
Thomas Jefferson University
Jefferson Digital Commons

Master's Theses & Dissertations Jefferson Electronic Theses and Dissertations

2008

Characterizing the Dynamics and Functional Role
of Site-Specific Phosphorylation of G Protein-
Coupled Receptors
John M. Busillo
Thomas Jefferson University, busillojm@yahoo.com

Follow this and additional works at: http://jdc.jefferson.edu/diss_masters
Part of the Biochemistry Commons, and the Molecular Biology Commons

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas
Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly
publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and
interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in
Master's Theses & Dissertations by an authorized administrator of the Jefferson Digital Commons. For more information, please contact:
JeffersonDigitalCommons@jefferson.edu.

Recommended Citation
Busillo, John M., "Characterizing the Dynamics and Functional Role of Site-Specific Phosphorylation of G Protein-Coupled
Receptors" (2008). Master's Theses & Dissertations. Paper 5.

http://jdc.jefferson.edu?utm_source=jdc.jefferson.edu%2Fdiss_masters%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://jdc.jefferson.edu/diss_masters?utm_source=jdc.jefferson.edu%2Fdiss_masters%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://jdc.jefferson.edu/etd?utm_source=jdc.jefferson.edu%2Fdiss_masters%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://jdc.jefferson.edu/diss_masters?utm_source=jdc.jefferson.edu%2Fdiss_masters%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=jdc.jefferson.edu%2Fdiss_masters%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=jdc.jefferson.edu%2Fdiss_masters%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://jdc.jefferson.edu/diss_masters/5?utm_source=jdc.jefferson.edu%2Fdiss_masters%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.jefferson.edu/university/teaching-learning.html/


CHARACTERIZING THE DYNAMICS AND
FUNCTIONAL ROLE OF SITE-SPECIFIC

PHOSPHORYLATION OF
G PROTEIN-COUPLED RECEPTORS

JOHN M. BUSILLO

A Dissertation Submitted in Partial
Fulfillment of the Requirements for the Degree of

Doctor of Philosophy
Thomas Jefferson University



ii

© 2008
John M. Busillo



iii

ABSTRACT

Phosphorylation of G protein-coupled receptors (GPCRs) by GPCR

kinases (GRKs) and the subsequent recruitment of arrestin is a well-established

paradigm that initiates the process known as desensitization.  However, an

emerging theme in GPCR regulation is the possibility of differential regulation

dictated by the phosphorylation pattern elicited by the different members of the

GRK family.  Therefore, we have used small interfering RNA-mediated knock

down of the GRKs and arrestins in an attempt to better understand how

phosphorylation regulates the activity and signaling of the M3 muscarinic

acetylcholine receptor (M3 mAChR) and CXCR4, two receptors endogenously

expressed in HEK293 cells.

Using a two-pronged approach of assaying calcium mobilization and ERK

activation, we were able to define and monitor changes in both the G protein-

dependent and –independent signaling pathways.  We found that GRK2, 3, and

6, and arrestin2 and 3 each has a distinct and separable role in regulating the

activity of each receptor.  Interestingly, knock down of GRK5 did not effect

signaling via either receptor.  Our studies with the M3 mAChR suggest that

signaling is strictly through a G protein-dependent manner and relief of inhibitory

constraints (GRKs and arrestins) subsequently enhances receptor function.  In

contrast, CXCR4 uses both a G protein-dependent and –independent (arrestin-

dependent) means of signaling.  Notably, arrestin-dependent signaling requires

both GRK3 and 6.
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Based on our studies examining the role of the GRKs in receptor-

mediated signaling, we further characterized agonist-promoted phosphorylation

of CXCR4.  Therefore, we created and characterized a cell line stably expressing

Flag CXCR4 to allow for purification of CXCR4 and mass spectrometric analysis.

Importantly, we show that CXCR4 regulation is conserved when stably

overexpressed.  Tandem mass spectrometry and phospho-specific antibodies

were used to identify sites of agonist-promoted phosphorylation.  These studies

demonstrated that Ser-321, Ser-324, Ser-325, Ser-330, Ser-339 and two sites

between Ser-346-352 were phosphorylated. Use of phospho-specific antibodies,

RNA interference and specific inhibitors revealed that Ser-324/325 was rapidly

phosphorylated by protein kinase C and GRK6 upon agonist treatment while Ser-

339 was specifically and rapidly phosphorylated by GRK6. Ser-330 also was

phosphorylated by GRK6, albeit with slower kinetics.

Taken together, these results clearly demonstrate that GPCRs are

dynamically regulated by a number of proteins in a coordinated manner and clear

differences exist between receptors expressed within the same cell type.  For

CXCR4 specifically, we can now begin to address the functional role of site- and

kinase-specific phosphorylation of CXCR4 in a variety of tissues.  More

importantly, we can also begin to understand whether or not there is altered

regulation of CXCR4 in a variety of diseases.
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CHAPTER I

Introduction
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G PROTEIN-COUPLED RECEPTORS

Cellular homeostasis is maintained through an organism’s ability to

transduce a large number of extracellular stimuli into intracellular signaling

cascades through interactions with proteins spanning the cellular membrane.

One of the largest families of these cell surface proteins is the G protein-coupled

receptors (GPCRs) (Pierce et al., 2002), comprising ~3% of the human genome

and encoding for greater than 800 receptors (Bai, 2004).  GPCRs bind to a wide

variety of extracellular ligands including biogenic amines, amino acids, peptides,

photons, and odorants resulting in diverse cellular responses such as

proliferation, differentiation, cell survival, and cell motility (Marinissen and

Gutkind, 2001).

Based on their primary amino acid sequence, GPCRs were predicted to

contain seven transmembrane spanning α-helices connected by alternating

intracellular and extracellular loops (Hargrave and McDowell, 1992), which was

confirmed by the crystal structures of both rhodopsin (Palczewski et al., 2000)

and the β2-adrenergic receptor (β2AR) (Rasmussen et al., 2007).  The N-

terminus, extracellular loops, and transmembrane domains are involved in ligand

binding, while the intracellular loops and C-terminus are involved in signaling and

receptor regulation.  Despite sharing the same topology, GPCRs are further

subdivided based on conserved structural features and amino acid motifs into

five families: glutamate, rhodopsin, adhesion, fizzled/taste, and secretin

(Fredriksson et al., 2003).  The rhodopsin family constitute ~90% of all GPCRs

and is the most well studied class of GPCRs (Fredriksson et al., 2003).
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Signal Transduction by GPCRs

GPCRs respond to a myriad of extracellular stimuli, converting these cues

into distinct intracellular signaling events (Figure 1).  As the name implies,

GPCRs couple to and activate the heterotrimeric family of guanine nucleotide

binding proteins (G proteins), which consist of Gα, which contains the nucleotide

binding pocket, and the functional heterodimer of Gβγ (Oldham and Hamm,

2008).  In the inactive state, Gα is bound to guanosine diphosphate (GDP) and

complexed with Gβγ.  Upon ligand binding, GPCRs undergo a conformational

change that allows them to act as a guanine nucleotide exchange factor (GEF)

and catalyze the exchange of GDP for guanosine triphosphate (GTP) on the Gα

subunit.  This causes a conformational change of the Gα subunit, resulting in the

dissociation of the heterotrimer into Gα and Gβγ and the subsequent activation of

a number of second messenger effectors such as adenylyl cyclase (AC),

phospholipase C isoforms (PLC), and ion channels (Flower, 1999; Marinissen

and Gutkind, 2001).  The G proteins are molecular switches, and through the

hydrolysis of GTP to GDP, return to the inactive state.  The Gα subunit has

intrinsic, albeit slow, GTPase activity.  Therefore, proteins known as regulators of

G protein signaling (RGS) (Willars, 2006) act as GTPase activating proteins

(GAPs) and catalyze the hydrolysis of GTP to GDP, thereby shutting off signaling

and allowing the heterotrimer to re-associate.
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Figure 1. Signal transduction by GPCRs

GPCRs bind to a number of extracellular stimuli including biogenic amines,

amino acids, lipids, proteins, photons and odorants leading to activation of the

heterotrimeric G proteins.  Exchange of GDP for GTP in the nucleotide-binding

pocket of Gα subunits results in activation and dissociation of the heterotrimer

into Gα and Gβγ subunits.  The dissociated heterotrimer is then able to interact

with and activate a number of effectors and signaling pathways that ultimately

result in cellular responses such as proliferation, differentiation, cell survival and

cell motility.
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The Heterotrimeric G Proteins

As described above, there are three subunits that comprise the

heterotrimeric G proteins: Gα, Gβ, and Gγ.  There are currently 16 different Gα

subunits, subdivided into four different classes based on sequence homology:

Gαs, Gαi, Gαq, and Gα12/13 (McCudden et al., 2005; Simon et al., 1991).  All Gα

proteins, with the exception of the photoreceptor-specific Gαt, are N-terminally

modified with palmitate, a 16-carbon fatty acid.  The Gαi class is additionally

modified with myristate, a 14-carbon saturated fatty acid.  These fatty acid

modifications are important for membrane localization of the Gα subunits

(McCudden et al., 2005).  Each class of Gα subunits has well known and

characterized cellular targets, known as effectors.  The Gαs class stimulates the

activity of AC, increasing the intracellular concentration of cyclic adenosine

monophosphate (cAMP) (Ross and Gilman, 1977). The Gαi class, initially

identified for its ability to inhibit AC activity (Hildebrandt and Birnbaumer, 1983),

has a growing list of effectors that includes phosphodiesterases and

phospholipases and are critical for sensory transduction (McCudden et al., 2005).

