

anesthetized via intraperitoneal (IP) administration of 50 mg/kg

pentobarbital sodium. A micro-catheter was inserted into the left

ventricle through the right carotid artery to measure the left

ventricular pressure. Myocardial ischemia was produced after

exteriorizing the heart via a left thoracic incision, and placing a 6–

0 silk slipknot suture around the left anterior descending coronary

artery approximately 2–3 mm from its origin. Ischemia was

monitored and confirmed by ST segment elevation upon

electrocardiogram (ECG). After 30 minutes ischemia, the slipknot

was released, and myocardial reperfusion for 3 hours. Rats were

randomly assigned to one of the following treatments (n = 8/

group): 1) Sham group, receiving vehicle IP injection (10 ml/kg

saline) and operative procedures without coronary slipknot; 2) MI/

R group, receiving vehicle IP injection (10 ml/kg saline) 30 min-

utes prior to coronary I/R; and 3) MI/R+GSRd group, receiving

GSRd IP injection (50 mg/kg) 30 minutes prior to coronary I/R,

a dose established from prior investigations [13,22].

Isolation of primary neonatal rat cardiomyocytes and
simulated ischemia/reperfusion (SI/R)

Neonatal rat cardiomyocytes (NRCs) were isolated from 1–

2 day old Sprague-Dawley rats. Briefly, excised hearts were

washed in Hanks balanced salt solution (HBSS; Ca2+-Mg2+free).

Ventricles were freed of associated tissues, minced, subjected to 5–

6 0.125% trypsin washes (37uC), filtered, and centrifuged at

1,000 rpm for 10 minutes. Supernatant was resuspended in

DMEM containing 20% fetal bovine serum, penicillin (100 U/

mL), and streptomycin (100 U/mL). Resuspended cells were

placed in a petri dish in a humidified incubator (5% CO2, 37uC)

for 90 minutes to promote dish surface attachment of non-

myocytes suspended in solution. Cells were harvested and seeded

onto 60-mm culture dishes. 5-Bromo-29-deoxyuridine (100 mM)

was added during the first 48 hours to inhibit non-myocyte

proliferation. Simulated I/R (SI/R) was employed as previously

described [23]. Briefly, simulated ischemia buffer (composition in

mM: NaCl 98.5, KCl 10, MgSO4 1.2, CaCl2 1.0, HEPES 20,

sodium lactate 40, pH 6.8) and simulated reoxygenation buffer

(composition in mM: NaH2PO4 0.9, NaHCO3 20.0, CaCl2 1.0,

MgSO4 1.2, HEPES 20.0, NaCl 129.5, KCl 5.0, glucose 5.5,

pH 7.4) were prepared in advance. Confluent-beating cells in 6-

well plates were subjected to medium replacement with simulated

ischemia buffer, incubated in a hypoxic chamber (of humidified

atmosphere 5% CO2/0% O2 balanced with N2 at 37uC) for

3 hours, and then reoxygenated in a standard incubator for

2 hours with medium replacement with re-oxygenation buffer.

Cells subjected to control conditions were cultured with normal

Tyrode solution (pH 7.4) in a humidified atmosphere of 5% CO2/

21% O2 balanced with N2 at 37uC for 5 hours. Four separate

NRC groups were tested:

1) Control group, incubated with Tyrode solution for the entire

experimental period;

2) SI/R group, incubated with simulated ischemia buffer for 3

hours hypoxia, followed by 2 hours re-oxygenation;

Figure 1. The chemical structure of GSRd. The molecular formula
of GSRd (C48H82O18?3H2O). Its molecular weight is 1001.
doi:10.1371/journal.pone.0070956.g001
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3) Vehicle group, subjected to 0.2% (v/v) DMSO administration

30 minutes prior to SI/R;

4) SI/R+GSRd group, subjected to GSRd (10 mM) administra-

tion 30 minutes prior to SI/R, a dose selected based upon

dose-response experiments and previous investigations [5,24].

