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ORIGINAL INVESTIGATION Open Access

Intermedin protects against myocardial
ischemia-reperfusion injury in diabetic rats
Hong Li1, Yunfei Bian1, Nana Zhang1, Jia Guo1, Cheng Wang1, Wayne Bond Lau2 and Chuanshi Xiao1*

Abstract

Background: Diabetic patients, through incompletely understood mechanisms, endure exacerbated ischemic heart
injury compared to non-diabetic patients. Intermedin (IMD) is a novel calcitonin gene-related peptide (CGRP)
superfamily member with established cardiovascular protective effects. However, whether IMD protects against
diabetic myocardial ischemia/reperfusion (MI/R) injury is unknown.

Methods: Diabetes was induced by streptozotocin in Sprague–Dawley rats. Animals were subjected to MI via left
circumflex artery ligation for 30 minutes followed by 2 hours R. IMD was administered formally 10 minutes before R.
Outcome measures included left ventricular function, oxidative stress, cellular death, infarct size, and inflammation.

Results: IMD levels were significantly decreased in diabetic rats compared to control animals. After MI/R, diabetic
rats manifested elevated intermedin levels, both in plasma (64.95 ± 4.84 pmol/L, p < 0.05) and myocardial tissue
(9.8 ± 0.60 pmol/L, p < 0.01) compared to pre-MI control values (43.62 ± 3.47 pmol/L and 4.4 ± 0.41). IMD
administration to diabetic rats subjected to MI/R decreased oxidative stress product generation, apoptosis, infarct
size, and inflammatory cytokine release (p < 0.05 or p < 0.01).

Conclusions: By reducing oxidative stress, inflammation, and apoptosis, IMD may represent a promising novel
therapeutic target mitigating diabetic ischemic heart injury.

Keywords: Intermedin, Ischemia-reperfusion, Diabetes, Oxidative stress, Apoptosis, Inflammatory

Background
Large epidemiological studies have demonstrated acute
coronary syndrome (ACS) is 2–3 times more prevalent
in diabetics than the general population [1,2]. Females
are at greater risk for acute myocardial infarction (MI)
compared to male diabetic patients [3]. Diabetic patients
are more susceptible to myocardial ischemia/reperfusion
(MI/R) injury than non-diabetics, with greater mortality
and resultant heart failure [4-6]. Diabetes is a comorbid-
ity of 50% of MI mortalities [7,8].
Select pharmacologic agents reducing myocardial injury

in non-diabetic animal models are ineffective in diabetic
animal models [9]. Intermedin (IMD), also known as
adrenomedullin 2 (ADM2), belongs to the calcitonin
gene-related peptide (CGRP) superfamily. Peptide frag-
ments (IMD1–47, IMD8–47, and IMD1–53) are gener-
ated from pre-proIMD by proteolytic cleavage [10].

Among the three degraded fragments, IMD1–53 exhibits
the most potent biological cardiovascular effect [11]. IMD
has been shown to have pathophysiological effect in mul-
tiple disease processes involving the circulatory and renal
systems [12] and congestive heart failure [13]. IMD aug-
ments cardiac contractility [14], inhibits collagen synthe-
sis, attenuates proliferation of cardiac fibroblasts [15], and
attenuates cardiomyocyte hypertrophy [16].
Recently, intermedin has been demonstrated to protect

human macrovascular, microvascular, and cardiac non-
vascular cells against I/R injury via AM(1)-receptor
signaling [12]. Furthermore, IMD1–53 exerts potent car-
dioprotective effects against acute rat ischemic injury [17],
inhibiting endoplasmic reticulum stress via PI3 kinase-Akt
signaling [18], and activating cardioprotective Akt/GSK-
3beta signaling, decreasing mitochondrial-mediated myo-
cardial apoptosis [19]. Hyperglycemia downregulates the
cardioprotective peptide adrenomedullin in streptozotocin-
induced diabetic rats, potentially exacerbating diabetic car-
diomyopathy and left ventricular dysfunction [20]. However,
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whether IMD1-53 has any protective effect in the diabetic
condition is completely unknown.
As diabetic ischemic heart disease is a prevalent clin-

ical problem with significant morbidity and mortality,
IMD1-53 may have promising therapeutic potential.
Therefore, the aims of the current study were 1) to
determine whether IMD1–53 may protect diabetic
hearts against MI/R injury, and if so, 2) to determine the
underlying responsible mechanisms.