The Gαq class activates PLC resulting in the subsequent generation of the

second messengers diacylglycerol (DAG) and inositol trisphosphate (IP3) (Rhee,

2001).  Finally, the Gα12/13 class stimulates the activity of the RhoGEFs

(McCudden et al., 2005).

There is nearly as much diversity amongst the Gβ and Gγ subunits.

Currently, there are 5 Gβ and 12 Gγ subunits, which creates the possibility for

forming a large number of Gβγ heterodimers (McCudden et al., 2005).  All Gγ
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subunits are prenylated post-translationally, with either a 15-carbon farnesyl

group or a 20-carbon geranylgeranyl group added to a C-terminal CAAX motif.

Similar to the Gα subunits, this modification is critical for the membrane

localization of Gβγ.  Gβγ is a functional heterodimer and is able to activate a

number of effectors following dissociation from Gα.  The first effectors identified

were the G-protein-regulated inward-rectifier K+ channels (GIRK or Kir3 channels)

(Logothetis et al., 1987).  Since then, Gβγ has been shown to activate a number

of other effectors including PLC-β and -ε (Boyer et al., 1992; Wing et al., 2001),

phosphoinositide-3’ kinase-γ (PI3Kγ) (Stephens et al., 1994), and various AC

isoforms (Tang and Gilman, 1991).

GPCRs constitute one of the largest families of cell surface receptors and

are critically involved in many aspects of biology.  Currently, GPCRs are targeted

by ~30% of marketed drugs (Jacoby et al., 2006) and as more and more GPCRs

are found to be involved in various pathologies such as cancer, HIV, and

cardiovascular disease, a better understanding of the molecular mechanisms

regulating receptor activity and signaling is needed.

REGULATION OF GPCRs BY G PROTEIN-COUPLED RECEPTOR KINASES

AND ARRESTINS

The activity of GPCRs is tightly regulated to ensure the proper magnitude

and duration of signaling cascades within the cell.  There are three principal

modes of GPCR regulation: desensitization, where receptors become refractory

to continued stimulation; internalization, a process that removes receptors from
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the cell surface; and down regulation, where receptors are trafficked to

lysosomes for degradation (Figure 2).

Homologous and Heterologous Desensitzation

Desensitization is a critical step in GPCR regulation, effectively shutting off

receptor signaling.  The process is initiated by phosphorylation of intracellular

serine/threonine residues and is classified as either heterologous (agonist-

independent) or homologous (agonist-dependent). Heterologous desensitization

is typically mediated by the second messenger kinases, protein kinase A (PKA)

and protein kinase C (PKC), which are activated by a number of cellular stimuli

including receptor tyrosine kinases (RTKs) and GPCRs (Ferguson, 2001).

Phosphorylation is therefore agonist-independent and results in a decreased

affinity of the GPCR-G protein interaction.  Homologous desensitization, on the

other hand, is classically mediated by G protein-coupled receptor kinases

(GRKs).  Unlike second messenger kinases, GRKs specifically phosphorylate the

activated, agonist-occupied form of the receptor and this usually results in the

recruitment of the arrestin family of proteins (Krupnick and Benovic, 1998).
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Figure 2. Regulation of GPCRs by GRKs and Arrestins

Upon receptor activation, GRKs phosphorylate serine/threonine residues of the

third intracellular loop and C terminal tail, initiating the process of desensitization.

Arrestins are then recruited to and bind the activated, phosphorylated receptor,

uncoupling it from G protein and terminating signaling.  Additionally, the arrestins

act as adaptor proteins and complex with clathrin and AP-2 to target the

receptors to clathrin-coated pits for internalization.  In the endosomal

compartment, ligand dissociates and the receptors are dephopshorylated.  The

receptors are then either sorted to the lysosome for degradation (down

regulation) or recycled back to the plasma membrane (resensitization).
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G Protein-Coupled Receptor Kinases

There are currently 7 members of the GRK family, which are divided into

three subfamilies based on sequence homology: (i) GRK1 (rhodopsin kinase)

(Shichi and Somers, 1978; Lorenz et al., 1991) and GRK7 (Weiss et al., 1998);

(ii) GRK2 (β-adrenergic receptor kinase 1, βARK1) (Benovic et al., 1986; Benovic

et al., 1989) and GRK3 (β-adrenergic receptor kinase 2, βARK2) (Benovic et al.,

1991); and (iii) GRK4 (Ambrose et al., 1992), GRK5 (Kunapuli and Benovic,

1993), and GRK6 (Benovic and Gomez, 1993).  GRK2, 3, 5 and 6 are

ubiquitously expressed and have the ability to interact with and phosphorylate

various GPCRs.  Conversely, GRK1, 4, and 7 have a more restricted pattern of

expression, being limited to the retina (GRK1 and 7) or the brain, testis, and

kidneys (GRK4) (Krupnick and Benovic, 1998).

The overall topology of the GRKs is conserved among the subfamilies,

with a moderately conserved N-terminal domain, a highly conserved central

catalytic domain, and variable C-terminal domain (Krupnick and Benovic, 1998).

The central catalytic domain promotes phosphorylation of a variety of substrates

and is most closely related to the PKA/PKC family of kinases (Hanks and Hunter,

1995).  The N-terminus of GRK is thought to not only mediate the interaction with

substrates (Palczewski et al., 1991; Pronin et al., 1997), but also result in full

activation of the kinase (Pao and Benovic, 2005).  The GRKs also contain a

RGS-like domain within the N terminus (Siderovski et al., 1996).  However, to

date, only GRK2 and 3 have been shown to bind to Gα subunits in an aluminum

fluoride (AlF4
-) dependent manner (Carman et al., 1999b).  This interaction
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occurs via a region that is unique to GRK2 and 3 (Sterne-Marr et al., 2003), and

regulates Gαq without enhancing its GTPase activity (Carman et al., 1999b;

Sallese et al., 2000), demonstrating a novel, phosphorylation-independent means

of GPCR regulation.  The N-terminus of the GRK4 family has a unique, highly

conserved, phosphatidylinositol (4,5)-bisphosphate (PIP2) binding site, which

may function to enhance the catalytic activity of the kinases (Pitcher et al., 1996).

The most divergent region of the GRKs is the C-terminal domain, which is

responsible for membrane localization (Penn et al., 2000).  GRK1, 2, and 3 are

predominantly cytoplasmic, needing to translocate to the membrane upon

receptor activation.  GRK1 is post-translationally modified by farnesylation of a C-

terminal CAAX motif and recruited to the plasma membrane upon rhodopsin

activation (Inglese et al., 1992).  GRK2 and 3 contain both a pleckstrin homology

(PH) domain and a Gβγ binding site (Pitcher et al., 1992; Pitcher et al., 1995).

The concomitant interaction with PIP2 and free Gβγ targets the kinases to the

plasma membrane upon receptor activation.  In contrast, GRK4 through GRK7

are constitutively associated with the plasma membrane.  GRK4 and 6 maintain

their plasma membrane localization through palmitoylation of one or more C-

terminal cysteine residues (Premont et al., 1996; Stoffel et al., 1994).  GRK5 is

predominantly associated with the plasma membrane through electrostatic

interactions between a polybasic region and membrane phospholipids (Pitcher et

al., 1996).  Finally, similar to GRK1, GRK7 contains a C-terminal CAAX motif.

However, in contrast to GRK1, GRK7 is post-translationally modified with a
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geranylgeranyl group and thereby constitutively associated with the plasma

membrane (Weiss et al., 2001).

Regulation of GRK Activity

In addition to membrane recruitment and activation by GPCRs, the activity

of the GRKs can be modulated by a number of intracellular molecules including

phospholipids, site-specific phosphorylation, and protein/protein interactions

(Penela et al., 2003).  The GRKs are lipid-dependent enzymes.  Interactions with

PIP2 and other acidic phospholipids (e.g., phosphatidylserine (PS)) enhances the

ability of GRK2 to phosphorylate membrane-bound receptors as well as soluble

substrates (DebBurman et al., 1996; DebBurman et al., 1995; Pitcher et al.,

1995).  Interestingly, PIP2 also inhibited GRK2-mediated phosphorylation of

agonist-occupied M2 muscarinic acetylcholine receptor if used at high

micromolar concentrations or in the absence of Gβγ (DebBurman et al., 1996;

DebBurman et al., 1995).  GRK5 has two phospholipid binding domains, in the N-

and C-terminus, which are highly conserved among the GRK4 subfamily of

kinases.  The N-terminal binding site shows a great deal of specificity for PIP2,

which enhances GRK5-mediated receptor phosphorylation without affecting

autophosphorylation or phosphorylation of soluble substrates (Pitcher et al.,

1996).  The C-terminal binding site, which shows little lipid specificity, enhances

GRK5 autophosphorylation and activity towards a number of different substrates

(Kunapuli et al., 1994; Pronin et al., 1998).

A number of protein kinases are able to phosphorylate the GRKs, thereby

modulating their cellular localization and catalytic activity.  PKA-mediated
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phosphorylation of GRK2 on Ser685 increases its affinity for Gβγ and enhances

plasma membrane translocation and receptor phosphorylation (Cong et al.,

2001).  Similarly, PKC-mediated phosphorylation of GRK2 on Ser29 enhances

membrane recruitment and receptor phosphorylation (Winstel et al., 1996).   In

contrast, the catalytic activity of GRK5 is drastically inhibited by PKC-mediated

phosphorylation of two C-terminal serine residues (Pronin and Benovic, 1997a).

