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Purpose: The retinoblastoma gene (RB/) is a tumor suppressor gene that was first discovered in a rare ocular pediatric
tumor called retinoblastoma (RB). The RB1 gene is essential for normal progression through the cell cycle and exerts part
of its function through the family of transcription factors (E2F) and many other intermediaries. In the absence of normal
RBI1, genomic instability and chromosomal aberrations accumulate, leading to tumor initiation, progression, and ultimately
metastasis. The purpose of this report was to identify the molecular pathways that are deregulated in retinoblastoma.
Methods: We compared gene expression signatures of matched normal retinal tissue and retinoblastoma (RB) tumor
tissue from six individuals, using microarray analysis followed by statistical and bioinformatic analyses.

Results: We identified 1,116 genes with increased expression and 837 with decreased expression in RB tumor tissue
compared to matched normal retinal tissue. Functional categories of the cognate genes with the greatest statistical support
were cell cycle (309 genes), cell death (437 genes), DNA replication, recombination and repair (270 genes), cellular growth
and proliferation (464 genes), and cellular assembly and organization (110 genes). The list included differentially
expressed retinal cone-cell-specific markers. These data indicated the predominance of cone cells in RB and support the
idea that the latter group of cells may be the cells of origin for RB.

Conclusions: The genes differentially expressed in RB as compared to normal retina belong mainly to DNA damage-
response pathways, including, but not limited to, breast cancer associated genes (BRCA1, BRCA2), ataxia telangiectasia
mutated gene (ATM), ataxia telangiectasia and Rad3 related gene(ATR), E2F, checkpoint kinase 1 (CHKI) genes. In
addition, novel pathways, such as aryl hydrocarbon receptor (AHR) signaling, polo-like kinase and mitosis, purine
metabolism pathways were involved. The molecules AHR, CHK 1, and polo-like kinases are of particular interest because
there are several currently available drugs that target these molecules. Further studies are needed to determine if targeting
these pathways in RB will have therapeutic value. It is also important to evaluate the relative importance of these pathways
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in different cells that make up the normal retina.

Retinoblastoma (RB) is a rare pediatric ocular tumor
arising from immature neuroectodermal cells of the retina.
Mutations and/or epigenetic alterations inactivating both
alleles of the retinoblastoma gene (RB/) are associated with
RB. The mean age-adjusted incidence of RB in the USA is
11.8 per million children aged 0—4 years, and there is no
significant variation in incidence between genders or among
races [1]. The incidence of bilateral disease is approximately
26.7% versus 71.9% of unilateral cases [1]. Germline
mutations on one allele of RB/ are associated with a younger
age of onset and bilateral disease. Second malignancies can
occur at the site of radiation or at distant sites, including bone
(osteosarcoma), skin (melanoma), brain, bladder, and lung
[2-4]. Approximately 90% of children carrying a germline
mutation in RB/ will develop retinoblastoma during their
early childhood [5-8].

Correspondence to: Arupa Ganguly, Ph.D., Department of Genetics,
University of Pennsylvania School of Medicine, Philadelphia, PA,
19104; Phone: (215) 898 3122; FAX: (215) 573 5940; email:
ganguly@mail.med.upenn.edu

Inactivation of the retinoblastoma protein (pRB)
promotes genomic instability and results in chromosomal
deletions, duplications, and rearrangements [9-11]. pRB is a
nuclear protein that is critical for cell cycle exit and terminal
differentiation of retinal cells. When hypo-phosphorylated,
pRB combines with members of the transcription factor (E2F)
family of transcription factors that regulate cell-cycle
progression. The expression levels of different E2F target
genes reflect the positive or negative control exerted by pRB
binding in different signaling pathways. Although pRB was
discovered through its role as a tumor suppressor, it is also
involved in tumor progression and metastasis. The role of pRB
is widespread and complex, as indicated by the fact that it
binds to over 100 different proteins and has many transcription
targets [11].

The gene expression signature of single RB tumors has
been examined to a limited extent. In a study of primary
tumors with gains of chromosome 1q, 24 genes on several
chromosomes had significantly increased expression
compared with tumors that did not have chromosome 1q gains
[12]. In a second study, comparison of gene expression in ten
retinoblastoma tumors with three normal retinal samples
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collected from unmatched adult donors indicated that 481
genes were downregulated and over 1,000 genes were
upregulated [13,14].

