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ABSTRACT

Long single-stranded DNAs and RNAs possess
considerable secondary structure under conditions
that support stable hybrid formation with oligonu-
cleotides. Consequently, different oligomeric probes
can hybridize to the same target with efficiencies
that vary by several orders of magnitude. The ability
to enzymatically generate structure-free single-
stranded copies of any nucleic acid without impair-
ingWatson–Crick base pairing to short probeswould
eliminate this problem and significantly improve the
performance of many oligonucleotide-based appli-
cations. Synthetic nucleic acids that exhibit these
properties are defined as pseudo-complementary.
Previously, we described a pseudo-complementary
A-T couple consisting of 2-aminoadenine (nA) and
2-thiothymine (sT) bases. The nA-sT couple is a mis-
match even though nA-T and A-sT are stable base
pairs. Herewe show that 7-alkyl-7-deazaguanine and
N4-alkylcytosine (where alkyl =methyl or ethyl) can
be used in conjunction with nA and sT to render DNA
largely structure-free and pseudo-complementary.
The deoxynucleoside triphosphates (dNTPs) of these
bases are incorporated into DNA by selected meso-
philic and thermophilic DNA polymerases and the
resulting primer extension products hybridize with
good specificity and stability to oligonucleotide
probes composed of the standard bases. Further
optimization and characterization of the synthesis
and properties of pseudo-complementary DNA
should lead to an ideal target for use with oligo-
nucleotide probes that are <25nt in length.

INTRODUCTION

Long single-stranded DNA and RNA contain secondary
and tertiary structures whose sequences are sequestered
from oligonucleotide probes (1–5). Accessibility to these
sequences drops off with decreasing probe length and
becomes a significant limitation when using probes <20 nt
in length. Secondary structure in nucleic acid targets
impairs the performance of oligonucleotide probes by
reducing hybridization efficiency and increasing probe-
to-probe variability (6–9). In some applications, the impact
of secondary structure can be diminished by testing
multiple probes to different regions of the same target
and selecting one that hybridizes efficiently. In other appli-
cations, however, such as SNP detection or re-sequencing
this is not an option since the target sequences are fixed.
Despite numerous attempts, no effective solution has been
found. For example, in most microarray protocols the
target nucleic acid is cleaved into 100–200 nt long frag-
ments partly to reduce secondary structure. In some
instances long probes (e.g. 60-mer) provide an effective
alternative by allowing the use of more stringent hybridiza-
tion conditions and improving strand invasion of any
remaining secondary structure. Long probes, however,
tolerate mismatches and are inappropriate for certain
applications.
Conversion of naturally occurring DNA or RNA into

single-stranded pseudo-complementary targets could
improve the performance of short probes by eliminating
interference from secondary structure. Pseudo-comple-
mentary nucleic acid is composed of base analogs that
pair poorly or not at all to each other but are able to
Watson–Crick pair to the standard bases of a complemen-
tary probe. Consequently, such nucleic acid is single-
stranded and ‘structure-free’ in the Watson–Crick sense.
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Because each analog can pair to one of the standard bases,
the corresponding dNTPs of these analogs should be
suitable substrates for DNA polymerases thus providing a
way for converting a regular DNA into a pseudo-
complementary DNA. This strategy should not be con-
fused with the more simplistic approach of synthesizing
probes with duplex stabilizing modifications or preparing
targets with duplex destabilizing modifications.While these
efforts can improve the efficiency of probe-target hybridi-
zation, they do not provide a general solution to the
challenge of competing structure in the target.
In earlier workwe showed that 2-aminoadenine (nA) and

2-thiothymine (sT) meet the criteria for a pseudo-comple-
mentary A-T couple in DNA and that 2-aminoadenine and
2-thiouracil (sU) function similarly in RNA (10,11). Steric
clash between the 2-amino group of nA and the bulky
2-thio group of sT or sU prevents stable Watson–Crick
pairing. A pseudo-complementary G-C couple has not yet
been reported, underscoring the difficulty of rationally
designing such a couple. In this study, we have screened a
limited number of dGTP and dCTP analogs (Figure 1) for
combinations that are incorporated together with dnATP
and dsTTP into DNA to give a pseudo-complementary
product. Our study has shown that 7-deazaguanine (cG),
7-iodo-7-deazaguanine (IcG), 7-methyl-7-deazaguanine
(MecG) or 7-ethyl-7-deazaguanine (EtcG) can function in
conjunction with N4-methylcytosine (MeC) or N4-ethyl-
cytosine (EtC) to reduce or eliminate secondary structure in
DNA that is also substituted with nA and sT. Very stable
DNA hairpins substituted with these analogs readily
hybridized to short probes whereas the unmodified hairpins
were inaccessible. The significant improvement in hybridi-
zation efficiency achieved when oligonucleotide probes are
presented with pseudo-complementary DNA targets could
improve the performance of oligonucleotide microarrays
and jumpstart the development of new technologies for
sequencing and genotyping DNA (12–14).

MATERIALS AND METHODS

dNTPs of nA, sT, cG and MeC were purchased from
TriLink Biotechnologies. dNTPs of 7-alkyl- and 7-iodo-
7-deazaguanine were prepared as described by McDougall
et al. (15). The synthesis of all other dNTPs is included as
Supplementary Data. Locked nucleic acid (LNA) oligo-
nucleotides were prepared by Sigma-Proligo. Oligo-
nucleotide primers were purchased from IDT and
purified by electrophoresis through a denaturing 12%
polyacrylamide gel. u29 N62D DNA polymerase was
expressed and purified by the Salas laboratory. 98N DNA
polymerase was obtained from New England Biolabs.