Interestingly, this region of GRK5 also contains inhibitory autophosphorylation

sites (Pronin et al., 1998).  In addition to the second messenger kinases, GRK2

is phosphorylated by both c-Src and extracellular signal-regulated kinase (ERK).

c-Src, a tyrosine kinase, phosphorylates and enhances the activity of GRK2

towards both receptor and soluble substrates (Fan et al., 2001; Sarnago et al.,

1999).  In addition, c-Src phosphorylation also plays a critical role in the

degradation of GRK2 (Penela et al., 2001).  In contrast, ERK phosphorylates

GRK2 on Ser670 and impairs both Gβγ binding and catalytic activity (Pitcher et

al., 1999).

The calcium binding proteins recoverin and calmodulin are also important

regulators of the GRK activity.  Recoverin, which is present in photoreceptor

cells, is able to bind to and inhibit the activity of GRK1 (Klenchin et al., 1995).

Calmodulin is able to inhibit the activity of GRK2, 3, 5, and 6, however, it is highly

specific for GRK5 and 6 (Pronin et al., 1997b).  The calmodulin binding sites

have been mapped to both the N and C terminal domains of GRK5, which

disrupts membrane association, substrate phosphorylation and enhances

inhibitory autophosphorylation (Pronin et al., 1998; Pronin et al., 1997b).  Finally,
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the activity of the GRKs is inhibited through interactions with caveolin and α-

actinin, which may be a way to suppress GRK activity in particular microdomains

(Carman et al., 1999a; Freeman et al., 2000).

Arrestins

The arrestins are a family of proteins classically involved in shutting off

signaling by binding to activated, phosphorylated GPCRs and uncoupling them

from their cognate G protein (Krupnick and Benovic, 1998).  However, their

biological functions are ever expanding and the arrestins are now known to

regulate receptor internalization, G protein independent signaling, and gene

expression (DeWire et al., 2007; Moore et al., 2007).

In mammals, there are four members of the arrestin family that have been

cloned and characterized.  Based on function, localization and sequence

homology, they are subdivided into two groups: the visual arrestins (arrestin1 and

4), and the non-visual arrestins (arrestin2 and 3, also known as β-arrestin1 and

2).  Arrestin1, originally termed S-antigen, was found to translocate from the

cytosol to rod outer segments (ROS) upon rhodopsin activation and regulate light

dependent signal transduction (Kuhn et al., 1984; Pfister et al., 1985).

Purification of arrestin1 allowed for the subsequent cloning of a bovine arrestin1

and of arrestin4 (Murakami et al., 1993; Shinohara et al., 1987; Yamaki et al.,

1987).  As arrestin1 and arrestin4 are restricted to the visual system, they are

believed to exclusively regulate photoreceptor GPCRs (Krupnick and Benovic,

1998).  The existence of a non-visual arrestin was initially postulated during

studies examining the regulation of the β2AR by GRK2 (Benovic et al., 1987).
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The ability of GRK2 to desensitize purified β2AR became attenuated as the

GRK2 preparations became more homogenous, suggesting the loss of an

important cofactor for β2AR desensitization.  Desensitization was restored by the

addition of arrestin1, albeit at very high concentrations (Benovic et al., 1987).

Subsequently, a protein termed β-arrestin (arrestin2) was cloned, which shared

high homology and function to arrestin1 (Lohse et al., 1990).  Unlike arrestin1,

arrestin2 is not restricted to one particular tissue, but is ubiquitously expressed.

Soon thereafter, a second ubiquitously expressed non-visual arrestin was cloned

and termed β-arrestin2 (arrestin3) (Attramadal et al., 1992).  The ubiquitous

nature of arrestin2 and 3 suggest that they are involved in the regulation of a

number of GPCRs.

Importantly, arrestins are able to recognize both the activation and

phosphorylation state of GPCRs, suggesting that they recognize domains

specifically exposed upon receptor activation.  Studies have determined that the

N terminal domain of arrestin is involved in receptor recognition of a number of

GPCRs (Gurevich and Benovic, 1993a; Gurevich et al., 1995; Gurevich et al.,

1993b).  Extensive mutagenesis of arrestin1 has mapped the phosphorylation

recognition domain to residues 158-185 (Gurevich and Benovic, 1993a).

Subsequently, three residues (Arg171, Arg175, and Lys176) were found to be

critical for the interaction with phosphorylated rhodopsin (Kieselbach et al.,

1994).  Interestingly, neutralization or charge reversal of Arg175 resulted in

phosphorylation-independent binding to light activated rhodopsin, suggesting that

this region acts as phospho-sensitive switch (Gurevich and Benovic, 1993a).
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Mutation of the corresponding residue in arrestin2 (Arg169) to glutamate,

resulted in a similar phosphorylation-independent binding to the β2AR (Kovoor et

al., 1999).  Based on these and other studies, it is thought that arrestin

undergoes a conformational change upon binding to activated, phosphorylated

receptors exposing regions that allows them to interact with a number of other

proteins (Gurevich and Gurevich, 2006).

The Role of Arrestins in Receptor Desensitization and Trafficking

The arrestins are classically known to shut off, or “arrest”, GPCR-

mediated signaling events through their ability to bind to activated,

phosphorylated receptors and uncouple them from their cognate G protein

(Krupnick and Benovic, 1998).  Moreover, arrestins interact with cAMP

phosphodiesterases (Perry et al., 2002) and diacylglycerol kinases (Nelson et al.,

2007), allowing them to dually desensitize GPCRs via Gs and Gq uncoupling as

well as enhancing the rate of cAMP degradation and PIP2 regeneration,

respectively.

Following desensitization, activated GPCRs are removed from the cell

surface by a process known as internalization.  The most common route for

GPCR internalization is through specialized microdomains known as clathrin

coated pits (CCPs), although other mechanisms do exist (Marchese et al.,

2003a). A role for arrestin in receptor internalization was first demonstrated in

studies using a mutated β2AR that was impaired in agonist induced

phosphorylation and internalization (Ferguson et al., 1996).  Overexpression of

either arrestin2 or 3 was able to promote internalization of this receptor whereas
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various arrestin mutants inhibited internalization of the β2AR.  Mechanistic insight

into this arrestin-mediated internalization was gained from the observations that

arrestin2 and 3 directly interact with clathrin (Goodman et al., 1996), clathrin

associated protein (AP)-2 (Laporte et al., 2000; Kim and Benovic, 2002), and

phosphoinositides, which is critical for targeting GPCRs to CCPs (Gaidarov et al.,

1999).

Once internalized, receptors can either be recycled to the plasma

membrane in a process known as resensitization or trafficked to the lysosomes in

a process known as down regulation (Marchese et al., 2008).  While the

molecular mechanisms mediating differential sorting of GPCRs are not well

established, the stability of the GPCR/arrestin complex may be a contributing

factor.  For example, GPCRs have been separated into “Class A” and “Class B”

receptors based on how they interact with the non-visual arrestins (Oakley et al.,

2001).  Class A receptors (e.g., β2AR) transiently associate with the non-visual

arrestins, which may allow for rapid dephopshorylation and recycling back to the

plasma membrane, essentially resetting the system.  Class B receptors (e.g.,

angiotensin 1a receptor (AT1aR)) form stable complexes with the non-visual

arrestins and co-traffic into endosomes.  This stable association has been

proposed to sterically hinder dephosphorylation and prevent receptor

resensitization (Oakley et al., 2001).  Additionally, arrestin2 has been shown to

be critical for the lysosomal sorting of CXCR4 (Bhandari et al., 2007), a GPCR

known to undergo agonist-induced down regulation (Marchese and Benovic,

2001).
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The Role of Arrestins in GPCR Signaling

Studies over the past several years have elucidated a novel role for the

arrestins: acting as scaffolds for activation of a number of signaling pathways,

also known as G protein-independent signaling.  Initial evidence for arrestin-

mediated signaling came from results showing that a dominant negative form of

arrestin, which blocks internalization, inhibited full activation of ERK1/2 (Daaka et

al., 1998).  Soon thereafter, arrestin was shown to interact with c-Src, linking this

non-receptor tyrosine kinase to GPCR-mediated signaling (DeFea et al., 2000a;

Luttrell et al., 1999).  Subsequent studies revealed that arrestin was able to

scaffold specific components of the mitogen activated protein kinase (MAPK)

cascade including Raf-1, MEK1, ERK1/2 (DeFea et al., 2000b; Luttrell et al.,

2001) and JNK3 (McDonald et al., 2000).  Though no direct interaction has ever

been established, p38 activation has been shown to be arrestin dependent

following activation of a number of different GPCRs (Bruchas et al., 2006; Miller

et al., 2003; Sun et al., 2002).

Certain ligands appear to have the ability to preferentially activate a

particular downstream signaling pathway, a phenomenon known as biased

agonism.  For GPCRs, this would mean preferential activation of either a G

protein-dependent or –independent pathway.  This was first identified for the

AT1aR using a specific mutant of the ligand angiotensin, known as AngII(SII).

This mutant ligand was unable to activate G protein-dependent signaling (i.e.,

phosphoinositide (PI) hydrolysis) but was able to activate ERK1/2 in an arrestin-

dependent manner (Wei et al., 2003).  Similar mechanisms have been uncovered
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for both the vasopressin and β2 adrenergic receptors (Azzi et al., 2003; Drake et

al., 2008; Wisler et al., 2007).

THE CHEMOKINE RECEPTOR CXCR4

Chemokines are 8-10 kDa cytokines that are classified into four groups

(CXC, CC, C, and CX3C) based on the position of the first two cysteines (Zlotnik

and Yoshie, 2000).  Chemokine receptors belong to the GPCR superfamily and

couple to the pertussis toxin sensitive Gi proteins (Murphy et al., 2000).  In

general, chemokines/chemokine receptors exhibit promiscuity, being able to bind

multiple receptors/ligands, though 6 of the 18 chemokine receptors bind a single

ligand (Balkwill, 2004a).  One of the best studied chemokine receptors is CXCR4,

primarily due to its role as a co-receptor for HIV entry (Feng et al., 1996) as well

as its ability to mediate the metastasis of a variety of cancers (Zlotnik, 2006b).