Methods
Animals and groups
Male Sprague–Dawley rats (250-300 g, Shanxi Medical
Laboratory Animal Center, China) were housed with free
access to standard rat chow and water in accordance with
the principles of the Animal Management Rule of
the Ministry of Health, People’s Republic of China
(Document No. 55, 2001) and the Guide for the Care and
Use of Laboratory Animals published by the US National
Institutes of Health (NIH Publication No. 85–23, revised,
1996). All study protocols were approved by the Shanxi
Medical University Animal Care Committee (Shanxi,
China). Rats were randomly assigned to five different
groups: non-diabetic sham (NS, n = 12), non-diabetic +
ischemia/reperfusion (NIR, n = 12), diabetic sham (DS,
n = 15), diabetic + ischemia/reperfusion (DIR, n = 15),
and diabetic + ischemia/reperfusion + IMD treatment
(IMD, n = 15). In the IMD treatment group, IMD 1–53
(dose 20 nmol/kg, Phoenix Pharmaceutical, Inc. Belmont,
henceforth referred to as IMD) [17] was infused

20 minutes after MI onset, via the left femoral vein over
a period of 10 minutes.

Diabetes induction
Diabetes was induced by intravenous injection STZ
(Sigma Chemical Co). STZ was dissolved in citrate buffer
(pH 4.5), and administered in a single 55 intraperitoneal
(IP) mg/kg injection [21]. Rats were fasted overnight be-
fore STZ injection. Control rats were injected with buffer
only (10 mM citrate buffer, pH 4.5) after an identical
fasting period. Female hormonal profile resistance to STZ-
induced diabetic phenotype without testosterone supple-
mentation is a documented phenomenon [22] Therefore,
in consistent fashion with multiple other investigations
employing a similar diabetic model, only male Sprague–
Dawley rats were utilized in the current study (Figure 1).
Tail blood glucose samples were obtained from each rat
after 3 days, 1, 2, and 3 weeks after STZ administration via
glucometer (Glucotrend, Roche). Rats exhibiting hypergly-
cemia (fasting blood glucose ≥16.7 mmol/L, from at least
three samplings) were considered to have diabetes. The
mortality rate of rats exposed to STZ treatment was 26.7%
(12 of 45 total rats subjected to STZ treatment died).

Myocardial ischemia and reperfusion model
3 weeks after the initial STZ or control injection, SD rats
were anesthetized by IP injection of 7% chloral hydrate
(350 mg/kg). A left thoracotomy and pericardiotomy were
performed. The left coronary artery was dissected above
the first diagonal branch and ligated immediately proximal

Figure 1 Schematic representation of experimental design. Diagram demonstrates the diabetic induction period, ischemia/reperfusion
period, IMD administration time point, and animal sacrifice end points.
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to the left circumflex arterial origin with silk thread.
Slipknot-induced occlusion commenced for 30 minutes.
R wave amplification and ST segment depression were
observed immediately in lead II of the attached electrocar-
diogram. Myocardium distal of the ligation line darkened,
indicating myocardial ischemia (MI). After 30 minutes MI,
the slipknot was released for 120 minutes, allowing reper-
fusion (R) [23]. Blood was collected after R via cardiac
puncture and centrifuged at 2000 × g for 10 minutes.
Serum and plasma were stored at −80°C for further ana-
lysis. Rats were sacrificed via direct intraventricular

2.56 M KCl injection [24]. Hearts were removed and
rinsed with ice-cold phosphate buffered saline. Ventricular
tissue was immediately frozen in liquid nitrogen and
stored at −80°C.