Determination of cardiac function
MI/R-induced cardiac dysfunction was determined by invasive

hemodynamic evaluation methods. A micro-catheter was inserted

into the left ventricle via the right carotid artery to measure the left

ventricular pressure (LVP). ECG and LVP were simultaneously

recorded on a polygraph (RM-6200C; Chengdu, Instrument,

Chengdu, China). Computer algorithms measured left ventricular

systolic pressure (LVSP), left ventricular end-diastolic pressure

(LVEDP), first derivative of left ventricular pressure (6dP/dtmax),

and heart rate (HR) at baseline, after 30 minutes ischemia, and

after 1, 2, and 3 hours of reperfusion.

Determination of myocardial infarct size
After reperfusion conclusion, the coronary artery ligature was

retied. 4 mL of 2% Evans blue dye (Shanghai Chemical Reagents,

Shanghai, China) was injected into the aorta. Dye was circulated

and uniformly distributed, except in the cardiac region previously

perfused by the occluded coronary artery (defining the ischemic

region or area at risk, AAR). Cardiectomy was rapidly performed.

Hearts were frozen at 220uC and sliced into 1-mm sections

perpendicular to the base-apex. Slices were incubated in 1% TTC

in phosphate buffer at 37uC for 10 minutes (pH 7.4). Morpho-

metric measurements of AAR and infarct area (INF) were

performed by image analysis system (Image-Pro plus; Media

Cybernetics, Bethesda, MA). Myocardial infarct size was expressed

as percentage of infarct area (INF) over total AAR (INF/

AAR6100%).

Determination of in vivo necrosis and cell death
Myocardial cellular damage and necrosis were evaluated by

measuring plasma levels lactate dehydrogenase (LDH) and

creatine kinase (CK). Blood samples (1mL) were drawn after

3 hours reperfusion. LDH and CK levels were measured in

blinded manner by spectrophotometry (DU 640; Beckman

Coulter, Brea, CA) in duplicate.

Determination of myocardial apoptosis
Myocardial apoptosis was determined by a commercially

available terminal deoxynucleotidyl nick-end labeling (TUNEL)

assay per manufacturer’s protocol. TUNEL-positive cardiomyo-

cytes in ischemic myocardium were counted in double-blinded

fashion. The percentage of TUNEL-positive cells was determined

by dividing the number of positive-staining nuclei by the total

number of nuclei in a given field of view (at 200 microscopic

magnification).

An additional test was performed to assess myocardial apoptosis

with greater specificity. Cardiac caspase-3 activity was determined

via caspase-3 colorimetric assay kit (Chemicon, Temecula, CA). In

brief, myocardial tissue was homogenized in ice cold lysis buffer

for 30 seconds. The homogenates were centrifuged. Supernatants

were collected, and protein concentrations were measured by

bicinchoninic acid method. To each well of a 96-well plate,

supernatant containing 200 mg of protein was loaded and

incubated with 25 mg caspase-3 substrate N-acetyl-Asp-Glu-Val-

Asp (DEVD)-p-nitroanilide at 37uC for 1.5 hours. The optical

density was measured at 405 nm with a SpectraMax-Plus

microplate spectrophotometer. Caspase-3 activity was calculated

Figure 2. Ginsenoside Rd improves rat cardiac function after 30 minutes ischemia and 3 hours reperfusion. Values presented are mean
6 SEM. Abbreviations: LVSP, left ventricular systolic pressure; LVEDP, left ventricular end diastolic pressure; 6LVdP/dtmax, the instantaneous first
derivation of left ventricle pressure; MI/R, myocardial ischemia/reperfusion (30 minutes/3 hours). n = 8/group. **P,0.01 vs. Sham, #P,0.05,
##P,0.01 vs. MI/R.
doi:10.1371/journal.pone.0070956.g002
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Figure 3. Ginsenoside Rd reduced rat myocardial injury (infarct size, necrosis, and apoptosis) post MI/R. (A) Myocardial infarct size in
rats subjected to 30 minutes I, followed by 3 hours R. Blue-staining represents non-ischemic tissue, red-staining represents the area at risk, and pale
areas indicate infracted regions. Myocardial infarct size (INF) expressed as percentage of area at risk (AAR). (B) Plasma creatine kinase (CK) and lactate
dehydrogenase (LDH) levels. (C) Left: Representative photomicrographs of in situ detection of apoptotic cardiomyocytes by terminal
deoxynucleotidyl nick-end labeling (TUNEL) staining in MI/R heart tissue. Green fluorescence indicates TUNEL-positive apoptotic nuclei; blue
fluorescence indicates total cardiomyocyte nuclei. Original magnification 2006; Right: Percentage of TUNEL-positive nuclei in heart tissue sections.
(D) Myocardial caspase-3 activity. All values presented are mean 6 SEM. n = 8/group. **P,0.01 vs. Sham, #P,0.05, ##P,0.01 vs. MI/R.
doi:10.1371/journal.pone.0070956.g003