Primer extension reactions

Radiolabeled primer was hybridized to 2mol equivalents of
template in kinase buffer and then used directly for DNA
synthesis. Reactions ranged in volume from 5 ml to 75 ml
and contained 0.05 mg/ml u29 N62D DNA polymerase, 0.6
pmoles/ml primer-template and 200 mM each dNTP in
40mM Tris–HCl, pH 7.5, 50mM KCl, 10mM MgCl2 and
4mM (NH4)2SO4. Synthesis was terminated after 30min at

308C by adding EDTA to a final concentration of 12mM.
The extent of synthesis was determined by electrophoresing
1 ml aliquots (in 4 ml of loading buffer) through a 12%
polyacrylamide–7M urea gel. After visualization of the
dried gel by phosphorimaging, bands were quantified
by ImageQuant. The yields of hairpins substituted with
nA, sT, cG/MecG/EtcG/IcG and mcvC/cnC/fC/MeC/EtC
were 60–90% of that obtained when using standard
dNTPs. For subsequent hybridization studies single-
stranded primer extension products, which were shorter
than their respective templates, were gel purified under
denaturing conditions. Reactions were extracted with
phenol, ethanol precipitated in the presence of glycogen
and the pellets dissolved at high temperature in 7M urea
with indicator dyes. Following electrophoresis in a 12%
denaturing polyacrylamide gel radioactive bands were
detected in the wet gel by autoradiography. Excised
bands were crushed and extracted overnight in HEPES,
pH 7.5. The yield of extracted sample was improved by
incubating 10min at 948C and then at –808C. DNA was
ethanol precipitated from the clarified extract in the
presence of glycogen carrier. Dried pellets were dissolved
in HEPES, pH 7.5, by incubation for 10min at 808C and
stored at –208C until use. Primer extension products with a
hairpin configuration were not gel purified unless stated
otherwise. Instead, these reactions were diluted �15-fold
with water and heated 2min at 958C in the presence of an
oligonucleotide that was complementary to the 30 overhang
of the template. Upon quick cooling in an ice bath the
template and product strands collapsed into separate
hairpins. By including the oligonucleotide at 0.4mM
concentration re-annealing of template and product hair-
pins through their complementary single-stranded tails
was blocked.

Solution hybridization experiments

Protocols for determining the apparent melting tempera-
tures (Tm) of Watson–Crick hybrids and hairpins by gel
mobility shift assay have been previously described by us
(11,16). The gel assay allowed us to characterize the
hybridization of oligonucleotide probes to radiolabeled
primer extension products with respect to accessibility,
hybrid stability and specificity. All of the solution
hybridization experiments were conducted in 5mM
MgCl2, 25mM NaCl, 20mM HEPES, pH 7.5. Melting of
radiolabeled HP25 hairpins was determined using a 25-mer
probe (5 mM) that was complementary to the 30-arm of the
hairpin. We used a standard DNA probe (50-ACCTGACT
CCTGAGGAGAAGTGTGC-30) when the hairpins were
substituted with two or more base analogs (unless other-
wise specified) and a chimeric LNA–DNA probe (50-ACCt
GACtCCtGaGGaGAAGtCtGC-30; where ‘a’ and ‘t’ are
LNA residues) when the hairpin was unmodified or mono-
substituted. The chimeric probe hybridizedmore effectively
than the standard probe to stable hairpins and yielded
melting curves for all of themono-substituted hairpins. The
Tm of intermolecular hybrids were determined using trace
amounts of radiolabeled single-strand, 1 mM probe (8-mer
LNA or 12-mer DNA) and 10 mM competitor oligonucleo-
tide. The competitor, which was composed of regular bases,
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was identical in length and type of backbone to the probe
and complementary to it. Replicate determinations of
apparent Tm usually fell within a 38C window. Hybrid-
ization of tiled probes (5 mM) to the HP25 and HP18
hairpins were monitored by gel mobility shift assay as
previously described (11).

RESULTS

Screening strategy for G/C analogs

We restricted our initial screening of bases to those shown
in Figure 1. These base analogs contained relatively con-
servative modifications chosen to attenuate the strength of
Watson–Crick base pairing. All, however, retained the
2-carbonyl group of pyrimidine or the 3-imino group of
purine since their presence is required for the efficient
recognition of bases by polymerases (17,18). As long as
base pairing was preserved, we assumed that dNTPs of
these bases would be substrates for DNA polymerases.
Modified DNAs prepared by primer extension provided
an opportunity to characterize the base-pairing properties
of the analogs by melting analysis and other methods.
By carrying out this study we hoped to find analogs of G
and C that supported DNA synthesis but interacted
weakly or not at all with each other.

Particular attention was paid to several analogs of cG.
This base is readily incorporated into DNA as a dNTP
where it reduces the strength of G-C pairing and eliminates
Hoogsteen type G-G pairing (19–22). Consistent with these
properties, DNA substituted with cG exhibits fewer
banding artifacts in sequencing gels (23). Given our earlier
success in using cG to reduce secondary structure in DNA
and RNA that also contained nA and sT/sU (16,24), we
evaluated analogs of cG substituted at the C7 position with
alkyl or halo groups. Indirect evidence suggested that
these modifications could modulate the pairing strength
of cG (15).