Hemodynamic measurements
Changes in left ventricular developed pressure (LVDP)
and the maximal rates of increase and decrease in LV
pressure (±dp/dtmax) were monitored by a Mikro-Tip®
Catheter Pressure Transducer (BL420F-Powerlab, Taimeng
Technology Co., Ltd.), inserted into the left ventricular
cavity via the right common carotid artery. Data was
continuously recorded at the onset of reperfusion.

Radioimmunoassay for plasma IMD levels
Blood samples were anticoagulated with Na2EDTA,
1 mg/mL aprotinin, and 500 K IU heparin. Plasma was
separated by centrifugation (1600 × g for 15 minutes at
4°C) and stored at −80°C [25]. Plasma was loaded onto a
Sep-Pak C18 cartridge (Phoenix Pharmaceutical) and
pre-equilibrated with 0.5 mmol L-acetic acid, and the
adsorbed material was eluted with 4 ml 50% CH3CN
containing 0.1% trifluoroacetic acid. After lyophilization,
the residue was dissolved in radioimmunoassay buffer,
and analyzed per manufacturer protocol. IMD radio-
immunoassay kits (Phoenix Pharmaceutical, Inc.).

Figure 2 IMD levels in diabetic rat plasma and myocardial tissue. (A) Animal blood glucose level at designated time points. (B) Animal weight
at designated time points (C) IMD levels in diabetic rat plasma. (D) Western blot demonstrating altered IMD expression in myocardial tissue. Image is
representative of three separate experiments. Results represent mean ± SEM. *P < 0.05. NS = non-diabetic sham; NIR = non-diabetic I/R treated with vehicle;
DS = diabetic sham; DIR = diabetic I/R treated with vehicle; IMD = diabetic I/R treated with IMD.

Table 1 Animal blood glucose level and weight at
designated time points

Group Glucose (mmol/L) Weight (g)

baseline After 3 weeks
diet

baseline After 3 weeks
diet

NS 4.51 ± 0.07 4.82 ± 0.12 239.9 ± 3.52 279.2 ± 4.29*

NIR 4.44 ± 0.09 4.89 ± 0.17 241.7 ± 4.11 271.6 ± 4.03*

DS 4.58 ± 0.08 16.22 ± 2.91* 238.1 ± 5.99 209.1 ± 5.77*

DIR 4.55 ± 0.05 15.84 ± 2.82* 242.5 ± 3.70 213.4 ± 3.61*

IMD 4.53 ± 0.06 16.18 ± 2.91* 229.8 ± 6.02 200.1 ± 5.65*

Abbreviations: NS: non-diabetic sham; NIR: non-diabetic ischemia/reperfusion +
vehicle; DS: diabetic sham; DIR: diabetic ischemia/reperfusion + vehicle;
IMD: diabetic ischemica/reperfusion group + IMD treatment. Results represent
mean ± SEM. *P < 0.05 vs. baseline. n = 6-12/group.
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Serum biochemical analysis
Serum LDH, CK-MB, tumor necrosis factor alpha (TNF-α),
interleukin 6 (IL-6), and interleukin 1-beta (IL-1β) levels
were determined via rat ELISA kit (Nanjing Jiancheng
Bioengineering).

Cardiac tissue MDA, SOD, NOS, and NO measurement
Cardiac MDA, SOD, NOS, and NO levels were determined
to assess oxidative stress as described previously [26-28].
After the 2 hour reperfusion period, tissue samples from
the left ventricular apex ischemic region were analyzed.
Tissues were homogenized (100 mg/ml) in 1.15% KCl
buffer. Myocardial MDA, SOD, NOS, and NO content
were determined per manufacturer protocol.

In situ cell apoptosis detection
Myocardial sections (5 μm thick) were stained with
terminal deoxynucleotidyl transferase-mediated dUTP nick
end-labeling (TUNEL) (Roche). After reperfusion, the heart
was quickly removed and incubated with 4% paraformalde-
hyde overnight at room temperature. Heart samples were
treated per manufacturer’s protocol. In brief, hearts were
fixed with 10% paraformaldehyde and incubated with the

TUNEL reaction mixture containing TdT-mediated dUTP
nick end labeling. Nuclei were counterstained with
4′,6-diamidino-2-phenylindole (DAPI). Heart samples were
visualized on an Olympus FV1000 Laser scanning confocal
microscope, and digital images were acquired with IP Lab
Imagine Analysis Software (version 3.5, Scanalytics). Apop-
totic index was calculated as the percentage of stained,
apoptotic cells × 100/total number of nucleated cells.