Figure 4. Ginsenoside Rd ameliorated SI/R-induced in vitro cell injury (viability, death, and apoptosis). (A) GSRd treatment alone (0.1–
50 mM) for 24 hours did not alter NRC viability, suggesting no GSRd-induced toxicity at concentrations up to 10 mM (n = 8; *P.0.05 vs. Control). (B)
Cellular viability as determined by MTT assay after SI/R (3 hours hypoxia followed by 2 hours reoxygenation). (C) Cellular death post GSRd treatment
alone for 24 hours as determined by LDH leakage into medium (n = 8; *P.0.05 vs. Control). (D) LDH assay in cells administered GSRd (0.1, 1, 10 mM)
30 minutes prior to SI/R. (E) SI/R-induced apoptosis as determined by Annexin V-FITC/PI flow cytometry in control and vehicle groups. (F) 10 mM
GSRd significantly reduced SI/R-induced apoptosis as determined by Annexin V-FITC/PI flow cytometry. All values presented are mean 6 SEM.
**P,0.01 vs. Control, #P,0.05, ##P,0.01 vs. SI/R. These experiments were performed in triplicate with similar results.
doi:10.1371/journal.pone.0070956.g004

Ginsenoside Rd Attenuates Myocardial I/R Injury
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using a standard curve and expressed as fold increase over the

mean value of sham MI.

Determination of cellular viability
Cellular viability was determined by MTT assay. NRCs were

distributed into a 96-well plate (density 16105 cells/well), and

pretreated with different GSRd concentrations (0.1–50 mM). After

experimental treatment, MTT was added to each well (final

concentration 0.5 mg/mL). Plates were incubated for 4 hours at

37uC. Absorbance of blue formazan derivative, indicating

viability, was measured at 570 nm via microplate reader (Bio-

Rad Laboratories, CA, USA). All measurements were performed

in duplicate.

Determination of in vitro cellular injury
Cellular injury was determined by LDH release. 0.2 mL of

culture medium from NRCs post H/R treatment was analyzed by

spectrophotometry via commercial assay kit (UV-120-02, Shang-

hai, China), per manufacturer’s protocol. Cellular LDH release

was expressed as the percentage of total cell LDH activity. All

measurements were performed in duplicate.

Determination of apoptosis by flow cytometry
The NRC apoptotic ratio was determined by flow cytometry

with annexin V-FITC/PI staining per manufacturer’s protocol. In

brief, NRCs were plated upon a six-well plate, and pretreated with

10 mM GSRd for 30 minutes followed by SI/R treatment. After

experimental treatment, cells were collected, washed with calcium-

free PBS, and resuspended in binding buffer. Cells were treated

with annexin V-FITC and PI, placed in the dark at room

temperature for 15 minutes, and analyzed by a Beckton-Dickinson

flow cytometer (FACS).

Measurement of intracellular reactive oxygen species
ROS generation was determined by fluorescent probe DCFH-

DA. Cell-permeable non-fluorescent DCFH-DA oxidizes to the

highly fluorescent 2,7-dichlorofluorescin in ROS presence. NRCs

were plated upon a six-well plate, and pretreated with 10 mM

GSRd for 30 minutes followed by SI/R treatment. Cells were

harvested by trypsinization. After two PBS washings, 10 mM

DCFH-DA was added for 20 minutes at 37uC in the dark.

Fluorescence intensity was measured by flow cytometry (Coulter,

USA) at excitation wavelength 488 nm, and emission wavelength

525 nm.