Several analogs of C were also evaluated, with MeC and
EtC being the favored candidates. These alkylated bases
are readily incorporated into DNA and retain the
specificity of C (25–28). They pair more weakly to G than
does C because the N4-alkyl group must rotate from its
preferred cis orientation (relative to the hydrogen bonding
edge of the base) to the trans orientation (29). Furthermore,
the appended alkyl group has a positive inductive effect
that attenuates hydrogen bonding between O6 of G and N4

of MeC or EtC. The other C analogs, none of which have
been rigorously characterized for incorporation and pair-
ing properties, were expected to lower hybrid stability.
Cyano, formyl, trifluoromethyl and 2-(methoxycar-
bonyl)ethenyl groups were conjugated to C5 of cytosine
with the expectation that their electron withdrawing
character would reduce the strength of hydrogen bonding
between N1 of G and N3 of C.

Since a primary criterion for further study was enzymatic
incorporation of the analogs into DNA, we evaluated each
candidate base as a dNTP. Templates with a stable hairpin
structure provided a rigorous test for whether dNTPs with
attenuated base-pairing properties could support strand
displacement synthesis. Those dNTPs that participated

Figure 2. Products of primer extension used in this study. Primer
extension reactions were catalyzed by u29 N62D DNA polymerase
using different combinations of regular and modified dNTPs to prepare
short single-stranded and hairpin DNAs. The 50-radiolabeled products
were used in solution hybridization experiments with unmodified probes
to characterize the pairing properties of the modified DNAs. The hairpin
(HP25 and HP18) and half-hairpin (SS37) products were prepared using
one to four modified dNTPs. Note that SS37 recapitulates the 30 arm of
HP25. The three shorter primer extension products, which were used as
complementary targets for 12-mer DNA or 8-mer LNA probes, were
prepared with three regular and one modified dNTPs (dCTP analogs
for the target in hybrid 1 and dGTP analogs for the target in hybrids 2
and 3) and gel purified prior to use. Primers were end-labeled with
32P and contained standard bases.

Figure 1. Analogs of adenine, thymine, cytosine and guanine used in
this study.

Nucleic Acids Research, 2008, Vol. 36, No. 10 3411



in primer extension reactions were used to prepare short
radiolabeled single-stranded and hairpin DNAs (Figure 2)
that were substituted in turn with each of the analogs.
Melting studies of the single-stranded and hairpin products
were determined by forming hybrids with complementary
oligonucleotide probes at different temperatures followed
by gel mobility shift analysis. The apparent Tm generated
by this protocol permitted us to rank the analogs according
to the thermostability of the corresponding mono-sub-
stituted hybrids. In a similar manner the relative stabilities
of different G-C couples were inferred from apparent Tm of
hairpins substituted with analogs of G and C. Fully
substituted hairpins, which also contained nA and sT,
were prepared and functioned as models for evaluating the
pseudo-complementary properties of base analogs in sets of
four. A hairpin was deemed to be pseudo-complementary if
it failed to give a melting curve and readily hybridized to
short oligonucleotide probes. Only a small quantity of each
radiolabeled primer extension product was required for
these solution hybridization studies, thus avoiding the
expense, time and challenge of chemical synthesis. Our
systematic studies have revealed several G/C analogs that
function synergistically with nA and sT to destabilize
secondary structure in DNA and increase its accessibility
to oligonucleotide probes.

Enzymatic incorporation of dNTP analogs

Each analog was substituted for dGTP or dCTP in primer
extension reactions catalyzed by the N62D variant of u29
DNA polymerase (DNAP), an enzyme which has potent
strand displacement activity and can readily synthesize
DNA using both single-stranded and double-stranded
templates. The catalytic center of this enzyme resides
within a ‘tunnel’ that accommodates the template and
nascent product strands (30) and conceivably reduces
fraying by stabilizing the nascent hybrid. The nontemplate
strand of a dsDNA template is excluded from the active
site thus preventing strand displacement. We have found
that u29 DNAP can utilize very weakly pairing dNTPs to
synthesize both single-stranded and hairpin products
(data not shown). Incorporation of such dNTPs could
be further enhanced by using the N62D mutant of u29
DNAP (31). This mutation severely depresses the proof-
reading function of wild-type enzyme without impairing
its ability to carry out strand displacement synthesis. By
nearly eliminating 30 to 50 exonuclease activity, potential
hydrolysis of base analogs from the 30 end of the nascent
DNA was minimized.
Most of the dNTP analogs supported synthesis of A/T-

or nA/sT-containing single-strand (SS37) and hairpin
(HP25) primer extension products at levels at least 70%
efficient as the corresponding dGTP or dCTP. The two
exceptions were dNTPs of hEtcG and tfmC. These dNTPs
may interact poorly with the active site of u29 DNAP.
Tabular summaries of the primer extension yields are in
Supplementary Data.