Knowledge of the molecular pathways controlled by pRB
is essential for understanding normal growth and
development, tumor suppression, and tumor progression.
Identification of these pathways carries the potential for
development of effective therapeutic targets. To identify the
critical molecular pathways that are affected by the absence
of functional pRB, we compared gene expression patterns in
RB and matched normal retinal tissue from six individuals.

METHODS

Retinoblastoma tumor and normal retinal specimens: Fresh
retinoblastoma tissue was collected following enucleation in
the Oncology Service at the Wills Eye Institute (Table 1),
Thomas Jefferson University (C.L.S.), Philadelphia, PA, and
sent to the Genetics Diagnostic Laboratory (A.G.), University
of Pennsylvania, Philadelphia, for genetic testing. The
informed consent is received before surgery. As the patients
are all under the age of five, the parent(s) or legal guardians
sign the consent form. The technique of tissue harvesting has
been described in the literature [15]. In brief, the tumor tissue
was harvested following enucleation on a separate tray by the
operating surgeon (C.L.S.). The globe was opened with an
8.0-mm corneal trephine (Medtronics, Jacksonville, FL) so
that the trephine straddled a margin of the tumor within the
eye. The sclera was carefully opened so that seeding was
avoided, and the choroidal tissue was incised. The
retinoblastoma tumor was visualized, and tissue was obtained
using a 6-mm tissue spoon and Wescott scissors. After
harvesting of retinoblastoma from the enucleated globe, the
tissue was inspected and if the tumor was well circumscribed
and without tumor seeding, a sample of normal uninvolved
retina in an opposite quadrant was harvested and submitted
separately to avoid contamination from the tumor site. The
degree of contamination is expected to be minimal as judged
by visual inspection. The specimen was flash frozen on dry
ice and transferred for genetic analysis. The globe and scleral
cap were placed in formalin and sent to the pathology
laboratory. The protocol for genetic analysis of RB tumors
was approved by the Institutional Review Board of the
University of Pennsylvania (protocol number 706577,
originally approved March 2005).

Isolation of DNA: Genomic DNA was isolated from normal
retina and frozen tumors using a commercial DNA isolation
kit (Gentra, Minneapolis, MN), following the manufacturer’s
instructions including proteinase-K digestion followed by
salting out of DNA.

Mutation analysis of coding sequences of RB1 and TP53:
Mutation analysis was performed on DNA isolated from
normal retina and RB samples to identify mutations in the 27
coding exons of the RB/ gene and the ten coding exons of the
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tumor protein 53 (7P53) gene. The primers and PCR
conditions for sequencing are included in Table 2. In addition
to scanning the coding sequences, analyses for detection of
mutations involving gene deletion, duplication, or
rearrangements within the gene and methylation of regulatory
regions of the RB/ and TP53 genes in tumor DNA samples
were performed.

Isolation of RNA: Total RNA was isolated from normal and
RB retinal specimens, separately using RNeasy Mini kits
(Qiagen, Valencia, CA). RNA quality and quantity were
assessed using the Agilent Bioanalyzer 2100 (Agilent Life
Sciences and Chemical Analysis, Santa Clara, CA). The yield
of intact RNA from the RB tumors or matched retina was one
of the limiting factors for gene expression analysis. Therefore,
approximately 50 ng of total RNA was subjected to in vitro
transcription yielding cRNA with the Ovation® RNA
Amplification System V2 (NuGEN Technologies, San Carlos,
CA) and the FL-Ovation cDNA Biotin Module V2 (NuGen
Technologies), exactly according to the manufacturer's
instructions. Approximately 40 pg cDNA was obtained and
used in hybridization to microarrays.