Measurement of mitochondrial membrane potential
Mitochondrial membrane potential (MMP) was evaluated by

cationic dye JC-1. In normal cells, JC-1 aggregates in mitochon-

dria, fluorescencing red. In apoptotic cells, JC-1 accrues in the

cytosol, as a green fluorescencing monomer. At the experiment’s

conclusion, 16106 cells were harvested by trypsinization. After

two PBS washings, cells were incubated with JC-1 10 mg/mL for

15 minutes at 37uC in the dark. Cells were harvested, suspended

in PBS, and analyzed by flow cytometry.

Western blot analysis
Whole cell extracts were prepared as follows: Cultured NRCs

were washed twice with cold PBS and immersed in lysis buffer

(composition: 50 mM HEPES, pH 7.4, 0.1% Chaps, 5 mM DTT,

0.1 mM EDTA, and 0.1% Triton X-100). Cell lysates were

centrifuged. Protein concentrations in the supernatants were

Figure 5. Ginsenoside Rd reduces intracellular ROS generation in NRCs subjected to SI/R. Intracellular ROS accumulation was measured
via fluorescence probe DCFH-DA. Fluorescent intensity was determined at excitation wavelength 488 nm and emission wavelength 525 nm via flow
cytometry. Values presented are mean 6 SEM. **P,0.01 vs. Control, #P,0.05 vs. SI/R. These experiments were performed in triplicate with similar
results.
doi:10.1371/journal.pone.0070956.g005

Ginsenoside Rd Attenuates Myocardial I/R Injury
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determined by Bradford Protein Assay Kit (Bio-Rad, CA, USA).

Equal samples were loaded onto and separated by 12% SDS-

polyacrylamide gel electrophoresis. Proteins were transferred to

nylon membranes by electrophoretic transfer system (Bio-Rad).

Membranes were blocked in 5% skim milk for 1 hour at room

temperature. Incubation with primary antibody commenced

overnight at 4uC, followed by secondary antibody conjugated to

horseradish peroxidase for 2 hours. Immunoblot was visualized

with ChemiDocXRS (Bio-Rad Laboratory, Hercules, CA), and

analyzed with LabImage software.

Statistical analysis
All values are presented as mean6SEM. Differences were

evaluated by AVOVA followed by Bonferroni correction for post

hoc t-test, where appropriate. P values less than 0.05 were

considered significant. All statistical tests were performed with

GraphPad Prism software, version 5.0 (GraphPad Software, San

Diego, CA).

Results

Ginsenoside Rd improves rat cardiac function after MI/R
GSRd had no effects on blood glucose, blood pressure and

cardiac function in the absence of MI/R. No significant

hemodynamic differences existed between groups at baseline

conditions. Additionally, there were no significant differences in

heart rate (HR) and mean arterial pressure (MAP) between any

groups during MI/R. Pretreatment with GSRd enhanced 6

LVdP/dt max after 3 hours reperfusion compared to MI/R group

(Figure 2). Additionally, GSRd markedly decreased LVEDP post-

I/R compared to MI/R group (P,0.01). Hemodynamic data

support GSRd improved rat cardiac systolic and diastolic function

after MI/R.

Ginsenoside Rd reduced rat myocardial injury (infarct
size, necrosis, and apoptosis) post MI/R

Myocardial infarct size and plasma CK and LDH were

measured to assess myocardial injury post I/R. Representative

AAR and INF images are shown in Figure 3A. No myocardial

infarction was observed in sham-group hearts. 30 minutes MI

followed by 3 hours R resulted in significant infarction in MI/R

group rats compared to sham (36.0%61.5% versus sham,

P,0.01). GSRd treatment significantly decreased infarct size

(20.9%62.3% versus 36.0%61.5% MI/R-group, P,0.01). There

was no significant difference in AAR between all groups.

Cardiomyocyte necrosis is characterized by cellular content

release. To determine whether GSRd attenuated MI/R-induced

cardiomyocyte necrosis, plasma CK and LDH levels were

measured after reperfusion conclusion. Plasma CK and LDH

levels increased to 3,3246228 and 2,3276143U/L respectively in

the MI/R-group (Figure 3B). GSRd treatment markedly de-

creased CK and LDH levels (2,2386160 and 1,3206109 U/L

respectively, P,0.01) in the MI/R group. These indicators

support GSRd decreased in vivo myocardial necrosis post-MI/R.