Relative pairing strengths of G and C analogs

The radiolabeled primer extension products generated
above were used in solution hybridization experiments

to determine base-pairing properties of the G/C analogs.
In this regard, mono-substituted HP25 hairpins were
particularly useful since they provided a convenient
readout of how the analogs affected duplex stability.
Apparent Tm were determined using a gel mobility shift
assay (11). In this assay, a small amount of radiolabeled
hairpin was mixed with a large molar excess of 25-mer
probe that was complementary to one arm of the hairpin
stem. Aliquots were incubated at increasing temperature,
quenched in an ice bath and then analyzed by electro-
phoresis through a nondenaturing polyacrylamide gel at
low temperature to resolve free hairpin from hairpin
hybridized to probe. A plot of percent hybrid versus
temperature was fit to a sigmoidal curve from which an
apparent Tm could be calculated. It should be pointed out
that Tm determined by this method do not have
thermodynamic significance and that primer extension
did not generate sufficient product to monitor melting
spectrophotometrically. The physical meaning of the
apparent Tm values is a measure of the ability of the
probe to invade the hairpin. To improve the efficiency of
hybrid formation, the 25-mer probe that we used in the
analysis of mono-substituted hairpins contained a DNA
backbone interspersed with six LNA monomers bearing
A/T bases. By increasing hybrid stability, these modifica-
tions facilitated strand invasion of the probe into the
hairpin leading to an underestimation of the true Tm. For
instance, mfold predicted a Tm of 868C for the unmodified
25-bp hairpin, but in the gel shift assay this hairpin had
a Tm of only 768C. Nonetheless, the values reported here
are useful as indicators of the relative base-pairing
strength between each base analog and its regular base
complement.

Table 1 lists the base analogs in order of decreasing Tm

for the corresponding mono-substituted 25-bp hairpins.
Also listed is the average drop in Tm per incorporated
base analog taking into account that the hairpin stem
contained 14G-C base pairs. In previous work, EtC
paired less strongly to G than MeC, but in this model
system the two bases had identical pairing strengths.
However, when the same mono-substituted hairpins were

Table 1. Apparent melting temperatures of the HP25 hairpin

substituted with analogs of G or C

Substitution Tm (8C) �Tm/analog

None 76 –
G Analogs

MecG 74 �0.14
hEtcG 72 �0.29
EtcG 71 �0.36
PrcG 70 �0.43
cG 68 �0.57
IcG 67 �0.64
iPrcG 66 �0.71

C Analogs
tfmC 75 �0.07
mcvC 73 �0.21
cnC 72 �0.29
fC 70 �0.43
MeC 66 �0.71
EtC 66 �0.71
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melted in the presence of a DNA probe, the expected
relationship was observed with MeC being more stabiliz-
ing than EtC (Tm of 668C and 648C, respectively). This
was also the case in a short Watson–Crick duplex. The
EtC-G base pair has been reported to be equal in stability
to an A-T base pair (26). A comparison of Tm for HP25
when C was substituted by EtC (64–668C; experimentally
determined) or when G-C pairs were replaced by T-A
pairs [628C; predicted by mfold (32)] supports this
observation. The C5 substituted analogs of C were less
destabilizing than MeC and EtC. All of the G analogs
were successfully incorporated into HP25 and all were
destabilizing. The pairing strength of cG was modulated
by the presence of substituents at the C7 position. Methyl,
ethyl, propyl and hydroxylethyl groups strengthened
pairing strength of cG whereas isopropyl and iodo
groups reduced it. The pairing strength of MecG relative
to cG is consistent with an earlier study of this base analog
by Seela (33).

Additional melting studies were conducted on short
Watson–Crick hybrids in which one strand was substi-
tuted with different analogs of G or C. Ranking of the
analogs according to hybrid stability (see Supplementary
Data) was similar to that reported above using the HP25
hairpin.

Specificity of pairing by analogs of G and C

Specificities of selected base analogs were determined by
measuring hybrid formation when the analog of interest
was paired to each of the four regular bases in a short
duplex under stringent conditions (i.e. 88C below the Tm

of the corresponding perfect match hybrid). Short hybrids
were formed between single-stranded primer extension
products that contained a given G or C analog and 12-mer
DNA probes (hybrid 1 for the C-substituted targets) or

8-mer LNA probes (hybrid 3 for the G substituted
targets). One perfect-match and three single mismatch
probes were hybridized to each target. A mismatch in the
hybrid involved a single G or C analog near the middle of
the targeted sequence. Reactions were quenched by adding
an unlabeled competitor oligonucleotide that was com-
posed entirely of regular bases and was identical in
backbone and complementary in sequence to the perfect-
match probe. After cooling in an ice bath, aliquots were
analyzed by gel mobility shift assay. Phosphorimages of the
gels are compiled in Figure 3. In each image one perfect-
match and three mismatch hybrids were electrophoresed
alongside a no-probe control. The relative amount of
hybrid detected in each lane is indicated below the gel. Both
MeC and EtC exhibited good discrimination of mis-
matches, confirming the results of an earlier study (26).
Several cG bases were also evaluated. While cG, EtcG and
IcG exhibited good discrimination, MecG did not fully
discriminate against T and G in a LNA-DNA hybrid.
Better specificity, however, was observed for this analog
in DNA hybrids (data not shown).

Thermostability of hairpins substituted with multiple base
analogs

Based on incorporation, stability and specificity consid-
erations, we further investigated the cG, IcG, MecG and
EtcG analogs of G and the MeC and EtC analogs of C.
All of these analogs were readily incorporated into DNA,
formed relatively stable pairs with C or G and exhibited
good specificity. Given that each of these analogs alone
decreased the strength of G-C pairing, we investigated
whether using them in combination might lead to a
synergistic decrease in pairing strength. Different combi-
nations of analogs were enzymatically incorporated (along
with A and T) into the same 25-bp DNA hairpin used

Figure 3. Specificity of base pairing by analogs of G and C. Gel-purified and end-labeled single-stranded primer extension products that were
substituted with different analogs of G or C were hybridized under stringent conditions to oligonucleotide probes and then analyzed by gel mobility
shift assay. One probe was a perfect-match to the target sequence and three other probes contained a mismatched base to a single G or C analog
near the middle of the same targeted sequence. Hybrid 1 was used for the analysis of C analogs and hybrid 3 was used for the analysis of G analogs
(see Figure 2). Competitor oligonucleotides used to quench the hybridization reactions were identical in backbone and complementary in sequence to
the perfect-match probe. The first lane in each gel contains the single-stranded target. Other lanes contain target plus probe. The temperature of
hybridization is shown to the right of each gel and is 88C below the apparent Tm of the perfect-match hybrid. The relative amount of hybrid formed
by each probe is indicated below the gel.

