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ABSTRACT:
Recent studies in cancer metabolism directly implicate catabolic fibroblasts as a 

new rich source of i) energy and ii) biomass, for the growth and survival of anabolic 
cancer cells.  Conversely, anabolic cancer cells upregulate oxidative mitochondrial 
metabolism, to take advantage of the abundant fibroblast fuel supply. This simple 
model of “metabolic-symbiosis” has now been independently validated in several 
different types of human cancers, including breast, ovarian, and prostate tumors. 
Biomarkers of metabolic-symbiosis are excellent predictors of tumor recurrence, 
metastasis, and drug resistance, as well as poor patient survival. New pre-clinical 
models of metabolic-symbiosis have been generated and they genetically validate 
that catabolic fibroblasts promote tumor growth and metastasis. Over 30 different 
stable lines of catabolic fibroblasts and >10 different lines of anabolic cancer cells 
have been created and are well-characterized. For example, catabolic fibroblasts 
harboring ATG16L1 increase tumor cell metastasis by >11.5-fold, despite the fact that 
genetically identical cancer cells were used. Taken together, these studies provide 
>40 novel validated targets, for new drug discovery and anti-cancer therapy.  Since 
anabolic cancer cells amplify their capacity for oxidative mitochondrial metabolism, 
we should consider therapeutically targeting mitochondrial biogenesis and OXPHOS 
in epithelial cancer cells. As metabolic-symbiosis promotes drug-resistance and may 
represent the escape mechanism during anti-angiogenic therapy, new drugs targeting 
metabolic-symbiosis may also be effective in cancer patients with recurrent and 
advanced metastatic disease. 

Metabolic-symbiosis represents a paradigm shift in 
cell biology and cancer metabolism [1-20].  In this simple 
metabolic model, catabolic fibroblasts fuel the growth of 
adjacent anabolic cancer cells, via energy transfer (Figure 
1) [2-4, 7, 12, 13, 15, 17, 19-53]. Catabolic stromal cells 
produce high-energy mitochondrial “biofuels”, such as 
L-lactate, ketone bodies, glutamine, other amino acids, 
and free-fatty acids, for cancer cells to use as substrates 
for OXPHOS and as biomass. [38, 40]. 

Catabolic fibroblasts also show a pro-inflammatory 
phenotype, due to oxidative stress and NFkB activation, 
which leads to cytokine production. This, in turn, attracts 

and serves to activate inflammatory cells (macrophages 
and neutrophils), which produce more ROS and hydrogen 
peroxide species. These findings link inflammation 
directly with energy transfer to anabolic cancer cells [2, 
41, 42, 54, 55], explaining how inflammation energetically 
promotes tumor initiation and cancer progression. 

To stringently test the validity of these energy 
transfer mechanism(s), stable cell lines of constitutively 
catabolic fibroblasts were generated by genetically 
increasing glycolysis, ketogenesis, autophagy, mitophagy, 
oxidative stress, and/or senescence. This was accomplished 
by the recombinant over-expression or knock-down of key 
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metabolic target genes in hTERT-immortalized fibroblasts. 
Similar results were obtained by the genetic manipulation 
of either growth factors or extracellular matrix proteins, 
indicating that these “signaling networks” also converge 
on catabolic metabolism in stromal fibroblasts.  

These results are summarized in Table 1, which lists 
nearly 30 catabolic fibroblast cell lines that have been 
generated, to date [1-20]. Remarkably, these catabolic 
fibroblasts [56] effectively promoted tumor growth and/
or metastasis, in pre-clinical animal models (xenografts in 
nude mice) [1-20]. Similar results have also been obtained 
by using a syngeneic orthotopic animal model, employing 
the mammary fat pads of Cav-1 (-/-) null mice, as the 
catabolic host microenvironment for tumor growth [57].  

Conversely, over-expression of metabolic genes that 
drive increased mitochondrial biogenesis or OXPHOS in 
epithelial cancer cells, also effectively promoted tumor 
growth, and induced autophagy-resistance (Table 1) [4, 8, 
18-20]. 

As metabolic-symbiosis may represent the 
underlying basis of drug-resistance [31, 32], and/or 
the escape mechanism [35, 43, 44, 47, 48] during anti-
angiogenic therapy [53], new drugs that target metabolic-
symbiosis may prove to be effective in patients with 
recurrent cancers and even for the treatment of advanced 
metastatic disease [25-27, 35, 43]. 