Apoptosis is the major mechanism of cell death immediately

following a short period of ischemia with ensuing reperfusion, and

was assessed by two methods, TUNEL staining and caspase-3

activity. As expected, TUNEL-positively staining cells were

minimally detected (3.0%61.2%) in the sham-group (Figure 3C),

Figure 6. Ginsenoside Rd increases mitochondrial membrane potential (MMP) in NRCs subjected to SI/R. MMP was measured with
fluorescent dye JC-1. 10 mM GSRd was administered 30 minutes prior to SI/R. Fluorescent intensity of JC-1 was determined at excitation wavelength
488 nm and emission wavelength 530 nm via flow cytometry. Values presented are mean 6 SEM. **P,0.01 vs. Control, ##P,0.01 vs. SI/R. These
experiments were performed in triplicate with similar results.
doi:10.1371/journal.pone.0070956.g006

Ginsenoside Rd Attenuates Myocardial I/R Injury
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whereas the MI/R group exhibited a significant number of

TUNEL-positively cells (16.3%61.8%). GSRd pretreatment

significantly reduced TUNEL-positively staining cells

(11%62.3%). Myocardial caspase-3 activity is a very specific

indicator of cardiomyocyte apoptosis. Consistent with TUNEL

results, the MI/R group exhibited significantly increased caspase-3

activity (3.060.2 versus 0.960.2, P,0.01, Figure 3D). GSRd

substantially reduced caspase-3 activity compared to the MI/R-

group (1.960.3 versus 3.060.2, P,0.05). Together, these data

suggest GSRd decreased post-MI/R myocardial apoptosis in vivo.

Ginsenoside Rd ameliorated in vitro cell death (viability,
death, and apoptosis) post SI/R

To first determine the effects of GSRd alone upon NRCs, cells

were treated with varying concentrations of GSRd (0.1–50 mM).

GSRd alone at these concentrations for 24 hours was not cytotoxic

by MTT and LDH leakage assay (Figure 4A, 4C). Concentration

response curves determining cellular viability are shown in

Figure 4B. Peak cellular viability was observed at GSRd dose

10 mM.

Cellular viability and LDH leakage are indices of NRCs injury.

After being subject to SI/R, cellular viability in the vehicle group

was significantly reduced 41%60.6% compared to control, and

LDH leakage increased 16.33%62.3% compared to control (all

P,0.01). GSRd (0.1, 1, and 10 mM) markedly reduced SI/R-

induced cell death, respectively increasing viability rate to

59%61.8%, 63%63.9%, and 69%63.7% and decreasing LDH

leakage to 11%61.7%, 10.3%60.9%, and 7.3%60.9% (P,0.01,

Figure 4B, 4D). Together, these results indicate GSRd significantly

preserved cellular viability post-SI/R injury in a dose-dependent

manner (at concentrations up to 10 mM).

Cellular apoptosis was assessed by flow cytometry (Figure 4E).

Annexin V/PI double staining demonstrated significant apoptotic

increase in vehicle group compared to control post SI/R

(19.9%61.1% versus 3.1%60.2%, P,0.01). 10 mM GSRd

markedly decreased apoptosis (6.3%60.7%, P,0.01, Figure 4F).

Taken together, these in vitro results support GSRd as a potent

cardioprotective agent, in consistent fashion with in vivo data.

Ginsenoside Rd reduces intracellular ROS generation,
increases mitochondrial membrane potential (MMP), and
decreases cytochrome c release in NRCs subjected to SI/R

Intracellular ROS levels were assessed by determining DCF

fluorescence intensity via flow cytometry. SI/R induced rapidly and

significantly increased DCF fluorescence (P,0.01, Figure 5A).