Microarray analysis of cDNA: cDNA was fragmented using
DNASel to lengths of approximately 200 nucleotides, heated
at 99 °C for 5 min, and hybridized for 16 h at 45 °C to the
GeneChip® Human U133 V2.0 microarray (Affymetrix,
Santa Clara, CA). The array set was washed at low stringency
(6x SSPE) and high stringency (100 mM MES, 0.1 M NaCl)
and stained with streptavidin—phycoerythrin (Affymetrix).
Fluorescent signals were amplified by adding anti-
streptavidin and an additional aliquot of streptavidin—
phycoerythrin stain. A confocal scanner was used to collect
the fluorescence signal at 3 mm resolution after excitation at
570 nm.

The array images were assessed by naked eye to confirm
scanner alignment and the absence of significant bubbles or
scratches. The ratios of 3":5' ends were assessed for
glyceraldehyde-3-phosphate dehydrogenase and B-actin and
were found to be within acceptable limits (1.39 to <10.0).
When the average intensity of all genes on each array was
compared to that of a target gene, using Affymetrix MAS 5.0
array analysis software, scaling factors for all arrays and
background were within acceptable limits. The raw gene
expression data were processed using the Affymetrix Gene
Expression Console software.

Microarray data analysis: Affymetrix expression analysis is
known to be dependent on preprocessing and signal
summarization protocols [16]. Therefore both the Affymetrix
standard protocols and the standard model-based methods of
robust multichip average were used. The robust multichip
average is a summary measure of probes on arrays. The values
are background adjusted, normalized, and log transformed.

Significance analysis of microarrays: We have used the
significance analysis of microarrays method for two-class
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TABLE 2. PRIMER SEQUENCES FOR ALL CODING EXONS OF RB1 GENE.

Exon Forward primer (5'-3")

1 GTTTTTCTCAGGGGACGTTGAA

1 ACGTGCGCGCGCGTCGT

2 TATTTTGGAATGACCATGAAAAAGA
3 ATTAGTGTGAAATGAAATCCTTTCA
4 TAGTGATTTGATGTAGAGCTGATA

5 TGGGAAAATCTACTTGAACTTTGT

6 GCATTCTATTATGCATTTAACTAAG

7 GGATATACTCTACCCTGCGATTT

8 CCTAAGTTATAGTTAGAATACTTCAT
9 CTTACCCTGCATTGTTCAAGAGT

10 ATATTGCATGCGAACTCAGTGTAT

11 GATTTTATGAGACAACAGAAGCATT
12 AAACCACAGTCTTATTTGAGGGAA

13 AAAAAGTCATATATTATGGAGCAGAA
14 TAGCAGGCTCTTATTTTTCTTTTTG

15 CAATGCTGAACAAATAAGG

16 ATTCAATGCTGACACAAATAAGGTT
17 TTTCTACTGTTTTCTTTGTCTGATA

18 TGACTTTTAAATTGCCACTGTCAAT
19 ATCTGGGTGTACAACCTTGAAGT

20 AGTGGTAGAAAAGAGGTTTCTGT

20 TGTAATTCAAAATGAACAGTAAAAATGA
21 TAGACTTTCAAACTGAGCTCAGTA

22 TCTCAATCATTCTGTGACATTTCA

23 GTCAAAAGTATCCTTTGATTGGAAA
24 ATGATTAGACGGGCACTGTTAGA

25 TACCTTTGCCTGATTTTTGACACA

26 TACATAGCATCATAAATTTGTGACAT
27 GCCATCAGTTTGACATGAGCATA

Reverse primer (5'-3')
CCAGAATCCTGTCACCATTCT
CCGGCCCCTGGCGAGGA
AGAGGTAAATTTCCTCTGGGTAAT
CCAGGACACAAACTGCTACCT
GCATTCAGAATGCATATTACTGGA
CTTCTTTGTAGTACAAGGCATGTA
GTTAATAAGCCAAGCAGAGAATGA
CTGTCAGCCTTAGAACCATGTT
AAACATGCTCATAACAAAAGAAGTA
CAGTAAATTGATCTAAGAAAGTTAGA
TGATATCTAAAGGTCACTAAGCTAA
TCCACCACACCTGGCCTTCAA
ATAACTACATGTTAGATAGGAGATT
CGAACTGGAAAGATGCTGCTT
GATGATCTTGATGCCTTGACCT
AGCATTCCTTCTCCTTAACC
TTATCCCCAAGATGGCCTCAAA
GATCCTTGGGCTATAGACTGAA
GACTTTATTTGGGTCATGTACCTT
TCTCGCAACATTATCATTTCCATTT
CCTGGGTAACAGAGTGAGACT
GAAAGAAAGAAAGAAAGAAAGAAAGAAA
TTTCATAATTACCCTTATCTTTCCAA
GAGCAAAAACAAAAAAGTAGATTATTT
CTTCACCCCGCCCCCATATT
ATTTGAGATTAAACTTGATTTGAAAGT
TGAGCCATTCTCACAACTTCCAA
GCATAAACAAACCTGCCAACTG
CCCAAACAATTGCATCTGCACAT