The existence of metabolic-symbiosis (a.k.a., two-
compartment tumor metabolism) has also been directly 
validated in human breast cancer tissue sections, by 
employing mitochondrial activity staining in situ.  Using 
this approach, it is clear that oxidative, mitochondrial-
rich cancer cell nests, are physically surrounded by 

glycolytic, mitochondrial-poor stromal fibroblasts (Figure 
2) [58]. Virtually identical results were also obtained with 
metabolic protein biomarkers in primary breast tumors and 
secondary lymph-node metastases (Figure 3), reflecting a 
common organizing principle, with the juxtaposition of 
oxidative and glycolytic energetic compartments [52, 59]. 
As such, tumor architecture also “mirrors” these energy-
based tumor-stromal interactions. 

Remarkably, new studies suggest that normal 
adjacent epithelial cells, and stromal adipocytes, can also 
serve as functional metabolic partners for anabolic cancer 
cells [22, 40, 56, 60]. Therefore, cancer cells may be able 
to use many different cell types, in addition to fibroblasts, 
as partners to engage in metabolic-symbiosis [52, 61]. 

Finally, oncogene-transformed epithelial cancer 
cells also show significant increases in mitochondrial 
mass, which is strictly dependent on oxidative stress [56].  
Figure 4 shows that NAC treatment (N-acetyl-cysteine; 
an anti-oxidant) dramatically reduced mitochondrial 
staining, selectively in Ras-transformed cancer cells, 
but not in matched normal control epithelial cells. Thus, 
NAC selectively blocks mitochondrial biogenesis in Ras-

Figure 1: Metabolic-Symbiosis in Human Cancer(s): 
New Therapeutic Targets. Two-Compartment Tumor 
Metabolism: Schematic Diagram. Catabolic stromal fibroblasts 
produce high-energy mitochondrial fuels, for cancer cells to use 
as substrates for OXPHOS and as biomass.  Oncogenes (gain-
of-function) and tumor suppressors (loss-of-function) both 
induce catabolism in adjacent fibroblasts, via ROS production 
(hydrogen peroxide) and the onset of oxidative stress.
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Figure 2: Mitochondrial Activity Staining in Fresh 
Frozen Human Breast Cancer Tumor Tissue 
Sections. Note that epithelial cancer cell “nests” amplify their 
mitochondrial metabolism.  In contrast, surrounding stromal 
fibroblasts show little or no functional mitochondrial staining, 
indicating that they show a shift towards glycolysis.  COX, 
NADH, and SBH represent functional activity staining for 
mitochondrial complex IV, I, and III, respectively.  Reproduced, 
with permission, from [58].
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Figure 4: Anti-Oxidants Halt Mitochondrial Biogenesis Selectively in Cancer Cells,  But Not in Non-transformed 
Epithelial Cells. Epithelial cells (control versus H-Ras (G12V) transformed) were maintained (plus or minus NAC (10 mM)) and then 
subjected to immuno-staining with TOMM20, which is a well-established mitochondrial marker. Note that Ras-transformed cells, treated 
with NAC, show a significant decrease in mitochondrial mass. DAPI (blue nuclear staining) is also shown. Reproduced, with permission, 
from [56].

Figure 3: Visualizing Two-Compartment Tumor Metabolism, with Metabolic Marker Proteins: MCT4 and TOMM20.  
Human breast cancer samples (from primary tumors or lymph node metastases) were immuno-stained with antibodies directed against 
MCT4 (shown in RED) and TOMM20 (shown in BROWN). MCT4 is a marker of cellular stress, such as ROS production, glycolysis, 
and mitochondrial dysfunction, which reflects catabolic metabolism in cancer-associated fibroblasts. Conversely, TOMM20 is a marker 
of mitochondrial mass that has been shown to correlate with oxidative mitochondrial metabolism. Note that two distinct metabolic 
compartments (oxidative vs. glycolytic) co-exist, side-by-side, in human primary tumors. Virtually identical results were obtained with 
metastatic breast cancer lesions, within lymph node tissue. Insets are also shown at higher magnification. Reproduced, with permission, 
from [52]. 
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transformed cells, illustrating how new drug discovery of 
more powerful anti-oxidants could be used therapeutically 
to “starve” cancer cells.  Quantitation indicated that the 
mitochondrial marker TOMM20 was decreased by >5-fold 
during NAC-treatment [56]. As such, oxidative stress and 
ROS production may drive mitochondrial biogenesis in 
certain aggressive epithelial cancer cells. 

In summary, Table 1 lists >40 validated therapeutic 
target(s), related to metabolic-symbiosis, that could 
be exploited for new drug discovery. Thus, we should 
consider metabolic-symbiosis as a novel conceptual 
framework or platform to design more effective anti-
cancer therapies. 
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