Figure 7. Ginsenoside Rd inhibits mitochondrial-mediated apoptosis in NRCs subjected to SI/R. (A) Representative western blot for
cytochrome c release. SI/R increased cytosolic translocation of mitochondrial cytochrome c. Densitometric analysis demonstrates 10 mM GSRd
inhibited mitochondrial cytochrome c release. (B) Representative western blot for Bcl-2 and Bax expression after various experimental treatments.
Densitometric analysis demonstrates SI/R reduced the Bcl-2/Bax ratio, but GSRd increased the Bcl-2/Bax ratio. (C) Representative western blot for SI/R-
induced casepase-3 and caspase-9 activation. Densitometric analysis demonstrates 10 mM GSRd reduced expression of cleaved caspase-9 and
caspase-3. All values presented are mean6SEM. n = 6; **P,0.01 vs. Control, #P,0.05, ##P,0.01 vs. SI/R.
doi:10.1371/journal.pone.0070956.g007

Ginsenoside Rd Attenuates Myocardial I/R Injury

PLOS ONE | www.plosone.org 7 August 2013 | Volume 8 | Issue 8 | e70956



However, pretreatment of NRCs prior to SI/R significantly

decreased DCF fluorescence (P,0.05, Figure 5B), suggesting GSRd

significantly reduced ROS generation during SI/R in NRCs.

Mitochondrial membrane potential (MMP) is an important early

determinant of the mitochondrial apoptotic pathway. We investi-

gated the effects of GSRd upon MMP and cytochrome c release.

MMP detection was performed utilizing JC-1 dye to assess

mitochondrial membrane depolarization. NRCs subjected to SI/

R exhibited substantially decreased mitochondrial depolarization

compared to control (P,0.01, Figure 6A). Pretreatment with 10 mM

GSRd significantly stabilized the MMP (P,0.01, Figure 6B).

Mitochondrial depolarization releases several apoptogenic proteins,

most notably cytochrome c into the cytosol. Western blot analysis

demonstrated SI/R increased mitochondrial cytochrome c release

into cytosol, and 10 mM GSRd decreased cytochrome c release

(0.960.03 versus 0.760.02, P,0.05, Figure 7A). Together, these

results suggest GSRd may attenuate apoptosis by potentially

involving the mitochondrial apoptotic pathway.

Ginsenoside Rd modulates Bcl-2 and Bax expression in
NRCs subjected to SI/R

Next, we determine whether GSRd protects against SI/R-

induced apoptosis in NRCs by modulating the Bcl-2 family

proteins. SI/R treatment decreased Bcl-2 (an anti-apoptotic

protein) expression, and increased Bax (a pro-apoptotic protein)

expression, decreasing the Bcl-2/Bax ratio (Figure 7B). Pretreating

NRCs with 10 mM GSRd prior to SI/R promoted Bcl-2

expression and inhibited Bax expression, increasing the Bcl-2/

Bax ratio (Figure 7B).

Ginsenoside Rd decreases caspase-3 activity in NRCs
subjected to SI/R

Caspases regulate cellular apoptosis. Cytochrome c release

activates caspase-9, which activates caspase-3. SI/R significantly

increased expression of both cleaved caspase-9 and caspase-3,

which was attenuated by 10 mM GSRd pretreatment (Figure 7C).

Figure 8. Ginsenoside Rd increases phosphorylation of Akt and GSK-3b in NRCs subjected to SI/R. Densitometric analysis demonstrates
GSRd increased the ratio of P-Akt/Akt and P-GSK-3b/GSK-3b, which was significantly blocked by Akt-inhibitor LY294002. Values presented are
mean6SEM. n = 6; #P,0.05, ##P,0.01 vs. SI/R, &&P,0.01 vs. SI/R+GSRd.
doi:10.1371/journal.pone.0070956.g008

Figure 9. Schematic diagram depicting protective signaling of
GSRd in MI/R-induced apoptosis. GSRd inhibits the apoptotic
signaling cascades initiated by MI/R-generated ROS. Arrows (R)
indicate activation or induction, and segments ending with a (w)
indicate inhibition/blockade. Solid lines (—) indicate mechanisms
strongly supported by the current study, and dotted lines (--) indicate
hypothesized connections requiring further investigations.
doi:10.1371/journal.pone.0070956.g009

Ginsenoside Rd Attenuates Myocardial I/R Injury

PLOS ONE | www.plosone.org 8 August 2013 | Volume 8 | Issue 8 | e70956



Ginsenoside Rd increases phosphorylation of Akt and
GSK-3b in NRCs subjected to SI/R