unpaired data analysis to identify differentially expressed
gene tags. The differentially expressed genes were identified,
with a false discovery rate of 5% [17].

Pathway analysis: After selection of the gene tags with
significant differential expression, the list of gene tags and the
fold changes were imported into the Ingenuity Pathways
Analysis application (Redwood City, CA). This software
identified the gene associated with each gene tag, the biologic
functions, and the pathways most relevant to the genes of
interest.

Quantitative PCR analysis: Observed differences in the
expression of selected genes were validated by Tagman®-
based quantitative PCR analysis using the assays-on-demand
service and the ABI Step-one Sequence Detection System
(Applied Biosystems, Foster City, CA).

RESULTS

Patients and clinical samples: Tumor and normal tissue were
dissected from enucleated ocular material of six individuals
with RB. There was no presurgical ocular therapy. It is rare to
have matched normal retina and retinoblastoma tissue from
the same individual because current recommendations for RB
disease management avoid enucleation except in the severest
cases. The six individuals in this study ranged in age from 9
months to 5 years. The clinical features were similar for all
six cases. Five tumors were classified as stage E and one as
stage D [18]. Two individuals with bilateral RB carried

germline mutations (Table 1). The four individuals with
unilateral disease did not carry any germline RB/ mutations.
Somatic mutations included loss of heterozygosity along with
point mutations, rearrangements, and promoter methylation
(Table 1). The adjacent normal tissue did not carry the somatic
mutations identified in the matched RB.

Gene expression analysis: We used the significance analysis
of microarrays (SAM; SAM analysis method that ranks genes
according to preselected level of FDR) [17] method for two-
class unpaired data analysis to identify the differentially
expressed gene tags with a false discovery rate which was set
at 5%. Overall, out of total 33,326 tags, there were 1,116
individual expression tags that had elevated mean expression
levels in tumor tissue compared to normal tissue (range 1.13
to 25 fold) and 837 tags that had reduced mean expression
levels in tumor tissue compared to normal tissue (range —1.14
to —61.0 fold; Appendix 1).

To identify the functional classes represented by these
gene tags, we performed a gene enrichment analysis using the
Ingenuity Pathway Analysis software package. The molecular
and cellular functions of both upregulated and downregulated
genes with greatest representation in the gene list were cell
cycle (n=309, p=1.86x10 ~* to 4.6x107*); cell death (n=437,
p=1.7x107* to 3.24x107'); DNA replication, recombination,
and repair (n=270, p=1.83x10"* to 4.84x107'%); cellular
growth and proliferation (n=464, p=1.70x10 *t0 2.107'7); and
cellular assembly and organization (n=110, p=1.83x107* to
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1.11x107%). The p values indicated a strong association
between the number (n) of the molecules in the analyzed data
set and the number of molecules in the reference data set for
each function. The p value was calculated with the right-tailed
Fisher’s exact test. The range was defined by the number of
molecules in the data set that were associated with a certain
function compared to the total number of molecules
associated with that function. In addition, the total number of
functional categories to which these molecules belong was
also determined.