Nucleic Acids Research, 2008, Vol. 36, No. 10 3413



previously (HP25). Tm of the modified hairpins, which
were efficiently synthesized using u29 N62D DNAP, were
determined by gel mobility shift assay using 25-mer probes
that had either a DNA or a chimeric LNA-DNA
backbone. Table 2 lists the experimentally determined
Tm in order of decreasing hairpin stability. The extent to
which each pair of G-C analogs reduced hairpin stability is
reflected by its PC ratio, defined as the decrease in Tm

attributable to substitution by that pair of analogs divided
by the sum of Tm decreases attributable to mono-
substitution by the same analogs of G and C. When this
ratio is >1.0 there is a synergistic effect.
A comparison of the PC values in Table 2 shows that

regardless of which probe was used, couples between
MecG/EtcG and MeC/EtC were most likely to act
synergistically in reducing hairpin stability. With respect
to Tm values, MecG-EtC and EtcG-EtC couples were
more destabilizing than MecG-MeC and EtcG-MeC, thus
reflecting the dominant role of N4-alkylcytosine relative to
7-alkyl-7-deazaguanine in reducing hybrid stability.
Couples involving cG/IcG and MeC/EtC had the lowest
PC values and were the least destabilizing. Every
di-substituted hairpin had a higher Tm when measured
with the chimeric LNA–DNA probe than with the DNA
probe, suggesting that the chimeric probe was less effective
than the DNA probe in strand invading these hairpins.
To test whether the G/C analogs could eliminate

secondary structure in DNA when used in combination
with nA and sT, we enzymatically prepared different tri-
and tetra-substituted HP25 hairpins (with yields 70% of
the standard hairpin) and determined their apparent Tm

using the unmodified 25-mer DNA probe (Table 3). The
results allowed us to rank the analogs according to the
average Tm of each set of hairpins that contain the same
modified base. These rankings, which we assume to reflect
the relative strength of base pairing, were EtC<MeC<<
C<< fC� cnC<mcvC and EtcG<MecG� cG<
IcG<G. Relative to A/T-containing hairpins that were
mono-substituted with the same analogs (Table 3), IcG
and cG moved up in stability while MecG and EtcG

moved down. Notably, the C5 substituted analogs of C,
which were weakly destabilizing in the presence of A and
T, became strongly stabilizing in the presence of nA and
sT. From among the destabilizing analogs the most
promising pseudo-complementary candidates were MeC,
EtC, MecG and EtcG. Hairpins that contained any
combination of these bases readily hybridized to the 25-
mer probe at temperatures as low as 108C. By this
criterion, nA/sT-containing hairpins that were also sub-
stituted with MeC and MecG/EtcG or with EtC and cG/
MecG/EtcG/IcG could be inferred to be ‘structure-free’
and pseudo-complementary. Such a conclusion, however,
is probably unwarranted for the more stable G-C couples
since the 25-mer probe used in these experiments might
hybridize to the hairpin through a strand invasion
mechanism at low temperature.

Electrophoretic mobility of hairpins substituted
with multiple base analogs

Further confirmation of the base-pairing properties of
fully modified DNA hairpins was obtained using a gel
mobility shift assay. Electrophoretic mobility in a
nondenaturing gel is dependent upon the global con-
formation of a hairpin (34). Taking into consideration
that a hairpin electrophoreses much faster than a single
strand of the same length, loss of base pairing in the stem
region of a hairpin should be accompanied by a decrease
in electrophoretic mobility. We observed this phenomenon
when hairpins substituted with nA, sT, MecG/EtcG/IcG
and MeC/EtC were electrophoresed in 12% polyacryl-
amide gels run under two conditions. Relative to the
markers, the fully modified hairpins migrated more slowly
when electrophoresis was carried out in Tris–borate buffer
at room temperature than when electrophoresis was
conducted in a cold room with buffer that contained
5mM MgCl2 (Figure 4). We attribute the drop in mobility
to a change in hairpin conformation from stem–loop to
single strand. Even at the lower temperature the fully
modified hairpins trailed the unmodified control, suggest-
ing that their stem was imperfect and more ‘open’. As
pointed out earlier, the 25-mer probe used in the hairpin
melting experiments might readily strand invade such
duplexes thus leading to an underestimation of the true
Tm. Modified hairpins substituted with nA+sT or
nA+sT+cG gave two bands, with the faster moving
species corresponding to the intact hairpin and the slower
moving species representing a duplex between the hairpin
and the template used for its synthesis. In the more

Table 2. Apparent melting temperatures of HP25 hairpin substituted

with different G-C couplesa

LNA–DNA probe DNA probe

Couple Tm (8C) bPC Couple Tm (8C) bPC

G-C 76 –
IcG-MeC 67 0.47 cG-MeC 65 0.61
cG-MeC 66 0.56 cG-EtC 57 1.05
cG-EtC 64 0.67 IcG-MeC 52 1.26
EtcG-MeC 62 0.93 IcG-EtC 50 1.37
IcG-EtC 56 1.05 EtcG-MeC 50 1.73
EtcG-EtC 53 1.53 MecG-MeC 55 1.75
MecG-MeC 56 1.67 EtcG-EtC 42 2.27
MecG-EtC 55 1.75 MecG-EtC 46 2.50

aTwo different 25-mer probes were used to determine the apparent
melting temperatures of HP25 hairpins substituted with the indicated
G-C couples. bThe PC ratio is a measure of the extent to which a G-C
couple is pseudo-complementary. PC=(�Tm of HP25 with indicated
G-C couple)/(�Tm of HP25 with G analog only+�Tm of HP25 with
C analog only).