CXCR4 is a 352 amino acid rhodopsin-like GPCR and selectively binds

the CXC chemokine Stromal Cell-Derived Factor 1 (SDF-1) also known as

CXCL12 (Fredriksson et al., 2003; Murphy et al., 2000). Classically, two

alternatively spliced isoforms of SDF have been identified.  SDF-1α is an 89

amino acid protein that is the predominantly expressed form of SDF-1 while SDF-

1β contains a four amino acid extension at the carboxyl terminus (Shirozu et al.,

1995). SDF-1α and β bind to CXCR4 with a comparable affinity (Kd of 7.5 and

13.7 nM, respectively) (Hesselgesser et al., 1998).  Recently, an additional four

splice variants that contain 30 (SDF-1γ), 31 (SDF-1δ), 1 (SDF-1ε), and 51 (SDF-

1φ) amino acid extensions at the carboxyl terminus compared to SDF-1α have
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been identified (Yu et al., 2006).  Each of these isoforms stimulates cell migration

in a CXCR4-dependent manner.  However, as they have a differential tissue

distribution, their functional significance is currently unknown.  Mice that lack

either SDF-1 or CXCR4 exhibit an almost identical phenotype of late gestational

lethality and defects in B cell lymphopoiesis, bone marrow colonization, and

cardiac septum formation (Nagasawa et al., 1996; Zou et al., 1998).  These and

other studies reveal that CXCR4 is essential for development, hematopoeisis,

organogenesis, and vascularization (Ma et al., 1998; McGrath et al., 1999;

Nagasawa et al., 1996; Nagasawa et al., 1998; Tachibana et al., 1998; Zou et al.,

1998), in addition to functioning as a classical chemokine receptor (i.e., directed

chemotaxis) in the adult (Moser and Loetscher, 2001; Murphy, 1994).

Given that CXCR4 plays a prominent role in HIV (Agrawal et al., 2006;

Lusso, 2006; Reeves and Piefer, 2005) and cancer metastasis (Burger and

Kipps, 2006; Kucia et al., 2005; Zlotnik, 2006a; Zlotnik, 2006b), the knowledge of

the factors that shape signaling, receptor regulation, and receptor expression,

and how dysregulation of these pathways may contribute to disease progression

is crucial.

REGULATION OF CXCR4 EXPRESSION AND FUNCTION

Transcriptional Control of CXCR4

In order to understand the role of CXCR4 in disease, a fundamental

understanding of the factors regulating expression is critical.  While CXCR4 was

initially cloned from leukocytes (Loetscher et al., 1994; Nomura et al., 1993), it
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has since been shown to be expressed in a number of tissues in addition to cells

of hematopoetic lineages (Rossi and Zlotnik, 2000). The promoter region of

CXCR4 contains a number of predicted regulatory consensus sequences (Caruz

et al., 1998; Moriuchi et al., 1997; Wegner et al., 1998), however, the basal

transcription is mainly controlled by the opposing actions of two transcriptional

regulators. Functional characterization of the CXCR4 promoter has revealed that

Nuclear Respiratory Factor-1 (NRF-1) is the major transcription factor positively

regulating the transcription of CXCR4 (Moriuchi et al., 1997; Wegner et al.,

1998), although a potential role for an additional transcription factor, SP-1, has

also been suggested (Wegner et al., 1998). This work also defined a negative

regulatory element upstream (near position –300 of the transcriptional start site)

that may be mediated by Ying Yang 1 (YY1) (Moriuchi et al., 1999b).

In addition to the basal regulation of CXCR4 transcription, a number of

signaling molecules also have been shown to affect CXCR4 transcription. For

example, the expression of CXCR4 can be increased as a result of intracellular

second messengers such as calcium (Moriuchi et al., 1997) and cyclic AMP

(Cristillo et al., 2002), by the cytokines interleukin-2 (IL-2) (Moriuchi et al., 1997),

IL-4 (Jourdan et al., 2000), IL-7 (Jourdan et al., 2000), IL-10 (Wang et al., 2001),

IL-15 (Jourdan et al., 2000), TGF-1β (Wang et al., 2001), and simultaneous CD3

and CD28 engagement (Moriuchi et al., 1997), and by growth factors such as

basic fibroblast growth factor (bFGF) (Feil and Augustin, 1998; Salcedo et al.,

1999), vascular endothelial growth factor (VEGF) (Salcedo et al., 1999), and

epidermal growth factor (EGF) (Phillips et al., 2005).  On the other hand,
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inflammatory cytokines such as tumor necrosis factor-α (TNF-α) (Feil and

Augustin, 1998; Gupta et al., 1998; Han et al., 2001), interferon-γ (INF-γ) (Gupta

et al., 1998), and IL-1β (Gupta et al., 1998) have all been shown to attenuate

CXCR4 expression.

These data clearly show that there is dynamic regulation of CXCR4

transcription as the result of physiological stimuli. Of additional interest are those

factors that regulate CXCR4 expression and affect disease progression, such as

modulating HIV infection. Alterations in NRF-1 or YY1 activity can lead to an

increase or decrease in transcription of CXCR4, respectively, which certain

viruses appear to have taken advantage of. The human T lymphotropic virus type

I transactivator Tax protein interacts with and enhances NRF-1 activity, which in

infected individuals may enhance susceptibility to HIV infection or disease

progression (Moriuchi et al., 1999a). In contrast, individuals infected with human

herpes virus 6 have a decrease in cell surface expression of CXCR4 (Yasukawa

et al., 1999). Investigation into the underlying mechanism has revealed that there

is an increase in YY1 binding through a decreased association with c-Myc, a

natural suppressor of YY1 activity (Hasegawa et al., 2001).

Regulation of CXCR4 Protein Expression

A number of co-translational modifications contribute to the expression

and function of CXCR4. Within the extracellular domain of CXCR4, there are two

potential N-linked glycosylation sites, Asn11 and Asn176 (Berson et al., 1996).

Both sites undergo glycosylation when CXCR4 is expressed in Sf9 insect cells

(Zhou and Tai, 1999), however, only Asn11 appears to be glycosylated in
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mammalian cells (Chabot et al., 2000). SDF and the HIV-1 glycoprotein gp120

bind to a non-overlapping region of the N-terminus of CXCR4 (Brelot et al., 2000;

Brelot et al., 1997; Chabot et al., 1999; Doranz et al., 1999; Kajumo et al., 2000;

Zhou et al., 2001) and glycosylation has opposing effects on each process.

Mutation of Asn11 to glutamine leads to enhanced CD4-dependent binding of

both CXCR4-specific and duel tropic (CCR5 and CXCR4) HIV-1 isolates (Brelot

et al., 1997; Thordsen et al., 2002; Wang et al., 2004). Conversely, mutation of

Asn11 to glutamine (Wang et al., 2004) or leucine (Zhou and Tai, 1999) disrupts

SDF binding and diminishes signal transduction (Wang et al., 2004). Thus,

glycosylation of CXCR4 is important for SDF binding and helps to inhibit the use

of CXCR4 as an HIV-1 co-receptor.

CXCR4 has also been shown to undergo tyrosine sulfation, a modification

catalyzed by tyrosyl protein sulfotransferase within the trans-golgi network.

There are three extracellular tyrosines in CXCR4 that are modified by sulfation,

Tyr7, Tyr12, and Tyr21, with Tyr21 accounting for the majority of sulfate

incorporation (Farzan et al., 2002a).  Functionally, tyrosine sulfation of CXCR4

doesn’t regulate co-receptor usage by HIV-1 (Farzan et al., 2002a) as is

observed with CCR5 (Farzan et al., 1999), however, similar to CCR2b

(Preobrazhensky et al., 2000), CCR5 (Farzan et al., 2002b), and CX3CR1 (Fong

et al., 2002a), this is an important modification for ligand binding (Farzan et al.,

2002a). Indeed, the structural basis for sulfotyrosine-SDF interaction reveals that

sulfotyrosine 21 binds to a specific site on SDF-1 that includes Arg47, while

sulfotyrosine 7 and 12 occupy positively charged clefts of a SDF homodimer
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(Veldkamp et al., 2008; Veldkamp et al., 2006).  An additional N-terminal

modification that has been identified in CXCR4 is addition of a chondroitin sulfate

chain at serine 18, although no functional consequence of this modification has

been identified (Farzan et al., 2002a).

Oligomerization

An emerging theme in GPCR signaling is the formation of homo- and

heterodimers (Angers et al., 2002). CXCR4 exhibits significant heterogeneity in

cells, which may be a result of ubiquitination, differential glycosylation, or the

formation of oligomers (Lapham et al., 2002; Sloane et al., 2005).  It’s been

suggested that CXCR4 has the ability to homodimerize in the absence of ligand

(Babcock et al., 2003; Issafras et al., 2002; Percherancier et al., 2005; Toth et al.,

2004), an event that most likely occurs soon after protein translation (Babcock et

al., 2003). However, two reports suggest that SDF can also enhance dimerization

(Toth et al., 2004; Vila-Coro et al., 1999).  Interestingly, CXCR4 homodimers

have been suggested to form between wild type and C terminally truncated

mutations of CXCR4 in patients with WHIM syndrome, effectively enhancing the

activity of the wild type receptor (Lagane et al., 2008).  There have also been

reports of CXCR4 forming heterodimers with CCR2, T cell receptors, and CD4,

which may affect the functionality of CXCR4 as a co-receptor for HIV

(Basmaciogullari et al., 2006; Kumar et al., 2006; Mellado et al., 1999;

Percherancier et al., 2005; Rodriguez-Frade et al., 2004; Toth et al., 2004).