To further investigate the molecular mechanism underlying

GSRd-mediated cardioprotection, we determined P-Akt/Akt and

P-GSK-3b/GSK-3b in NRCs post SI/R by western blot. There

was no significant difference in Akt and GSK-3b expression

between treatment groups at baseline (Figure 8). Consistent with

previous reports, SI/R alone increased phosphorylation of Akt and

GSK-3b. Pretreatment with 10 mM GSRd significantly increased

phosphorylation of Akt and GSK-3b (and consequently increased

P-Akt/Akt and P-GSK-3b/GSK-3b ratios, P,0.01). Pretreatment

with PI3K inhibitor LY294002 blocked GSRd-mediated phos-

phorylation of Akt and GSK-3b.

Discussion

Several important observations were made in the present study.

Firstly, we demonstrate that pretreatment with GSRd attenuated

in vivo MI/R injury in a rat model (evidenced by improved

cardiac function, reduced infarct size, and reduced myocardial

apoptosis after MI/R), and reduced in vitro SI/R injury in

cultured NRCs (evidenced by increased cardiomyocyte viability,

decreased cardiomyocyte LDH activity, and reduced cardiomyo-

cyte caspase-3 and -9 cleavage). Secondly, we provide the first

evidence that GSRd reduces intracellular ROS generation in

cardiomyocytes, and inhibits myocardial apoptosis induced by SI/

R via the mitochondrial-dependent apoptotic pathway. Finally, we

demonstrate Akt/GSK-3b signaling pathway activation signifi-

cantly contributes to the anti-apoptotic effect of GSRd.

The medical herb ginseng is used worldwide. Ginsenosides,

triterpene saponins, are a major ginseng component. More than

40 ginsenosides have been identified. Previous studies demonstrate

ginsenosides have significant protective effects in the cardiovascu-

lar system [25–27]. Wang et al. studied MI/R injury in an in vivo

rat model, and reported ginsenoside reduced infarct size and

improved resultant myocardial pathologic changes [28]. In a cell

culture model, Chen et al. reported panax notoginseng saponins

prevented cardiomyocyte apoptosis induced by glucose and

oxygen deprivation injury via PI3K/Akt signaling [29]. The

ginsenoside GSRd is highly lipophilic, and easily diffuses across

biological membranes [5]. Heretofore, its effects against MI/R

injury have never been investigated. Ginsenoside Rb1 and Re

have been demonstrated to exert direct depressant action upon

cardiomyocytes contraction, mediated in part via increased NO

production, reducing afterload and improving cardiac pump

function [30]. In our current study, GSRd augmented cardiac

function, increasing 6LVdP/dt max and decreasing LVEDP, and

reduced intracellular cardiomyocytes ROS generation. Further

investigation will be necessary to dissect the mechanisms

responsible for such divergent phenomenon. Nevertheless, our

study supports in consistent fashion the potential beneficial clinical

applications of GSRd.

During physiological conditions, a critical balance exists

between free radical production and the endogenous antioxidant

system [31,32]. Pathological conditions such as ischemia and

reperfusion tilt the balance in favor of ROS overproduction,

increasing oxidative stress, a major apoptotic stimulus. Pharma-

ceutics inhibiting ROS formation or antagonizing ROS toxicity

are cardioprotective against reperfusion injury [12,33,34]. In the

current study and many others, MI/R injury caused infarction

and cardiac dysfunction. SI/R injury in cultured NRCs induced

significant cell death. GSRd both limited infarct size and

augmented cardiac function in the employed rat MI/R model.

GSRd attenuated cellular damage (measured by MTT viability

and LDH activity assays) in cultured NRCs subjected to SI/R.