Table 3. Apparent melting temperatures of HP25 hairpin substituted

with different G-C couples in the presence of nA and sTa

Couple G IcG cG MecG EtcG

mcvC 42 52 39 38 41
cnC – 38 41 41 32
fC 44 40 38 37 36
C 40 36 26 27 18
MeC 28 29 12 <10 <10
EtC 25 <10 <10 <10 <10

aTemperature in 8C.
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stringent gel, a subpopulation of these hairpins had a
more open conformation and ran behind the main band.

Hybridization of tiled oligonucleotide probes to hairpins
substituted with multiple base analogs

As a practical demonstration of pseudo-complementarity,
gel-purified HP25 hairpins substituted with different G/C
analogs in the presence of nA and sT were hybridized to
short 8-mer LNA or 12-mer DNA probes tiled across
the 30 half of the hairpin stem (see Figure 5A). Unless
otherwise indicated, hybridizations were conducted for
10min at 308C in the presence of 5mMMgCl2 and 25mM
NaCl. Hybrids were detected by gel mobility shift anal-
ysis after quenching the reactions in an ice bath.
Quantification showed that hairpins substituted with any
of the cG/MecG/EtcG-MeC/EtC couples were accessible
to both types of probes. The average signal was 77% for
the DNA probes and 85% for the LNA probes. In
Figure 5B, the hybridization signal obtained for each
12-mer DNA probe is averaged across all the modified
hairpins. The probe-to-probe variation in signal implies
that there are sequence-dependent differences in accessi-
bility and/or hybrid stability. Probes 6–8 formed the least
amount of hybrid but no obvious signature was found in
the target sequences. The tiled 8-mer LNA probes
performed better than the DNA probes, consistently
hybridizing to a greater fraction of hairpin target

(see Supplementary Data). Nonetheless, the LNA probes
also had difficulty accessing the same sequences addressed
by DNA probes 6–8 (data not shown). Overall, the tiling
experiments confirmed that the fully substituted HP25
hairpins had significant pseudo-complementary character.
By contrast, the same hairpin composed of regular bases
did not hybridize to any of the probes.
The experiments with HP25 left unanswered whether

the same base analogs could eliminate secondary structure
in a hairpin that possessed a much higher G/C content. To
address this question we carried out tiling experiments
with an 18-bp hairpin (HP18) that was substituted with
different combinations of cG/MecG/EtcG and MeC/EtC
in the presence of nA and sT. The HP18 hairpin had a G/
C content of 78% and an estimated Tm of 968C. Since one
arm of the hairpin stem was G rich and other was C rich,
each arm was addressed by a separate set of tiled 12-mer
DNA probes. As before, hybridizations were conducted at
308C for 10min in 25mM NaCl, 5mM MgCl2 and 20mM
HEPES pH 7.5 and analyzed by gel mobility shift assay.
The average hybridization efficiencies of the differently
substituted hairpins to both probe sets varied significantly
(Figure 6A). Hairpins substituted with EtC were much
more accessible to the probes than those substituted with
MeC. Among the G analogs, MecG and EtcG were the
most effective. The extent to which different G-C couples
promoted hybridization of 12-mer probes to the HP18
hairpin was roughly proportional to their PC values in

Figure 4. Gel mobility shift analysis of modified HP25 hairpins under
nondenaturing conditions. Modified hairpins were prepared by primer
extension and purified by denaturing PAGE. The hairpins were then
electrophoresed through 12% nondenaturing polyacrylamide gels in
(A) Tris–borate buffer at room temperature or in (B) Tris–borate buffer
with 5mM MgCl2 at 48C. Radiolabeled template was run in the same
gels as a marker. Primer extension products that contained nA, sT and
C formed a hybrid with the template that survived gel purification; it
functions as a second marker in the gels. The slow-moving band in the
second lane of gel (B) has not been identified. Using the two markers as
a ruler with the template assigned a value of 0 and the hybrid assigned
a value of 1.0, the fully modified hairpins are found at positions 0.70
in gel (A) and 0.43 in gel (B).