Determination of myocardial infarct size
24 hours after reperfusion, infarct size was assessed with
Evans Blue (Sigma–Aldrich) and triphenyltetrazolium
chloride (TTC; Amresco) staining. At the end of reperfu-
sion period, the coronary artery was immediately retied.
2 mL of 2% Evans Blue solution was administered intra-
venously to stain the normally perfused region blue. Rat
hearts were rapidly excised and frozen at −70°C. Frozen
hearts were sliced into 2 mm thick sections parallel to the
atrioventricular groove, stained with 1% TTC (pH 7.4) for
15 minutes at 37°C. The viable tissue was stained red by
TTC, while the infarct portion not taking up TTC stain
remained pale. Infarct area was determined by an image
analysis system (Image-Pro plus 3.0; Media Cybernetics).

Figure 3 IMD attenuated MI/R injury in diabetic animals. (A) Representative image of rat hearts stained with TTC. IMD administration decreased
(B) infarct size (C) LDH (D) CK-MB after diabetic animals were subjected to MI/R injury. LDH and CK-MB determined after 120 minutes reperfusion.
Infarct size determined after 24 hours of reperfusion. n = 5 groups of rats. Results represent mean ± SEM.*P < 0.05. NS = non-diabetic sham;
NIR = non-diabetic I/R treated with vehicle; DS = diabetic sham; DIR = diabetic I/R treated with vehicle; IMD = diabetic I/R treated with IMD.
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Infarct size was expressed as a percentage of left ventricu-
lar volume (%, infarct size/left ventricular).

H&E staining and immunohistochemistry
After experiment conclusion, left ventricular myocardial
ischemic tissue was fixed in neutral formalin, embedded in
paraffin, sectioned, stained with hematoxylin and eosin
(H&E), and analyzed by light microscopy.

Reverse transcription and real-time polymerase chain
reaction
Hearts were homogenized. Total RNA was extracted by
TRIzol (Invitrogen, Shanghai, China) per manufacturer
protocol. RNA was treated with RNase-free DNase
(Ambion, TX) to eliminate genomic DNA contamination.
Total RNA was reverse-transcribed to cDNA by Super-
Script II (Invitrogen). Target genes were amplified by
standard real-time PCR kit (Sangon Biotech, Co., Ltd,
Shanghai, China). RT-PCR was performed in a real-time
PCR system (Applied Biosystems, USA) under the
following conditions: 95°C denaturation for 2 minutes,
followed by 35 cycles of 95°C for 30 seconds and 60°C for
30 seconds. Fold changes in gene expression were calcu-
lated after normalizing to β-actin using the formula 2–Ct.

Electron microscopy
Approximately 1 mm3 of myocardial tissue was fixed,
dipped, and dyed per electron microscope specimen
processing requirements. After displacement, the tissue was
soaked in Epon 812 epoxy resin and embedded. Simultan-
eously, 1–2 μm ultrathin slices were prepared. After
polymerization, sections were stained with toluidine blue.
Coverslips were placed over the samples. Ultrathin sections
(ranging 50–70 nm) were prepared from the surfaces
of trimmed blocks by an LKBV ultramicrotome (LKB,
Sweden). Sections were observed and photographed with a
JEM 1010 electron microscope (JEOL, Japan) after aqueous
uranium acetate and lead citrate solution staining.