Recently, heterodimerization between CXCR4 and the delta opioid receptor in

immune cells has been shown to functionally inactivate each receptor, providing
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another layer of potential regulation of GPCR activity (Pello et al., 2008).  Finally,

while some studies suggest that CXCR4 does not heterodimerize with CCR5

(Babcock et al., 2003; Issafras et al., 2002), CD4+ cells isolated from patients

with a CCR5Δ32 mutant, a loss-of function mutation that prevents cell surface

expression of CCR5, have reduced expression of CXCR4 (Agrawal et al., 2004).

Moreover, these studies show that CCR5Δ32 and CXCR4 can interact resulting

in reduced cell surface expression of CXCR4 and enhanced resistance to HIV

infection (Agrawal et al., 2004).  More recently, it has been shown that CXCR4

and CCR5 form heterodimers at the immunological synapse, having a specific

function and affecting T cell responses to antigen (Contento et al., 2008).

The functional consequences of homo- or heterodimerization of GPCRs

are currently not well understood. However, it has been suggested that

homodimerization of CXCR4 is necessary to elicit G protein independent

activation of JAK/STAT as well as enhance the response of CXCR4 to SDF (see

below). Heterodimerization may be a means of achieving an additional level of

regulation.  For example, it has recently been proposed that non-agonist

occupied CCR5 may be phosphorylated by GRK2 activated as a result of

heterodimer formation and activation of C5a (Huttenrauch et al., 2005). Taken

together, homo- and hetero-oligomerization of CXCR4 may be a way of

regulating signaling while also allowing for alternative, non-classical, signaling

pathways upon activation.
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REGULATION OF CXCR4 SIGNALING

SDF Binding

The interaction between SDF and CXCR4 has been proposed to occur

through a two-step process (Crump et al., 1997).  The initial interaction between

residues 12-17 of SDF and 2-36 of CXCR4 are believed to result in a

conformational change in the receptor (Huang et al., 2003).  This conformational

change facilitates interaction between the first eight amino acids of SDF and an

exposed binding pocket in CXCR4 that involves residues in both the second

(Asp187) and third (Glu268) extracellular loops (Brelot et al., 2000; Zhou et al.,

2001). As this interaction requires the integrity of both SDF and CXCR4, it is not

surprising that proteases are able to inhibit this interaction. During an

inflammatory response, neutrophil released cathepsin G and neutrophil elastase

have the ability to inactivate SDF by cleaving the N-terminal residues necessary

for interacting with CXCR4 (Delgado et al., 2001; Valenzuela-Fernandez et al.,

2002). Additionally, the widely expressed cell surface protease dipeptidase 26

(CD26) is also able to cleave and inactivate SDF (Christopherson et al., 2002;

Huhn et al., 2000; Lambeir et al., 2001).  To date, only neutrophil elastase has

been shown to cleave the N terminal domain of CXCR4, effectively disrupting

interaction with SDF (Valenzuela-Fernandez et al., 2002). Therefore,

inflammatory responses promote the release of factors that positively and

negatively regulate the receptor. When taken together, these data highlight the

exquisite interplay between a variety of factors that are able to shape and
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influence the SDF-CXCR4 signaling axis, ensuring that the proper physiological

response is elicited.

SDF-1 is also able to interact with glycosaminoglycans, such as heparin

sulfate, and is most likely immobilized in vivo allowing for gradient formation

(Hoogewerf et al., 1997; Tanaka et al., 1993).  Furthermore, this association may

induce the oligomerization of SDF-1 (Sadir et al., 2001), a phenomenon

observed at high SDF-1 concentrations (Crump et al., 1997; Dealwis et al., 1998;

Fernandez and Lolis, 2002; Holmes et al., 2001), that may promote CXCR4

oligomerization and enhanced function. In fact, it has been shown that the

combination of glycosaminoglycans and SDF-1 enhanced migration when

compared to SDF alone (Netelenbos et al., 2002).  Moreover, SDF-1 mediated

inhibition of HIV X4 isolates was enhanced in the presence of heparin sulfate

(Valenzuela-Fernandez et al., 2001).  Interestingly, it has been recently shown

that a constitutive homodimer of SDF-1 completely inhibits CXCR4-mediated

chemotaxis without affecting calcium mobilization, suggesting that SDF

dimerization may preferentially activate certain signaling pathways (Veldkamp et

al., 2008).

It may also be possible to sensitize CXCR4 to have a greater response to

lower SDF-1 concentrations. Recent evidence suggests that products released

during inflammatory responses (Majka et al., 2000) or platelet activation

(Janowska-Wieczorek et al., 2001; Wysoczynski et al., 2005) “prime” the SDF

response enhancing hematopoetic stem/progenitor cell migration at lower SDF

concentrations (Janowska-Wieczorek et al., 2001; Majka et al., 2000;
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Wysoczynski et al., 2005).  This phenomenon may be the result of changing the

membrane localization of CXCR4 through incorporation into lipid rafts

(Wysoczynski et al., 2005).  A number of studies have suggested that lipid raft

localization is required for proper function of CXCR4 (Le et al., 2005; Nguyen et

al., 2005; Nguyen and Taub, 2002) and recently it has been shown that SDF

stimulation promotes the incorporation of Src tyrosine kinases, focal adhesion

kinase, PI3 kinase and the small G protein Rac into lipid rafts (Wysoczynski et

al., 2005).  This agonist promoted clustering of receptor and effectors into lipid

rafts might be a way of ensuring that the proper signaling pathways are activated.

G Protein Signaling

Upon activation of CXCR4, a number of signaling pathways are activated

leading to a variety of biological responses (Figure 3) (Kucia et al., 2004).  As

CXCR4 couples to the Gi family of proteins, the use of pertussis toxin (PTX),

which ADP-ribosylates Gαi and inhibits GPCR/Gi coupling, is a useful tool to

delineate pathways that are G protein-dependent and -independent.  To date, the

majority of signaling pathways and biological outcomes of CXCR4 activation are

PTX-sensitive and therefore dependent on activation of Gi proteins.  Activated Gi

is able to inhibit adenylyl cyclase as well as activate the Src family of tyrosine

kinases while liberated Gβγ recruites GRK2/3 to the plasma membrane and

activates PLC-β and phosphoinositide-3 kinase (PI3K) ultimately leading to the

regulation of processes such as gene transcription, cell migration, and cell

adhesion (Figure 3).
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Figure 3. Signal transduction pathways and regulation of CXCR4

SDF binding to CXCR4 leads to the activation of multiple G protein-dependent

signaling pathways, resulting in diverse biological outcomes such as migration,

adhesion, and transcriptional activation. Pathways activated and outcomes

elicited may differ between CXCR4 + cell types. Two potential G protein-

independent pathways have been described. Tyrosine phosphorylation of

CXCR4 results in the recruitment and activation of the JAK/STAT pathway, while

p38 and ERK activation has been shown to be partially dependent on arrestin3.

Following activation, GRK phosphorylation results in the recruitment of

arrestin2/3 and subsequent internalization. CXCR4 is also ubiquitinated by AIP4

at the plasma membrane, which results in its sorting to and degradation in

lysosomes. However, a portion of the internalized receptor may also recycle back

to the plasma membrane.  Adapted from Busillo, J.M. and Benovic, J.L. (2007)

Regulation of CXCR4 signaling.  Biochim Biophys Acta, 1768, 952-963.
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G Protein Independent Signaling

Activation of the JAK/STAT pathway by CXCR4 has been proposed to be

G protein independent (Vila-Coro et al., 1999).  SDF induced the transient

association of JAK2 and JAK3 with CXCR4, leading to the activation and nuclear

translocation of a number of STAT proteins. While JAK/STAT activation was G

protein-independent, pretreatment with PTX led to a prolonged association of

JAK with CXCR4 suggesting that G protein coupling is involved in JAK/STAT-

receptor complex recycling (Vila-Coro et al., 1999).

The non-visual arrestins have classically been considered to shut off

signal transduction following receptor activation, a process termed

desensitization (Krupnick and Benovic, 1998). Indeed, lymphocytes isolated from

arrestin3 knock out mice display attenuated desensitization and enhanced G

protein coupling of CXCR4 (Fong et al., 2002b). However, these mice also

display a decreased chemotactic response to SDF, possibly due to the ability of

arrestin3 to promote signaling (Fong et al., 2002b). In addition to signal

termination, arrestins are able to act as scaffolds for a number of signaling

molecules (DeFea et al., 2000b; Luttrell et al., 1999).  These interactions may

serve to propagate signaling or even create a platform to allow for activation of

the proper signaling cascade (Lefkowitz and Shenoy, 2005).  Consistent with

these observations, it has been reported that arrestin2 and 3 enhance CXCR4-

mediated ERK activation (Cheng et al., 2000) and arrestin3 is involved in p38

activation and migration following SDF stimulation (Sun et al., 2002).  Taken
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together, non-visual arrestins may play a role in regulating CXCR4/Gi interaction

as well as SDF-promoted signaling and cell migration.

Regulation of Signaling

As described earlier, three processes primarily regulate GPCRs:

desensitization (homologous and heterologous), internalization, and degradation.

The process of homologous desensitization, or becoming refractory to continued

stimulation, is initiated by GRK phosphorylation of serine/threonine residues of

the third intracellular loop or cytoplasmic tail (C-tail) following receptor activation

(Krupnick and Benovic, 1998). This phosphorylation allows for the subsequent

binding of arrestin2 and/or arrestin3, effectively uncoupling the receptor from

further G protein activation and often targeting the receptor for internalization

(Krupnick and Benovic, 1998).