Figure 5. Hybridization of tiled 12-mer DNA probes to HP25 hairpins.
The probes, which were tiled across the 30-arm of HP25 (A), were
separately hybridized to six modified versions of the hairpin, which
contained cG-MeC, cG-EtC, MecG-MeC, MecG-EtC, EtcG-MeC or
EtcG-EtC couples in the presence of the nA-sT couple. The average
hybridization efficiency of all the hairpins to each probe is plotted (B).
Hybridizations were carried out at 308C with 5mM probe in 5mM
MgCl2, 25mM NaCl, 20mM HEPES pH 7.5.
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Table 2. Hence EtcG-EtC and MecG-EtC couples were
the best while the cG-MeC couple was the worst. While
these relationships held for both arms of the hairpin, the
C-rich arm hybridized less efficiently to probes than did
the G-rich arm, a difference that held for all of the G-C
couples evaluated.
If residual secondary structure in the hairpin target is a

limiting factor in hybridization, then the performance of
less effective G-C couples should improve with increasing
temperature, as long as the corresponding probe-target
hybrids have sufficient stability at elevated temperature.
We tested this prediction by repeating the tiling experi-
ments at different temperatures for HP18 hairpin that was
substituted with nA-sT and MecG-MeC couples. The
results in Figure 6B show that probes to the G-rich arm of
the hairpin hybridized more effectively as the temperature
was increased from 108C to 458C. Reduction of secondary
structure in the target is most likely responsible for the
enhanced hybridization. In contrast, hybridization of
probes to the C-rich arm of the hairpin remained constant
over the same temperature range. Hybrids formed by these
probes were probably too weak to support strand invasion
of the structured target. At higher temperatures, up to
608C, the extent of hybridization converged for the two
arms of the hairpin. Under these conditions, we postulate

that no base pairing occurred and that probe-target hybrid
formed only when the reactions were quenched in an ice
bath.

Hybridization of probes to the C-rich arm of the hairpin
was increased 8-fold by replacing MeC with EtC in a
target substituted with nA, sT and MecG (Figure 6A).
Given that probe-target hybrids, which contain G-EtC are
less stable than those which contain G-MeC, the improved
hybridization of probes to the C-rich arm of HP18 when it
is substituted with EtC instead of MeC can probably be
attributed to the greater PC value of MecG-EtC (2.50)
relative to MecG-MeC (1.75). In this instance, hybridiza-
tion was more dependent on reduction of secondary
structure in the target than on stability of the resulting
probe-target hybrids. The enhanced hybridization with
MecG/EtC versus MecG/MeC substitution argues against
the G-rich probes having self-structure, which would
inhibit intermolecular pairing to the C-rich arm of the
hairpin.

Incorporation of dCTP and dGTP analogs by
thermostable DNA polymerases

Regular use of pseudo-complementary dNTPs in diag-
nostics and genomics will require their efficient incorpora-
tion into long DNAs. We surveyed seven thermostable
DNA polymerases for their ability to synthesize a 600-mer
primer extension product using different sets of dNTPs.
A synthetic 600-bp gene with extensive secondary
structure and multiple regions of high G/C or A/T content
was selected as a template. Radiolabeled primer was
hybridized to the antisense strand of this gene by
incubating the two at 958C for 2min prior to elongation
at 65–728C. Full-length product was resolved in a 10M
urea-6% polyacrylamide gel at 608C and quantified by
phosphorimaging. Five of the polymerases were able to
synthesize full-length product substituted with nA, sT,
MecG and MeC or EtC. 98N was the best, retaining 67 or
49% of wild-type activity when asked to incorporate MeC
or EtC along with nA, sT and MecG. Results for the other
polymerases can be found in the Supplementary Data. The
limited survey described here suggests that naturally
occurring or engineered polymerases could be found that
synthesize pseudo-complementary DNA nearly as effi-
ciently as regular DNA.

DISCUSSION

Several sets of base analogs that confer pseudo-comple-
mentary properties to DNA have been described. Each set
was incorporated into short primer extension products that
exhibited reduced secondary structure and improved acces-
sibility to oligonucleotide probes. Use of nA and sT for this
purpose was previously reported by us (10,16). However,
until now a satisfactory G-C pair was unknown. In this
study, we screened a limited number of G/C analogs for
enzymatic incorporation into DNA and for stability and
specificity in base pairing. The most promising analogs,
ranked according to their pairing strength opposite C or G
in HP25 hairpins substituted with nA and sT, were EtcG<
MecG� cG< IcG<G and EtC<MeC<C (Table 2).

Figure 6. Hybridization of tiled 12-mer DNA probes to HP18 hairpins.
(A) Average hybridization of probe sets to the G-rich and C-rich arms
of HP18 hairpins substituted with nA, sT and the indicated analogs of
G and C at 308C with 5mM probe in 5mM MgCl2, 25mM NaCl,
20mM HEPES pH 7.5. (B) Temperature dependence for hybridization
of tiled probe sets to the G-rich and C-rich arms of HP18 hairpin
substituted with nA, sT, MecG and MeC. At temperatures above 458C
the hairpin is disrupted and the two probes sets acquire equivalent
efficiencies of hybridization.
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All possible combinations of the G/C analogs were enzy-
matically incorporated as dNTPs into the same 25-bp
hairpin so that the properties of the new base pairs could be
indirectly analyzed by melting point determinations. Many
of the modified hairpins were further analyzed by gel
mobility shift and tiling experiments. The G-C couples
differed significantly in their ability to alter hybrid stabil-
ity and promote pairing to unmodified probes. Careful
consideration of all the results suggests an ordering of
couples from least to most stable of EtcG-EtC�MecG-
EtC<EtcG-MeC�MecG-MeC< cG-EtC� IcG-EtC<
cG-MeC� IcG-MeC<G-C. In tiling experiments, the
ability of these couples to impart pseudo-complementary
properties to DNA when used in conjunction with nA and
sT followed the same approximate ranking with the least
stable couples being the most effective. Thus, EtcG-EtC
and MecG-EtC rendered a highly G/C-rich hairpin acces-
sible to short probes. The utility of other G/C couples was
restricted to secondary structure that had a greater A/T
content.