The top ten canonical pathways represented by the
deregulated genes (Table 3) include the Gi/S node of the cell
cycle, the point at which the RB/ gene is known to function.
However, seven pathways involve DNA damage response and
the G2/M node of the cell cycle. The pathways that received
the most support were: DNA damage response and BRCA !
gene, aryl hydrocarbon receptor (AHR) signaling, ATM
signaling, Go/M DNA damage checkpoint regulation, mitotic
roles of polo-like kinase (PLK), role of CHK proteins in cell-
cycle checkpoint control, purine metabolism, molecular
mechanisms of cancer, Gi/S checkpoint regulation, and P53
signaling (Table 3). Thus, this data set reveals that multiple
pathways are strongly affected in retinoblastoma tumors with
p values ranging from 1072 to 107 (column 2 of Table 3
indicates the negative log of the p values). Because DNA
damage response is linked to DNA replication and
proliferation, it is important to note that the expression of the
K167 marker was fourfold higher in RB compared to normal
retina. The matched tissue in each case was adjacent normal
retina from young children for whom the retinal was still
maturing and changing [19]. These data are supported by
similar observations in CRX-, RXR-y-, and TRB-2-positive
proliferating cone cells in human RB [20].

Presence of consensus sequences for binding to the E2F
family of transcription factors: Historically, RB has been
known to assert its role in cell-cycle progression through its
interaction with members of the E2F family of transcription
factors. To determine whether E2F-binding sites could be
involved in the deregulation of selected genes in RB tumor
tissue, we investigated the upstream promoter regions of the
20 most differentially expressed genes (Table 4). The
consensus-binding sequence for the E2F family of
transcription factors was represented by the motif M00050
[21]. Five of the ten most upregulated genes and two of the
ten most downregulated genes contained the consensus-
binding motif for E2F in their upstream promoter region
(Table 4). Of all the genes that were expressed differentially
in tumor versus normal retinal tissue, 47% of the promoters
contained at least one E2F consensus sequence in the region
spanning 5 kb of upstream genomic sequences of the
respective genes (Appendix 2).

Quantitative real-time PCR: Seven of ten non-overlapping
canonical pathways included upregulation of CHKIl—a
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checkpoint kinase that phosphorylates cell division cycle
protein CDC25C. CDC25C is an important phosphatase in
cell-cycle control, particularly for entry into mitosis. While an
increase in CHK1 implies cell-cycle arrest, the increase in
CDC25C has been documented in multiple cancers with poor
prognosis [22].

The upregulation of CHK/ and CDC25C genes was
independently verified by quantitative real-time PCR on
cDNA synthesized from two normal retina and eight tumor
samples (Figure 1). All tumor samples showed elevated gene
expression of CHK1 as well CDC25C at the level of mRNA.

TP53 mutation analysis: It is known that pRB and p53
proteins work in parallel pathways to protect normal cells
from DNA damage and replication errors. The coding exons
2 through 11 ofthe TP53 gene were sequenced on tumor DNA,
and no mutations were detected (data not shown). In addition,
no alteration in 7P53 gene expression was observed between
normal retina and retinoblastoma.

DISCUSSION

We have identified genes that are differentially expressed in
retinoblastoma, using six matched sets of tumor and normal
retinal tissues. The RBI gene was the first tumor suppressor
gene to be identified and was defined as a negative regulator
of the cell cycle [23-25]. Normally in its active form, pRB is
hypo-phosphorylated and represses the transcription activity
mediated by E2F 1, and this leads to cell-cycle arrest at the G1/
S junction blocking DNA replication in response to DNA
damage. After damage is repaired, the pRB protein is
phosphorylated and releases the E2F transcription factors,
leading to activation or repression of the downstream targets.
At the end of mitosis, the pRB protein is hypo-phosphorylated
again and the cell cycle continues.

Since the transcription factor E2F1 is central to mediating
the function of pRB, we expected that many of the genes that
were found to be overexpressed or underexpressed in this
study should have E2FI-binding sites in their promoter
regions. We found this to be the case, with 47% of the cognate
genes having a consensus E2F1-binding sequence. However,
more than half of the deregulated genes had no E2F1-binding
site. This is in agreement with other studies [21,26] showing
that in vivo binding sites of the E2F family of genes often do
not contain the consensus sequence or genes with consensus
sequences in the promoter region are not in vivo targets of the
same family of proteins. This implies multiple layers of
protein—protein interactions involving pRB that can cause
deregulation of genes in multiple pathways.