Upon SDF activation, CXCR4 is rapidly phosphorylated and internalized

(Haribabu et al., 1997; Orsini et al., 1999; Signoret et al., 1997; Signoret et al.,

1998). Removing the 45 amino acid C-tail of CXCR4, which contains 15 serine

and 3 threonine residues, eliminates agonist-promoted phosphorylation

(Haribabu et al., 1997), enhances receptor activity, and attenuates receptor

internalization (Signoret et al., 1997).  Truncation and alanine scanning

mutagenesis has suggested multiple regions in the CXCR4 C-tail as potential

phospho-acceptor sites (Orsini et al., 1999; Signoret et al., 1998). Mutation of

Ser338 and Ser339 resulted in reduced SDF-promoted phosphorylation of

CXCR4 as did truncation of the C-terminal 7 amino acids, which removes serines

346, 347, 348, 351, and 352 (Orsini et al., 1999).  Recently, a phospho-specific
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antibody directed against phospho-Ser339 also revealed increased

phosphorylation of Ser339 following SDF stimulation (Woerner et al., 2005).

Interestingly, increased phosphorylation of Ser339 was also observed following

EGF or phorbol ester treatment (Woerner et al., 2005), suggesting that this may

be a potential PKC phosphorylation site. To date, the GRKs responsible for

phosphorylation of CXCR4 have not been identified, although GRK2 (Cheng et

al., 2000; Orsini et al., 1999), GRK3 (Balabanian et al., 2008), and GRK6 (Fong

et al., 2002b; Vroon et al., 2004) have been implicated. Overexpression of GRK2

was able to enhance SDF-mediated internalization of CXCR4, which was further

increased by the co-expression of arrestin3 (Cheng et al., 2000; Orsini et al.,

1999). Interestingly, GRK2 has also been suggested to negatively regulate

CXCR4 signal transduction at a level downstream of the receptor, possibly via

interaction with MEK (Jimenez-Sainz et al., 2006).  Overexpression of GRK3 was

shown to restore internalization of wild type, but not of a CXCR4 mutant lacking

the last 15 amino acids in fibroblast cells (Balabanian et al., 2008).  Accordingly,

siRNA-mediated knock down of GRK3, but not GRK2, led to a reduction in

CXCR4 internalization.  Furthermore, overexpression of GRK3 was able to

restore normal CXCR4-mediated G protein activation and migration in cells

isolated from patients diagnosed with WHIM syndrome despite expressing wild

type CXCR4 (Balabanian et al., 2008).   Lymphocytes and neutrophils isolated

from mice with a targeted disruption of GRK6 showed enhanced CXCR4 function

and a lack of desensitization (Fong et al., 2002b; Vroon et al., 2004), which was

not seen in cells isolated from mice lacking GRK5 (Fong et al., 2002b). These
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data suggest that there may be multiple kinases regulating CXCR4 in response

to SDF stimulation. As has recently been suggested for the angiotensin receptor

(Ahn et al., 2004; Kim et al., 2005), vasopressin receptor (Ren et al., 2005), and

β2AR (Shenoy et al., 2006; Violin et al., 2006), the coordinated action of these

kinases may be necessary for proper receptor regulation by dictating specific

interactions through alternative phosphorylation patterns.

Many GPCRs also undergo a process termed heterologous

desensitization, which is mediated by the activation of second messenger

dependent protein kinases such as PKA and PKC. Sequence analysis of CXCR4

shows that multiple serines in the C-tail are potential PKC phosphorylation sites.

Consistent with this, direct activation of PKC using phorbol esters results in

phosphorylation (Haribabu et al., 1997) and internalization (Orsini et al., 1999;

Signoret et al., 1997; Signoret et al., 1998) of CXCR4. Although the sites of

phorbol ester induced phosphorylation of CXCR4 have not been completely

determined, a significant decrease in phorbol ester induced internalization was

observed when either Ser324 and Ser325 or Ser338 and Ser339 were mutated

(Signoret et al., 1998) while phorbol ester treatment induced phosphorylation of

Ser339 (Woerner et al., 2005). More physiologically relevant stimuli that lead to

PKC activation such as T or B cell receptor engagement (Guinamard et al., 1999;

Peacock and Jirik, 1999), formyl peptide receptor activation (Li et al., 2001;

Selleri et al., 2005), CXCR1 activation (Richardson et al., 2003), CXCR2

activation (Suratt et al., 2004), or CCR5 activation (Hecht et al., 2003) are also

able to induce CXCR4 internalization.  Interestingly, T cells overexpressing the
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HIV-1 protein Tat, had enhanced SDF-mediated internalization of CXCR4 that

was attributed to activation of the atypical PKC, PKCζ (Hidalgo-Estevez et al.,

2008).  The functional significance of this is currently unknown, though it may

affect homing of memory T cells, which have been shown to express CXCR4

(Nanki et al., 2000).

Phosphorylation of tyrosine residues in CXCR4 has also been observed

following both SDF (Vila-Coro et al., 1999) and cytokine activation (Wang et al.,

2001), although the residues that are phosphorylated are currently unknown.

SDF-promoted tyrosine phosphorylation may promote the activation of the

JAK/STAT pathway (Vila-Coro et al., 1999; Zhang et al., 2001), while cytokine-

induced tyrosine phosphorylation may be a way of promoting ligand-independent

internalization of CXCR4 (Wang et al., 2001).

Internalization and Degradation

As outlined above, the non-visual arrestins also act as adaptor proteins

and, through their interaction with clathrin and AP-2, target GPCRs to CCPs for

internalization (Moore et al., 2007).  CXCR4 is thought to internalize in an

arrestin- and clathrin-dependent manner (Cheng et al., 2000; Marchese et al.,

2003b; Orsini et al., 1999).  Moreover, mutation of potential phospho-acceptor

sites has identified regions important for constitutive (Futahashi et al., 2007) and

heterologous or homologous internalization of CXCR4 (Orsini et al., 1999;

Signoret et al., 1998) (Figure 4).
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Figure 4. Amino acid sequence of the C terminal tail of CXCR4

The C terminal tail of CXCR4 contains 15 serine and 3 threonine residues.

Truncation and alanine scanning mutagenesis has identified multiple residues as

potential phospho-acceptor sites (highlighted in yellow) as well as those residues

important for degradation (highlighted in red). Evidence to date suggests that

multiple GRKs are responsible for homologous desensitization of CXCR4.

Additionally, multiple residues are potential PKC phosphorylation sites.
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Upon internalization, GPCRs can be recycled back to the plasma membrane or

sorted to the lysosome for degradation (Marchese et al., 2003a). CXCR4 can

recycle back to the plasma membrane following PKC-mediated internalization

(Signoret et al., 1997), however, the receptor recycles poorly following SDF

stimulation (Tarasova et al., 1998). In fact, CXCR4 has been shown to be

ubiquitinated, sorted to the lysosome, and degraded (Marchese and Benovic,

2001), a process mediated by the E3 ubiquitin ligase AIP4 (Marchese et al.,

2003b). Based on electrophoretic mobility shift, the receptor is most likely mono-

ubiquitinated on one of three lysines residues (Lys327, Lys331, or Lys333) in the

C-tail. Mutation of these three residues to arginine eliminates ubiquitination and

degradation of the receptor (Marchese and Benovic, 2001). Interestingly,

mutation of Ser330 to alanine partially inhibited degradation of CXCR4 without

affecting receptor internalization while mutation of Ser324 and Ser325 partially

inhibited SDF-promoted internalization but completely disrupted degradation

(Marchese and Benovic, 2001). Ubiquitination of CXCR4 occurs at the cell

surface and the rate limiting step for degradation appears to be sorting to the

lysosome for degradation (Marchese et al., 2003b).  Interestingly, recent

evidence has shown that arrestin2 mediates sorting of CXCR4 into the

degradative pathway (Bhandari et al., 2007).  Taken together, these data suggest

that phosphorylation of specific residues may dictate the fate of the receptor

following internalization.
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CXCR4 DYSREGULATION IN DISEASE

WHIM Syndrome

Heterozygous mutations in the gene encoding CXCR4 leads to a rare

combined immunodeficiency characterized by warts, hypogammaglobulinemia,

recurrent bacterial infection, and myelokathexis, known as WHIM syndrome

(Diaz and Gulino, 2005; Gulino, 2003). WHIM syndrome is currently the only

immunological disease associated with mutations to a chemokine receptor (Diaz

and Gulino, 2005).  The mutations identified to date (one frameshift and three

nonsense mutations) all truncate the C-terminal tail of CXCR4 (Figure 5)

eliminating 10 to 19 of the distal tail amino acids, including a number of potential

phosphorylation sites (Gulino et al., 2004; Hernandez et al., 2003).  This leads to

the expression of a receptor with altered regulation.  Following activation, there is

a lack of desensitization (Balabanian et al., 2005; Gulino et al., 2004), enhanced

chemotaxis (Gulino et al., 2004; Kawai et al., 2005), an increase in F- actin

polymerization (Balabanian et al., 2005), enhanced calcium mobilization (Kawai

et al., 2005), and a decrease in SDF promoted internalization (Balabanian et al.,

2005; Kawai et al., 2005), although one report found no difference in calcium

mobilization or internalization (Gulino et al., 2004).
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Figure 5. Amino acid sequence of the C terminal tail of CXCR4 and known

WHIM syndrome mutations

Amino acid sequence of CXCR4 as a result of the various germline mutations

identified to date resulting in WHIM syndrome.  These C terminal truncations

result in expression of a receptor with altered regulation.  In addition to these

identified mutations, two patients have been identified with WHIM syndrome

despite expressing wild type CXCR4, suggesting the loss of a downstream

regulatory protein.
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Interestingly, WHIM syndrome has been reported in two patients

expressing a wild type CXCR4 (Balabanian et al., 2005).  Functional assays

using cells isolated from these patients revealed that, consistent with classical

WHIM cases, there was a lack of desensitization and internalization of CXCR4

following SDF stimulation. The lack of germline mutations in these receptors

suggests that there is a change in some downstream regulator such as a GRK or

arrestin.  Indeed, it has recently been shown that GRK3 levels are specifically

decreased in one of the two patients (Balabanian et al., 2008) and re-expression

of GRK3 was able to rescue receptor internalization and normalize actin

polymerization and cell migration.  It is interesting to note that mice lacking either

GRK6 (Fong et al., 2002b; Vroon et al., 2004) or arrestin3 (Fong et al., 2002b)

also have enhanced receptor function in response to SDF stimulation, similar to

those seen in WHIM syndrome, suggesting that tissue specific differences in

protein expression or activity possibly differentially regulates CXCR4 activity.