Western blot analysis
Frozen ventricle samples (n = 6 rats/group) were homoge-
nized in protein lysate buffer (50 mmol/L Tris–HCl,
pH = 7.5, 50 mmol/L 2-mercaptoethanol, 5 mmol/L EGTA,
2 mmol/L EDTA, 1% NP-40, 0.1% SDS, 0.5% deoxycholic
acid, 10 mmol/L NaF, 1 mmol/L PMSF, 25 mg/mL
leupeptin, 2 mg/mL aprotinin), and protein concen-
trations were determined as previously described [29,30].
For immunoblotting, 5X loading buffer containing 2-
mercaptoethanol was added to the protein samples,
followed by boiling at 100°C for 10 minutes before loading
to 10% SDS-PAGE gel. After SDS-PAGE, proteins were
transferred to a PVDF membrane. The membrane was
blocked with 5% nonfat milk for 2 hours at room
temperature. Primary antibodies were diluted 1:1000 in

TBST, added to the membrane, and incubated overnight
with agitation at room temperature. After three TBST
washings, the membrane was incubated with a 1:2000
dilution of horseradish peroxidase (HRP)-conjugated goat
anti-rabbit IgG at room temperature for 60 minutes. After
additional TBST washes, signals were evaluated by an
enhanced chemiluminescence detection system.

Statistical analysis
All values are expressed as means ± SEM. Statistical
analysis was performed using repeated measures and one-
way ANOVA, followed by the Tukey HSD test. P-values are
two-sided, and P-values less than 0.05 were considered
significant.

Results
Streptozocin administration successfully induced a
diabetic model
Weight and blood glucose levels of the rats were recorded
at the beginning of the experiment, and 1, 2, and 3 weeks

Table 3 IMD decreases myocardial injury by attenuating
oxidative stress

Marker
(units)/Group

NS NIR DS DIR IMD

MDA
(nmol/mg prot)

10.61
± 0.46

17.33
± 1.60†

15.77
± 0.95

26.29
± 0.71#

19.88
± 1.31*

SOD
U/mg prot)

210.6
± 9.13

158.0
± 6.58†

201.4
± 12.52

133.3
± 9.55#

184.7
± 14.39*

NOS (U/g prot) 3.48
± 0.10

2.77
± 0.22†

2.99
± 0.11

1.99
± 0.14#

2.74
± 0.22*

NO
(umol/g prot)

1.58
± 0.03

0.85
± 0.02†

1.34
± 0.02

0.51
± 0.04#

0.98
± 0.02*

p22 phox 1.04
± 0.12

3.03
± 0.29†

1.77
± 0.14

4.97
± 0.46#

2.63
± 0.14*

p67 phox 0.92
± 0.08

3.30
± 0.24†

2.87
± 0.15

4.37
± 0.29#

3.20
± 0.20*

gP91phox 1.07
± 0.15

3.25
± 0.29†

2.41
± 0.23

5.08
± 0.28#

3.49
± 0.43*

Abbreviations: NS: non-diabetic sham; NIR: non-diabetic ischemia/reperfusion +
vehicle; DS: diabetic sham; DIR: diabetic ischemia/reperfusion + vehicle;
IMD: diabetic ischemica/reperfusion group + IMD treatment. Results represent
mean ± SEM. †P < 0.05 vs. NS, #P < 0.05 vs. DS, *P < 0.05 vs. DIR .n = 6-12/group.

Table 2 Effects of IMD upon Hemodynamic Parameters
Measured After MI

Parameter
(units) / Group

NS NIR DS DIR IMD

LVDP(mmHg) 99.68
± 2.95

71.81
± 4.55†

92.91
± 3.05

60.58
± 5.47#

82.51
± 4.53*

+dp/dtmax(mmHg /s) 7584
± 295.8

5947
± 354.4†

7012
± 455.1

3877
± 256.1#

5565
± 403.0*

-dp/dtmax(mmHg /s) 5612
± 148.3

4420
± 358.9†

5324
± 213.6

2830
± 205.1#

4076
± 280.2*

Abbreviations: NS: non-diabetic sham; NIR: non-diabetic ischemia/reperfusion +
vehicle; DS: diabetic sham; DIR: diabetic ischemia/reperfusion + vehicle;
IMD: diabetic ischemica/reperfusion group + IMD treatment. Results represent
mean ± SEM. †P < 0.05 vs. NS, #P < 0.05 vs. DS, *P < 0.05 vs. DIR. n = 6-12/group.
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Figure 4 (See legend on next page.)
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after initial STZ injection. Initial body weight and blood
glucose were similar between all groups. 3 weeks after
STZ injection, diabetic rats manifested increased blood
glucose levels and decreased body weight (P < 0.05, Table 1,
Figure 2A, B).