Cardiomyocyte apoptosis is one of the major pathogenic

mechanisms underlying MI/R injury [34]. Cumulative evidence

suggests that ROS, implicated in reperfusion toxicity, can trigger

cardiomyocyte apoptosis via the mitochondrial apoptosis pathway

[11,35,36]. ROS released during the early phase of myocardial

reperfusion strongly oxidizes cardiomyocytes already been dam-

aged by ischemia. Cardiomyocytes are rich in mitochondria, a

major endogenous source and susceptible target of ROS damage

[37]. Mitochondrial-mediated apoptosis plays an important role in

MI/R injury pathogenesis [8]. Under normal conditions,

cytochrome c is located within mitochondria. During intracellular

ROS overproduction, collapse of the mitochondrial membrane

potential (MMP) results in mitochondrial permeability transition

pore (mPTP) opening, and rapidly releasing cytochrome c into the

cytoplasm. Once released, cytochrome c binds the C- terminal

domain of the apoptotic protease activating factor-1 (Apaf-1),

inducing a conformation change. The activated Apaf-1/cyto-

chrome c complex promotes caspase activation [38]. Caspases

transduce and execute apoptotic signaling [11]. Caspase-3 (of the

terminal common apoptotic pathway) is also activated by caspase-

9, which is activated by the mitochondria-mediated apoptotic

pathway. In the current study, we demonstrate GSRd pretreat-

ment mitigated SI/R-induced intracellular ROS, MMP, and

mitochondrial release of cytochrome c into the cytosol, suggesting

involvement of the mitochondrial pathway in GSRd-mediated

cardioprotection.

The Bcl-2 protein family, compromised of both anti-and pro-

apoptotic members, are important mitochondrial regulators

during cardiomyocyte apoptosis [12]. Bcl-2 regulates mPTP

opening in opposition to Bax, blocking cytochrome c release,

inhibiting caspase activity, and decreasing cell apoptosis [39,40].

Therefore, altering the Bcl-2/Bax ratio influences apoptotic

balance. Western blot revealed SI/R significantly decreased the

Bcl-2/Bax ratio, an effect reversed by GSRd administration,

suggesting GSRd-mediated cardioprotection against SI/R injury

may occur partially via modulating Bcl-2/Bax expression.

The serine survival kinase Akt is activated downstream of

phosphatidylinositol 3-kinase (PI3K). Activation of PI3K and Akt

is cardioprotective against MI/R injury, and prevents cardiomyo-

cyte apoptosis [41,42]. Akt overexpression in cultured cardiomyo-

cytes preserves mitochondria Bcl-2 levels [18]. Akt exerts its

protective effects via phosphorylation of diverse target molecules

(such as Bcl-2 family and GSK-3), preserving mitochondrial

integrity. A downstream effector of Akt, GSK-3b is phosphorylated

at Ser 9 by Akt; phosphorylated GSK-3b attenuates MI/R injury

[20]. Phosphorylated GSK-3b suppresses mPTP opening by

binding to adenine nucleotide translocase (ANT, one of the mPTP

components), thereby reducing the affinity of ANT for cyclophilin D

[39]. In the present study, SI/R increased Akt and GSK-3b
phosphorylation, consistent with previous reports demonstrating

cardioprotective PI3K/Akt signaling in settings such as precondi-

tioning [19,43]. GSRd pretreatment further augmented Akt and

GSK-3b phosphorylation and attenuated cellular apoptosis. The

PI3K inhibitor LY294002 partially blocked the effects of GSRd.

Together, these results support mechanistic involvement of Akt/

GSK-3b signaling pathway in GSRd-mediated anti-apoptotic

effect.

Several limitations exist in the current study. Phosphorylation of

Akt by GSRd and its inhibition by LY294002 provide strong

supportive evidence for the involvement of Akt/GSK-3b in

GSRd-induced MI/R protection. However, it is not clear

LY294002 completely reverses GSRd’s effect upon cellular
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apoptosis. Additionally, while Akt overexpression preserves

mitochondrial Bcl-2 levels [18], but the specific mechanism by

which GSRd activates Akt to modulation the Bcl-2/Bax ratio

remains unknown, and warrants further investigation.

Taken together, our results demonstrate for the first time that

GSRd exerts cardioprotection against myocardial MI/R injury by

both reducing intracellular ROS and inhibiting mitochondria-

mediated apoptosis. Activation of Akt/GSK-3b signaling is

involved in the cardioprotective effect of GSRd (Figure 9). The

traditional herbal medicine GSRd may have therapeutic potential

attenuating myocardial ischemia/reperfusion injury.
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