Cancer

The expression of CXCR4 has been detected in 23 different cancers of

various origins (Balkwill, 2004b) and is the most common chemokine receptor

expressed on cancer cells (Zlotnik, 2006a). The expression of CXCR4 on

hematopoetic malignancies is not surprising given the critical role of the receptor

in development of these cells (Ara et al., 2003; Egawa et al., 2001; Lapidot and

Kollet, 2002; Tachibana et al., 1998; Zou et al., 1998).  However, in a variety of

other cancers, CXCR4 expression is enhanced compared to the adjacent normal

tissue, which may have little or no CXCR4 (Muller et al., 2001; Scotton et al.,
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2001; Sun et al., 2003). A potential underlying mechanism for this may result

from changes that occur within the vasculature or O2 carrying capacity of cells

leading to hypoxic conditions during tumor progression (Hirota and Semenza,

2006). Hypoxia induces the activation of hypoxia inducible factor 1 (HIF-1) which

in turn promotes expression of a number of target genes (Hirota and Semenza,

2006) including CXCR4 (Schioppa et al., 2003; Staller et al., 2003; Zagzag et al.,

2005). Further evidence regarding the role of HIF-1 came from studies of the

tumor suppressor von Hipple Lindau (VHL). Inactivating mutations of VHL, which

normally targets HIF-1 for degradation, account for the increased CXCR4

expression in renal cell carcinomas (Schioppa et al., 2003; Staller et al., 2003;

Zagzag et al., 2005).

A number of other factors also have the ability to enhance CXCR4

expression specifically during cancer progression.  For example, vascular

endothelial growth factor (VEGF) (Bachelder et al., 2002) or activation of nuclear

factor kappa B (NF-κB) (Helbig et al., 2003) enhances CXCR4 expression in

breast cancer promoting invasion and metastasis, respectively.  Additionally, it

has been shown that CXCR4 expression can be induced by the oncoproteins

PAX3-FKHR (Libura et al., 2002; Tomescu et al., 2004) and RET/PTC

(Castellone et al., 2004). CXCR4 expression as a result of the PAX3-FKHR

fusion leads to enhanced migration and adhesion of rhabdomyosarcoma cells

(Libura et al., 2002), while RET/PTC induced expression enhanced the

transforming ability of breast cancer cells (Castellone et al., 2004).  Furthermore,
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altering the activity of (Lee et al., 2005) or deletion of (de Nigris et al., 2008) YY1

results in decreased or enhanced CXCR4-mediated metastases, respectively.

Increased cell surface expression of CXCR4 may also be the result of

altered regulation, independent of effects on transcription/translation.

Ubiquitination of CXCR4 is a modification regulating the expression of CXCR4

post-translationally (Marchese and Benovic, 2001; Marchese et al., 2003b). It has

been found that HER2/neu positive cancer cells have increased expression of

CXCR4 as a result of inhibition of receptor ubiquitination (Li et al., 2004).

Expression of AIP4, the E3 ubiquitin ligase responsible for ubiquitination of

CXCR4 (Marchese et al., 2003b), was able to reverse this effect (Li et al., 2004).

Moreover, the recent finding that cytokine-independent survival kinase (CISK)

associates with and inhibits AIP4 function (Slagsvold et al., 2006) provides a

potential link between HER2 positive cancers and the attenuated degradation of

CXCR4 (Li et al., 2004). It will be interesting to examine if altered CXCR4

ubiquitination is a global phenomenon in CXCR4-overexpressing cancers or if

this effect is specific to HER2/neu expressing cancers.

It is expected that the functional consequence of CXCR4 expression on

cancer cells would be varied based on the numerous roles of the CXCR4-SDF

signaling axis. For example, the combination of CXCR4 expression and

interaction with stromal or nurse-like cells in chronic lymphocytic leukemia

(Burger et al., 2000) and multiple myeloma (Damiano et al., 1999) may account

for resistance to spontaneous/drug induced apoptosis and cell adhesion-

mediated drug resistance, essentially providing a protective niche. Tumor
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progression is also affected by CXCR4-SDF-1 signaling through the induction of

tumor-associated integrin activation and signaling (Hartmann et al., 2005).

Finally, in addition to mediating metastases (see below), CXCR4-SDF-1 signaling

may affect the survival of the tumor at the metastatic site.  Enhanced CXCR4

signaling has been shown to down-regulate phosphoglycerate kinase (PGK), a

key regulator of angiogenesis, activating angiogenic pathways and promoting

tumor survival (Wang et al., 2007).

Since SDF is a chemokine, an attractive hypothesis is that CXCR4

expression correlates with metastasis.  Consistent with this, activation of CXCR4

stimulates the production of matrix metalloproteases (Fernandis et al., 2004;

Janowska-Wieczorek et al., 2000; Samara et al., 2004; Spiegel et al., 2004)

potentially facilitating the ability of cancers to egress from the primary tumor site.

Furthermore, SDF signaling is also able to enhance integrin activity (Campbell et

al., 1998; Glodek et al., 2003; Wright et al., 2002) enhancing cell adhesion under

flow conditions.  Upon entering the blood or lymphatic systems, if CXCR4 truly

mediates metastasis, tumors would preferentially migrate and adhere to areas

that highly express SDF-1.  Breast cancer follows this distinct pattern of

metastasis, namely to lymph nodes, lung, liver, and bone marrow all of which

highly express SDF-1 (Allinen et al., 2004; Muller et al., 2001). Accordingly,

neutralizing antibodies to CXCR4 (Muller et al., 2001) or siRNA knock down

(Lapteva et al., 2005; Liang et al., 2005) inhibit metastasis and growth of breast

cancer cells.  Other cancers, such as small cell lung cancer, thyroid,

neuroblastoma, hematological and hepatic malignancies also metastasize to
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areas with high SDF-1 expression (Burger et al., 2003; Geminder et al., 2001;

Hwang et al., 2003; Kijima et al., 2002; Schimanski et al., 2006). In spite of this

evidence, studies attempting to correlate expression with metastatic potential

have yielded mixed results.  Whereas CXCR4 expression increased with

aggressiveness of prostate tumors (Sun et al., 2003) there was not a significant

correlation of CXCR4 expression and distant breast cancer cell metastasis (Kato

et al., 2003), although the extent of nodal metastasis was greater in cells

expressing high levels of CXCR4 compared to those with lower levels (Kato et

al., 2003).  Recently, CXCR4 expression on hepatocellular carcinoma was

suggested to correlate with local tumor progression, lymphatic and distant

metastasis, as well as negatively impact the 3-year survival rate of these patients

(Schimanski et al., 2006).

On the other hand, cancers such as lymphomas, glioma, ovarian, and

pancreatic have a high expression of SDF-1 at the primary site (Corcione et al.,

2000; Koshiba et al., 2000; Scotton et al., 2002; Zhou et al., 2002). Additionally,

colonic epithelia normally express CXCR4 (Jordan et al., 1999).  Thus, the

CXCR4-SDF-1 interaction could be retaining tumor cells that originate at these

sites, analogous to the retention of B-cells and neutrophils in the bone marrow

during development. Epigenetic mechanisms that negatively regulate the

expression of SDF or CXCR4 may be necessary in order for metastasis to occur.

One example is DNA methylation, a modification typically associated with

inactivation of tumor suppressors (Jones and Baylin, 2002).  It has recently been

shown that methylation of the SDF promoter in colonic epithelium promotes



48

metastasis of these tumors (Wendt et al., 2006). The CXCR4 promoter is also

methylated in a number of pancreatic cancers, decreasing mRNA and protein

levels (Sato et al., 2005). Though not addressed in the study, this may be a

mechanism that allows pancreatic cancers to metastasize from these sites.

As detailed above, the C-tail is absolutely critical for proper regulation of

CXCR4.  Interestingly, expression of a C-tail truncated mutant of CXCR4 in MCF-

7 mammary carcinoma cells led to an epithelial-to-mesenchymal transition (Ueda

et al., 2006). Oligomicroarray analysis showed that there was a down regulation

of E-cadherin and Zonula occludens, thereby disrupting cell-to-cell contacts, with

a concomitant increase in ERK activation.  There was also an increased

expression of a number of growth factor receptors.  While there have been no

cancers described as a result of truncation of CXCR4, this may give insight into

the signaling pathways critical for cancer progression and metastasis.