Diabetic animals manifested significantly decreased IMD
levels, while MI/R increased IMD levels
IMD levels were significantly decreased in diabetic rats
compared to control animals. After MI/R, both plasma and
myocardial tissue IMD levels were significantly increased in
normal and diabetic rats compared to sham-operated rats,
suggesting that MI/R increased IMD levels (P < 0.05,
Figure 2C, D).

IMD attenuated MI/R injury in diabetic animals
IMD administration significantly reduced infarct size from
40.6% ± 2.5 to 13.2% ± 1.7 in diabetic rats (P < 0.05,
Figure 3A, B). IMD treatment decreased serum CK-MB
and LDH levels (P < 0.05, Figure 3C, D), and improved left
ventricular dysfunction in diabetic rats (augmenting LVDP
82.51 ± 4.53 vs. 60.58 ± 5.47, +dp/dtmax 5565 ± 403.0 vs
3877 ± 256.1, and –dp/dtmax 4076 ± 280.2 vs. 2830 ± 205.1,
all P < 0.05, Table 2), suggesting IMD may protect against
MI/R injury in diabetic rats.

IMD attenuated oxidative stress-induced injury in diabetic
rats after MI/R
Malondialdehyde (MDA) is a well-accepted marker of
oxidative stress. Post-MI/R MDA levels were significantly
increased in diabetic rats, which was markedly reduced by
IMD treatment (19.88 ± 1.31 nmol/mg protein, P < 0.05).
MI/R increased NOS and NO accumulation, increased
expression of reactive oxygen species (ROS)-generating
nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase (p22phox, p67phox, gp91phox) mRNA, and
decreased SOD activity in both diabetic and control rats.
IMD administration partially reversed all these outcomes,
suggesting IMD blocked MI/R induced oxidative stress in
diabetic rats (P < 0.05, Table 3).

IMD attenuated cardiomyocyte apoptosis in diabetic rats
after MI/R
MI/R induced increased cardiomyocyte apoptosis. Electron
microscopy revealed IMD administration significantly
reduced myocardial ultrastructural mitochondrial damage
in the diabetic group. IMD treatment ameliorated

cardiomyocyte apoptosis, decreased caspase-3 activity, de-
creased pro-apoptotic Bax protein expression, and in-
creased anti-apoptotic Bcl-2 protein expression after MI/R
in diabetic or normal rats (P < 0.05, Figure 4).

IMD attenuated I/R-induced inflammation in diabetic rats
MI/R significantly increased TNF-α, IL-6, and IL-1β levels
compared to respective control groups (P < 0.05 Table 4).
Importantly, cytokine expression was significantly greater
in diabetic mice compared to nondiabetic animals, both in
sham and MI/R groups (P < 0.05, Figure 5). IMD reduced
TNF-α, IL-6, and IL-1β levels (P < 0.05, Table 4). Nuclear
translocation of nuclear transcription factor kappa B
(NF-κB) in cardiomyocytes was determined by immunohis-
tochemistry. Western blot analysis determined myocardial
NF-κB content and cytochrome C oxidase expression.
MI/R increased both myocardial nuclear NF-κB transloca-
tion and cytochrome C oxidase expression. Diabetic
animals exhibited increased NF-κB expression compared to
nondiabetic animals. IMD administration decreased NF-κB
protein expression compared to control (P < 0.05 Figure 5).