Identification of multiple deregulated pathways in
retinoblastoma tumorigenesis: Combining the data from six
normal retina and RB showed that there were 1,116 individual
gene tags that were elevated and 837 that were decreased. The
genes identified by these tags were classified as being
associated with five main molecular and cellular functions:
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TaBLE 4. Tor 10 MOLECULES WITH HIGHEST AND LOWEST FOLD CHANGE IN EXPRESSION BETWEEN RB TUMOR AND NORMAL RETINA:
MOLECULES HIGHLIGHTED IN BOLD CONTAIN THE CONSENSUS SEQUENCE, M00050, IN THE 5-KB UPSTREAM REGION OF THE RESPECTIVE
PROMOTER FOR BINDING TO E2F FAMILY OF TRANSCRIPTION FACTORS.
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Upregulated genes Down regulated genes
NUF2 25.229 PDGFRA —61.726
PBK 23.8 TYRPI —44.016
CCNE2 22.077 ABCAS —39.006
TOP24 22.031 SCARAS —34.263
C8ORF46 21.409 EGFL6 —28.929
SALLI 20.017 ENPP?2 —28.538
RRM2 19.616 SYNPO2 —22.238
E2F7 19.11 CLICS —21.56
ASPM 18.545 GULPI —20.645
CDCA7 16.478 PPAP2B —19.521
- Figure 1. Relative degree of gene
expression by qPCR. Validation of
upregulation of gene expression for
1000 1 CHKI and CDC25C with qRT-PCR
RQ CDC25 using independent normal retina (494N,
uRQ CHK1 - 498N) and RB (494T, 498T, 119T,
100 124T, 131T, 154T, 155T, and 167T)
I e samples. The relative quantity (RQ)
10 value is compared to that of normal
= = 3 retina 494N. The error bars represent
j i. _L _- standard deviation from the mean.
1 I'I N A = ’ = il . - z
2 g 2 %, o £ % N 5 £
o 7&% vay) @?9% &7\%,/\ 2 2o, 4 % 4 %, {,7)‘ z%> "s)}
0.01

cell cycle, cell death, DNA replication, recombination and
repair, cellular growth and proliferation, and cellular
assembly and organization.

The genes identified by their molecular functions
belonged to multiple canonical pathways that were
deregulated in the absence of normal functional pRB (Figure
2). This is represented by significantly more genes with
altered expression than would be expected on the basis of
chance alone (Table 3). Of the ten most significant canonical
pathways, eight involved response to DNA damage. The
pathway of Gi/S DNA damage checkpoint was expected, but
the pathways involving BRCA1 in DNA damage response,
ATM signaling, and G2/M checkpoint regulation were not
completely expected. In addition, the AHR signaling,
modulation of mitotic cycle with PLK, and purine metabolism
pathways have not been previously reported as associated
with RB tumorigenesis.

The intricate network of these overlapping pathways is
described in Figure 2. In response to RB/ gene inactivation,
indicated by the color green, different kinases and other

molecules are upregulated and indicated by the red color of
the molecules. Lines to the molecules connect the different
affected pathways, indicated by their respective names.
Multiple pathways share the same molecules.

The pathways identified in this study agree with the
pathways observed to be altered by siRNA-mediated silencing
of the RBI gene in human non-small cell carcinoma cells,
H1299, in culture [27]. In that study, RB/ gene knockdown
affected Gi/S and Go/M transitions of the cell cycle and
showed significant involvement of the DNA damage response
and repair pathways as well as epigenetic regulation of gene
expression.

In another report comparing normal retina with RB
samples, the PI3K/AKT/mTOR (insulin signaling) pathway
was found to be aberrantly regulated [28]. This pathway was
not identified as significantly altered in our data set. Next we
compared the expression of
CDC254,C170rf75,ERBB3,LATS2, and CHFR between
normal retina and RB. These genes were chosen because they
were significantly altered in the other report [28]. We found
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Figure 2. The concurrent deregulation of
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the top five canonical pathways in
retinoblastoma (RB) tumors. The DNA
damage response pathway with breast
cancer associated gene 1 (BRCA 1) at the
center was the top canonical pathway
identified with differential gene
expression of the RBI gene. The other
pathways were overlaid on this pathway
retaining the relationships curated in the
knowledge base of Ingenuity software
(Redwood, CA).
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that expression of CDC254 and C170rf75 was upregulated in
RB, while that of LATS2 and FRBB3 was downregulated
(Appendix 1). However, there was no difference in expression
of CHFR between normal retina and RB. This result can be
partially explained by the fact that the ages of the individuals
from whom normal retina was used in the previous study was
65 to approximately 80 years. In contrast, our study is based
on data from matched normal retina belonging to children of
ages 9 months to 5 years. As the retina continues to develop
until the age of 5-10 years, the comparison of retinoblastoma
with adult retina may lead to identification of alternate
pathways.