The methyl and ethyl analogs of cG and C interacted
weakly with one another even though each formed a stable
base pair with C or G, respectively. This, of course, was
central to their success in promoting hybridization of
unmodified probes to G/C-rich secondary structure.
A plausible explanation for the synergistic loss of pairing
strength between analogs is the significant increase in
hydrophobicity of the major groove that is associated with
the introduction of methyl or ethyl groups into that groove.
The replacement of N7 of G with C7 of cG eliminates an
important cation binding site in themajor groove, alters the
organization of water and salts in the major groove and
decreases base stacking (35). Since cation binding to N7 of
G is estimated to account for 20–30% of the stability of a
G-C base pair (36,37), substitution of cG for G reduces
hybrid stability. Some stability is regained if the C7
position of cG is substituted with a methyl or ethyl
group. The electron donating character of these groups
may partially overcome reduced cation binding by making
O6 more electron rich. Alternatively, the hydrophobic alkyl
groups might have a stabilizing effect on base stacking. Our
results show, however, that duplex stability is greatly
decreased when both C7 of cG and N4 of C are alkylated.
With both positions located within the major groove,
increased hydrophobicity associated with alkylation could
lower cation occupancy and reduce base-pairing strength.
Unfavorable steric interactions associated with the pres-
ence of two alkyl groups and possible disruption of the
duplex hydration pattern could be another contributing
factor. Finally, alkylation could also alter the electronic
charge distribution of the modified nucleobase couples in
ways that lower their pairing strength.

Successful hybridization of short oligonucleotides to
‘structure-free’ hairpins confirms that the different combi-
nations of base analogs that we have used to generate
pseudo-complementary DNA retain the ability to
Watson–Crick pair to the standard bases even though
the G/C analogs pair less strongly than the corresponding
regular bases. Melting point determinations of model
Watson–Crick hybrids have shown that pseudo-comple-
mentary DNA targets substituted with nA, sT, MecG/

EtcG and MeC/EtC form less stable hybrids with
standard probes than unmodified DNAs (data not
shown). In this context, it may prove beneficial to utilize
probes that are specifically modified to form more stable
hybrids with the structure-free targets. One such mod-
ification is the LNA backbone. Our observation that
8-mer LNA probes hybridize more effectively than 12-mer
DNA probes to modified HP25 hairpins is best explained
in terms of hybridization strength of the respective probes.
The mcvC, cnC and fC analogs of C may also have merit
in this regard since they form unusually stable base pairs
with MecG and EtcG (Table 3).
Although cG paired more strongly to MeC and EtC

than did MecG or EtcG, the cG containing couples
conferred pseudo-complementary properties to the HP25
hairpin when present with nA and sT. Given that nA-sT
functions as a mismatch, only a moderate reduction in the
pairing strength of G-C may be sufficient to eliminate
duplex regions that are not too G/C rich. One common
attribute shared by all the cG bases is an inability to self-
pair. Normally, destabilization of Watson–Crick pairing
would be expected to promote Hoogsteen pairing between
adjacent G’s. By eliminating this possibility, all of the cG
bases promoted accessibility of the modified DNA to
complementary probes.
Attempts to footprint the base pairing state of fully

modified pseudo-complementary hairpins using reagents
such as dimethyl sulfate and potassium permanganate
were unsuccessful. These reagents gave uninterpretable
results, which we attribute to the altered structure and
hydration state of the DNA. Nuclease probes were not
tested out of concern that fully modified DNAs might
exhibit base specific modulation of enzymatic activity thus
confounding analysis of the results.
In screening potential analogs of G and C we prepared

dNTPs of interesting candidates and used them to
enzymatically synthesize short single-stranded and hairpin
oligonucleotides. Hybridization properties of the oligonu-
cleotides were then determined using gel mobility shift
assays. The small amounts of radiolabeled targets required
for the assays were easily generated by primer extension
reactions. Had we used phosphoramidites of the same
base analogs to chemically synthesize larger quantities of
oligonucleotides, the task would have required more time
and incurred greater expense. In all likelihood, chemical
synthesis of fully substituted versions of the longer
oligonucleotides would have been difficult or impossible.
Further evaluation of the alkylated G-C couples is

planned. The PC index should be validated by thermo-
dynamic stability measurements using short chemically
synthesized oligonucleotides and the hybridization proper-
ties of fully substituted pseudo-complementary DNAs
need to be characterized with respect to the stability,
specificity and cooperativity of hybrid formation using
unmodified oligonucleotide probes with DNA or LNA
backbones. Some of these studies could be carried out by
hybridizing pseudo-complementary DNA to oligonucleo-
tide microarrays. Practical use of the technology will
require compilation of the nearest-neighbor free energy
parameters for hybrids formed between regular
probes and modified targets as well as development
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of straightforward and reliable protocols for faithfully
generating pseudo-complementary DNA. Techniques that
rely on the efficient hybridization of short oligonucleotide
probes to DNA would be the primary beneficiaries of the
work described here. Direct detection of SNPs by hybri-
dization should become more reliable since shorter probes
with better discrimination could be used. The availability
of targets that are entirely accessible to oligonucleotide
probes should improve the resolution of microarray-based
genome scans of SNP status and DNA copy number.
Emerging technologies such as sequencing by ligation,
resequencing of genes on a microarray and the develop-
ment of universal microarrays could benefit from the
availability of pseudo-complementary DNA targets.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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