Discussion
To our best knowledge, this is the first study to demon-
strate IMD is cardioprotective against MI/R induced
injury in diabetic rats. Moreover, we have provided

(See figure on previous page.)
Figure 4 IMD mitigates myocardial injury by reducing apoptosis. (A) Mitochondrial swelling, visualized with the electron microscope, caused
by MI/R of diabetic animals. (B) TUNEL assay. Total nuclei labeled by DAPI (blue). Apoptotic nuclei detected by TUNEL staining (green). (C) The rate
of apoptosis (%) of each group (n = 4-5 sections/group). (D) Western blot analysis of activated caspase-3, Bcl-2, and Bax protein in myocardial
tissues. Quantitative analysis of (E) Caspase-3, (F) Bcl-2, and (G) Bax Western blots. Results represent mean ± SEM. *P < 0.05. NS = non-diabetic
sham; NIR = non-diabetic I/R treated with vehicle; DS = diabetic sham; DIR = diabetic I/R treated with vehicle; IMD = diabetic I/R treated with IMD.

Table 4 IMD decreases myocardial injury by attenuating
inflammatory response

Inflammatory marker
(units)/Group

NS NIR DS DIR IMD

Serum TNF-α(pg/ml) 65.34
± 1.49

111.7
± 3.48†

91.26
± 2.36

197.9
± 4.87#

111.9
± 8.85*

IL-6(pg/ml) 152.2
± 4.43

287.4
± 12.44†

183.0
± 6.23

368.8
± 12.92#

266.8
± 20.83*

IL-1(pg/ml) 29.74
± 1.62

70.09
± 3.12†

42.86
± 2.02

97.23
± 6.14#

60.59
± 3.87*

Myocardial TNF-α(Ct) 2.65
± 0.14

4.35
± 0.39†

2.88
± 0.22

5.22
± 0.33#

3.64
± 0.49*

IL-6(Ct) 1.78
± 0.81

4.08
± 0.25†

3.13
± 0.10

4.47
± 0.20#

3.18
± 0.28*

IL-1(Ct) 1.71
± 0.17

3.71
± 0.29†

2.72
± 0.26

5.25
± 0.26#

3.97
± 0.41*

Abbreviations: NS: non-diabetic sham; NIR: non-diabetic ischemia/reperfusion +
vehicle; DS: diabetic sham; DIR: diabetic ischemia/reperfusion + vehicle;
IMD: diabetic ischemica/reperfusion group + IMD treatment. Results represent
mean ± SEM. †P < 0.05 vs. NS, #P < 0.05 vs. DS, *P < 0.05 vs. DIR. n = 6-12/group.
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evidence that augmentation of IMD levels after I/R may
be a physiologic protective response. Increased plasma
levels of intermedin and brain natriuretic peptide are asso-
ciated more severe coronary stenosis in acute coronary
syndrome [31]. In our study, diabetic animals exhibited
decreased plasma and myocardial IMD levels.
The response of the hyperglycemic diabetic heart during

ischemic injury remains controversial [31-35]. Experimental
studies employing ischemia/reperfusion protocols have
demonstrated hearts from STZ diabetic rats subjected to a
no-flow period of ischemia manifest reduced myocardial
infarction (MI) area and recover significantly better
ventricular function than nondiabetic hearts, suggesting a
possible cardioprotective role of hyperglycemia [36,37].
However, overwhelming epidemiological and clinical data
demonstrate the diabetic heart is more sensitive to
ischemia-induced injury [38-41]. The metabolic syndrome

significantly alters the cardiac gene expression profile, with
implications in cardiac pathology development [42].
Recent studies demonstrate STZ-induced diabetes

mellitus significantly exacerbates MIR injury, blunting the
protective effect of various therapeutic agents [43,44]. IMD
has been shown to protect against MI/R-induced injury
[11,17]. Myocardial oxidative stress contributes importantly
to diabetic pathophysiology. Hyperglycemia enhances oxida-
tive stress, and reduces antioxidant defenses [45]. MDA is
an unsaturated fatty acid in free radical and lipid peroxida-
tion metabolites. An indirect marker of cellular damage de-
gree, MDA content reflects the extent of systemic lipid
peroxidation. The antioxidant SOD protects cells by redu-
cing free radical-induced injury. SOD levels reflect the
body’s capacity to scavenge oxygen free radicals. In the
current study, myocardial SOD activity was attenuated in
the diabetic animal group, which was further decreased by