The cell of origin for retinoblastoma has been elusive for
many years. It was shown that for mouse retinoblastoma a
horizontal interneuron was very likely to be the cell of origin
[29,30]. In contrast for humans, retinoblastoma cone cells
have been suggested as precursors for retinoblastoma [20,
31]. In the latter publication, a very careful evaluation of the
markers expressed in retinoblastoma was used to prove the
cone cells as precursors of human retinoblastoma. With this
background we compared the gene expression profile of the
retinoblastoma tumors in the current data set for a subset of
the genes expressing the marker proteins. Of three cone-
specific markers, CRX, RXR-y and TRf—2, RXR-y was
expressed at an eightfold higher level in retinoblastoma
compared to matched retina. The other two genes were not
differentially expressed. In addition, Pro x —I-the progenitor
cell-specific marker—was downregulated significantly but to
amodest degree (—1.75 fold change). Finally, gene expression

for both N-MYC (ninefold) and MDM?2 (1.9 fold) were
upregulated in retinoblastoma compared to normal retina.
Thus, the gene set identified in the current data set mimic what
has been observed at the protein level in human
retinoblastoma tumors. While it is interesting that many of
these gene expression profiles matched the protein profiles of
RB, it is possible that post-translational regulation of the
mRNAs can explain the differential protein expression in RB
tumors versus normal retina for respective genes with
unchanged expression mRNA level.

AHR signaling is involved in cell proliferation and
development. The AHR molecule is a cytosolic transcription
factor that is usually inactive in the absence of ligands.
However, exposure of cells to a wide variety of exogenous
and endogenous ligands activates the AHR pathway that
results in xenobiotic metabolizing enzymes. Interestingly, it
has been demonstrated that pRB interacts with ligand-bound
AHR and helps its translocation to the nucleus [32,33].
Additionally, recent studies have indicated that AHR is
involved in the TGF- B1/SMAD pathway in glioblastoma
pathogenesis [34]. It has also been suggested that AHR is a
promising target of anticancer therapy and can modulate
survival and invasiveness of malignant glioma [34].

Imbalance in the gene expression pattern of purine
metabolism enzymes is linked with transformation and/or
tumor progression [35]. In our data set, 12 genes in the purine
metabolism pathway were downregulated, while 43 genes
were upregulated (Table 3). A 16-gene expression signature
of purine metabolism has been documented in acute
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lymphoblastic leukemia with or without the TEL-AML
fusion gene product [36].

PLKs are a family of conserved serine/threonine kinases
involved in the regulation of cell-cycle progression through
G2 and M phases [37]. Inactivation of the RB pathway in
cultured cells results in the deregulation of PLKI expression
and can lead to errors in chromosome separation [38]. In
addition, overexpression of PLK/ in many cancers, including
melanoma, ovarian cancer, and others, has been associated
with poor prognosis [39]. The data set included in this report
indicates that deregulation of PLK is also present in RB
tumors. This observation is highly significant considering the
large volume of literature on PLK inhibitors and their ability
to suppress tumor growth in vivo [40]. There are several
ongoing clinical trials on other cancers using PLK/ inhibitors;
some of these may be potential therapeutic agents in RB as
well.

Cell-cycle checkpoints ensure that DNA replication and
mitosis occur only after all DNA damages are repaired or
removed. In response to DNA damage, damage sensors, like
ATM and ATR genes, are activated, and the resulting proteins
in turn activate downstream molecules, such as the BRCA I
gene product. BRCALI can lead to activation of CHK1—a
checkpoint protein that belongs to a family of serine-threonine
kinases (Figure 2). Thus, it appears that the ATM—-ATR-
BRCA1-CHKI1 axis in the DNA damage response pathway
is one of the affected axes in RB (Figure 2).

The CHK gene is involved in seven canonical pathways:
DNA damage response and BRCAI gene, AHR signaling,
ATM signaling, Go/M DNA damage checkpoint, role of CHK
proteins in cell-cycle checkpoint, molecular mechanisms of
cancer, and P53 signaling. The CHK protein is required for
checkpoint-mediated cell-cycle arrest in response to DNA
damage and is found in association with unreplicated DNA.
ATM and ATR phosphorylate the CHK1 protein, and this
results in enhanced CHK1 kinase activity. CDC25C is a
protein phosphatase and a direct target of CHKI1. In the
absence of CHK 1, CDC25C will dephosphorylate CDC2 and
allow the cells to proceed through mitosis. As the activity of
CHKI1 increases, CDC25C is phosphorylated, which
enhances binding to mitotic inhibitor proteins, such as 14-3—
3. As a consequence G2/M progression is halted. Further
studies are required to determine the levels of proteins and the
phosphorylation status of the proteins expressed by the
differentially expressed genes identified in this study.

The enhanced expression of CHK1 in RB suggests that
tumor cells should be arrested and all damage repaired.
However, in the absence of functional pRB protein, the cells
proceed with mitosis and DNA replication. Following
replication of damaged DNA, the tumor cells acquire many
mutations and should eventually die. It is interesting to note
that multiple genes with the “cell death” molecular function
(Table 3) were differentially expressed. As the tumors are not

© 2010 Molecular Vision

regressed, it indicates that the cell death or apoptosis-related
pathway is compromised in these retinoblastoma tumors.

The p53 protein, encoded by the TP53 gene, is one of the
gatekeepers of cell division and proliferation and is mutated
or lost in a many cancers. We found that this gene was not
differentially expressed in the retinoblastoma tissue. In
addition, there was no mutation in the coding sequences of
this gene, thus contraindicating a direct role of TP53-mediated
apoptosis in retinoblastoma tumors.

In conclusion, our report partially defines the network of
canonical pathways that are deregulated and that distinguish
an RB tumor from adjacent normal retina. The differentially
expressed genes are known to function in multiple pathways
and thus suggest that pRB has multiple roles in cell-cycle
control. It is known that pRB regulates the Gi/S checkpoint,
but this analysis highlights the role of pRB in the G»/M DNA
damage checkpoint through novel pathways, including AHR
signaling, PLK-mediated mitotic assembly, or purine
metabolism pathways. This result was not unexpected since
phosphorylated pRB releases the bound E2F family of
transcription factors and the many downstream targets of E2F
can modulate multiple pathways. In addition, pRB can
modulate chromatin structure independent of E2F-binding
activities [41], and thus pRB may deregulate genes without an
E2F-binding site in their respective promoters. The most
important observation is identification of novel pathways
deregulated in RB. Currently several drugs are available for
therapeutic targeting of the AHR-signaling pathway and the
CHKI- and PLK-associated pathways. These drugs are being
used in clinical trials for treatment of other cancers and should
be investigated for treatment of RB. Many of these
differentially expressed genes belong to proliferation
pathways. A review article indicated that “the proliferation
signature of tumor cells is comprised of cell cycle regulated
genes whose pattern of expression is altered because a tumor
contains more proliferating cells than the normal” [42].
However, the “proliferation signatures” can be different
between different cancers. Therefore, in this manuscript we
have defined the “proliferation gene signature of
retinoblastoma” and aims to identify drugs that can alter this
signature in favor of regression and cure.
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Appendix 1. List of genes with significant differential expression between
retinoblastoma matched with normal retina.

To access the data, click or select the words “Appendix
1.” This will initiate the download of a compressed (pdf)
archive that contains the file.

Appendix 2. List of genes with consensus binding site, M00050, for E2F
family of transcription factors.

To access the data, click or select the words “Appendix
2.” This will initiate the download of a compressed (pdf)
archive that contains the file.
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