Figure 5 IMD attenuates myocardial inflammation. (A) Western blot analysis demonstrating IMD treatment inhibited NF-κB and cytochrome C
(cytc) protein expression. Quantitative analysis of (B) NF-κB (C) cytc Western blots. (D) Representative histological images for NF-κB expression in
formalin-fixed myocardial tissues (400X magnification). Results represent mean ± SEM*P < 0.05. NS = non-diabetic sham; NIR = non-diabetic I/R
treated with vehicle; DS = diabetic sham; DIR = diabetic I/R treated with vehicle; IMD = diabetic I/R treated with IMD.
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MI/R. In combination with increased MDA content ob-
served in the diabetic MI/R group, our data suggests
hyperglycemia-enhanced oxidative stress may exacerbate
MI/R injury.
In hypertrophied cardiomyocytes, intermedin expression

is augmented [46]. During oxidative stress, reactive oxygen
species (ROS) damage biological molecules such as DNA
and proteins. Notably, NADPH produces superoxide anion
O2-, generating cell-damaging H2O2, which mediates
cardiomyocyte apoptosis [47,48]. Reduced nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase
complexes, normally distributed in ventricular muscle and
vascular smooth muscle cells, increases in vivo ROS
[49-52]. Diabetic cardiomyopathy is characterized by
increased myocardial NADPH oxidase (specifically isoforms
p22phox, p67phox, and gp91phox) expression, leading to
increased myocardial ROS generation and lipid peroxida-
tion [53-56]. We demonstrate in the current study that
IMD decreased expression of p22, p67 and gp91.
We provide evidence that IMD preserves and regulates

NO. In our study, myocardial NOS activity and NO were
significantly decreased in both nondiabetic and diabetic
animals after MI/R. Previously, intermedin has been shown
to exert negative inotropic effects in Langendorff-perfused
rat hearts, an effect blocked by inhibition of nitric oxide
synthesis [57]. Another study demonstrated IMD increased
endothelial nitric oxide synthase (eNOS) phosphorylation
nearly three-fold at Ser (1177), significantly enhancing
eNOS activity [58]. In the current study, IMD administra-
tion preserved myocardial NOS activity and cardiac NO
levels, suggesting IMD regulates both myocardial NOS
activity and NO production.
The relationship between diabetic cardiomyopathy and

cellular apoptosis is well known [45,59-61]. Previous
studies demonstrate IMD administration decreases
MI/R-induced cardiomyocyte apoptosis [11,17], and
myocardial injury may be exacerbated by downregulated
IMD during early reperfusion [62]. We demonstrate
MI/R increased caspase-3 activity and Bax protein
expression in diabetic animals compared to control,
which was attenuated by IMD administration. These data
reinforce previous reports that diabetic rats manifest
exacerbated injury after MI/R compared to non-diabetic
rats [63,64]. Inflammatory cytokines mediate critical
pathologic effects during MI/R [65,66]. The diabetic
condition, accepted now as a state of low-level, chronic
inflammation, predisposes to significantly enhanced I/R-
induced myocardial inflammation [67]. In our current
study, IMD administration decreased diabetes-induced
myocardial NF-κB activation, cytochrome C oxidase
expression, and serum/myocardial TNF-α, IL-1, and IL-6
expression. Further investigations confirming whether
IMD attenuates diabetic MI/R injury via inflammatory
signaling mitigation are warranted.

Conclusions
Myocardial ischemia-reperfusion injury is multifactorial.
The current study demonstrated IMD administration
reduces hyperglycemia-exacerbated MI/R injury via reduc-
tion of oxidative stress, apoptosis, and inflammation in a
diabetic rat model. We provide evidence suggesting IMD is
a cardioprotective molecule in diabetic animals after MI/R.
Further studies investigating the specific mechanisms by
which IMD exerts its cardioprotective effects are ongoing.
IMD may be a promising novel therapeutic target against
diabetic ischemic heart disease.
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