Recent evidence also suggests that, in some breast cancers, receptor

expression and functional activity are not linked (Holland et al., 2006). Examining

a variety of breast cancer cell lines, ranging from untransformed but immortalized

to highly invasive, it was concluded that receptor expression alone does not lead

to the acquisition of an invasive phenotype. Specifically, it was speculated that

there were alterations in G protein coupling to the receptor. Untransformed or

transformed non-invasive cells were not able to properly couple to Gi, and

therefore, were not able to elicit Ca2+ mobilization, ERK activation or migration;

signaling pathways conserved in the invasive lines.  Interestingly, as B cells

develop into mature cells, they progressively lose the ability to respond to SDF-1
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even though surface expression of CXCR4 remains relatively high (Fedyk et al.,

1999; Honczarenko et al., 1999). However, as they further differentiate into

plasma cells, they regain responsiveness to SDF (Hargreaves et al., 2001). The

underlying mechanisms regulating this phenomenon in B cells are currently not

known, though similar mechanisms may be occurring as a result of the transition

to a more malignant phenotype in these breast cancer cells.

OBJECTIVES

An emerging theme in GPCR regulation is the possibility of differential

regulation dictated by the phosphorylation pattern, or “barcode”, elicited by the

different members of the GRK family. Given the multifaceted role CXCR4 plays in

diverse processes from development to cancer metastasis, CXCR4 is a very

intriguing therapeutic target.  An ample body of work has been generated in

delineating potential pathways that mediate specific effects (e.g., leading to

metastasis), however, a detailed basic understanding of receptor regulation is

lacking.  Understanding the precise mechanisms regulating CXCR4 function at

the receptor level should provide insight into attractive therapeutic targets in this

pathway.  Furthermore, this will allow for translational research opportunities to

dissect the specifics of how receptor regulation is altered in disease.

Our objectives were to 1) establish a model system in which to

characterize the regulation of GPCRs, 2) use this model system to identify

agonist-promoted sites of phosphorylation of CXCR4, 3) identify the kinases that
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mediate site-specific phosphorylation, and 4) characterize the functional role of

site-specific phosphorylation.

Classically, the β2AR and rhodopsin have served as elegant models for

establishing the current paradigms of GPCR signaling and regulation.  However,

accumulating evidence suggests that the molecular mechanisms that underlie

receptor regulation are extremely diverse and receptors need to be studied

individually.  Therefore, we chose to establish a cellular system that would allow

us to systematically analyze the proteins involved in receptor regulation as well

as biochemically characterize receptor phosphorylation.  Human Embryonic

Kidney 293 (HEK293) cells are an excellent model system as they express a

number of GPCRs (including CXCR4), GRK2, 3, 5, 6, the non-visual arrestins,

and multiple PKC isoforms endogenously.  In order to validate HEK293 cells as a

model system, our aims included 1) screening HEK293 cells for a candidate

receptor endogenously expressed, 2) identify downstream signaling pathways

that can be used to characterize receptor regulation, and 3) systematically

analyze proteins known to be involved in regulating the candidate receptor using

small molecule inhibitors and small interfering RNA.

CXCR4 is primarily phosphorylated on multiple residues of the C terminal

tail, which contains 15 serine and 3 threonine residues (Haribabu et al., 1997;

Orsini et al., 1999).  To date, GRK2 (Orsini et al., 1999; Cheng et al., 2000),

GRK3 (Balabanian et al., 2008), GRK6 (Fong et al., 2004; Vroon et al., 2004),

and PKC (Signoret et al., 1997; Orsini et al., 1999) have been implicated in

regulating CXCR4, though the specific sites of phosphorylation, kinase
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specificity, and functional role of site-specific phosphorylation are unknown.

Therefore, to identify agonist promoted sites of phosphorylation and what

kinase(s) are involved, our aims included 1) establish a HEK293 cell line that

stably expressed Flag tagged CXCR4 at moderate levels, 2) affinity purify

CXCR4 and use tandem mass spectrometry to identify SDF-1-promoted sites of

phosphorylation, 3) develop phospho-specific antibodies against the identified

sites, and 4) use a combination of small molecule inhibitors and siRNA to define

kinase-specific sites of phosphorylation.

Accumulating evidence suggests that site- and tissue-specific

phosphorylation of GPCRs has distinct effects on both receptor regulation and

signaling (Tobin et al., 2008).  Targeted deletion of GRK6 in mice results in

enhanced receptor function following SDF-1 stimulation.  However, neutrophils

have enhanced while T cells are deficient in SDF-1-mediated chemotaxis.

Interestingly, T cells isolated from mice specifically lacking arrestin3 display a

similar phenotype as those from GRK6 mice.  Furthermore, arrestin3 has been

shown to enhance SDF-1-mediated chemotaxis and activation of MAPK signaling

pathways (Cheng et al., 2000; Sun et al., 2002).  Therefore, our final aims were

to 1) characterize the roles of the GRKs and non-visual arrestins in regulating

signal transduction of endogenous CXCR4 in HEK293 cells, and 2) ensure that

stable over-expression of CXCR4 does not alter this regulation.

We were able to establish a model system by studying the regulation of

the M3 muscarinic acetylcholine receptor (M3 mAChR), a Gq-coupled receptor.

Consistent with what is currently known, we have shown that GRK2, GRK3,
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casein kinase 1α, and the non-visual arrestins negatively regulate receptor

activity (Budd et al., 2000; Wu et al., 2000; Willets et al. 2001; Willets et al., 2002;

Willets et al., 2003), as demonstrated by changes in calcium mobilization and

ERK activation.  Furthermore, we were also able to show that GRK2 regulated

calcium mobilization and ERK activation through interactions with Gq.  Finally,

we were also able to validate the combination of small molecule inhibitors and

siRNA-mediated silencing as a method to unravel and better understand the

complex regulatory mechanisms in place for any given GPCR.

Using this model system, we were then able to identify sites of

phosphorylation by optimizing an affinity based purification strategy for CXCR4

from HEK293 cells.  Following stimulation and purification, CXCR4 was

subjected to proteolytic digestion and tandem mass spectrometry to identify

agonist-promoted sites of phosphorylation.  Using the mass spectrometry data

and previous studies (Marchese et al., 2001), phospho-specific antibodies were

successfully generated against phospho-Ser324/325 (pS324/5) and pS330.

Furthermore, we also used a previously characterized antibody that is specific for

pSer339 (Woerner et al., 2005).  Using these antibodies, we were then able to

characterize both the kinetics and kinase specificity at these residues.  We

provide novel evidence for a role of PKC in phosphorylating Ser324/5 following

SDF stimulation.  Additionally, we show that GRK6 phosphorylates multiple

residues with distinct kinetics.

Analyzing calcium mobilization and ERK1/2 activation following systematic

knocking down of GRK2, 3, 5, and 6, arrestin2, and arrestin3 has given
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substantial insight into the functional role of site-specific phosphorylation.

Importantly, we show that the endogenous and overexpressed receptors are

regulated in a similar manner.  Furthermore, we demonstrate that the GRKs and

arrestins differentially regulate signaling.  Together, this data suggests that

CXCR4 function and signaling are dynamically regulated by phosphorylation and

subsequent protein/protein interactions.  Moreover, we have developed tools to

allow for a complete analysis of CXCR4 function in a variety of tissues and

disease states.
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INTRODUCTION

Activation of G protein-coupled receptors (GPCRs) by agonist occupancy

leads to a conformational change in the receptor that promotes the activation of

heterotrimeric G proteins, which in turn activate a variety of effectors leading to

downstream signaling events (Pierce et al., 2002).  Activated GPCRs are

regulated by three principal mechanisms: desensitization, internalization, and

down-regulation. Receptor desensitization is initiated by the phosphorylation of

serine/threonine residues by GPCR kinases (GRKs) which promotes the high

affinity binding of arrestins, uncoupling the receptor from G protein and

terminating signaling (Krupnick and Benovic, 1998).

There are seven members of the GRK family that are grouped into three

subfamilies based on sequence and functional similarity: GRK1 and GRK7;

GRK2 and GRK3; and GRK4, GRK5, and GRK6.  GRK2, GRK3, GRK5, and

GRK6 are ubiquitously expressed, while GRK1, GRK4, and GRK7 have a

restricted expression pattern. Much of the research determining specific GPCR-

GRK interaction has relied on techniques such as heterologous overexpression,

dominant-negative constructs, and more recently RNA interference (Krupnick

and Benovic, 1998; Iwata et al., 2005; Kim et al., 2005).

The non-visual arrestins, arrestin2 (β-arrestin1) and arrestin3 (β-arrestin2)

bind to activated, phosphorylated GPCRs subsequently terminating G protein

activation and targeting the receptors to clathrin coated pits for internalization

(Moore et al., 2007).  Arrestins have also been shown to act as scaffolding
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proteins to promote downstream signaling events, such as activation of mitogen-

activated protein kinases (Lefkowitz and Shenoy, 2005).

The muscarinic acetylcholine receptors (mAchRs) represent a subfamily of

GPCRs with five subtypes, M1 – M5. The M3 mAchR couples to Gq resulting in

phospholipase C-β (PLC-β) activation, and production of inositol trisphosphate

(IP3) and diacylglycerol (DAG), which leads to calcium release from intracellular

stores and protein kinase C (PKC) activation. Additionally, the M3 mAchR can

activate extracellular signal-regulated kinase (ERK), although the mechanism by

which this occurs is unclear.  Upon activation, the M3 mAchR is rapidly

phosphorylated on serine/threonine residues within the third intracellular loop

(Tobin et al., 1997) and C terminal tail (Budd et al., 2000), although it is unclear

which kinases mediate receptor phosphorylation and regulation. Wu et al.

showed that GRK2 phosphorylates the M3 mAchR in a Gβγ dependent manner

and mapped the phosphorylation sites to 331SSS333 and 348SASS351 in the third

intracellular loop (Wu et al., 2000).  GRK3 also has the ability to phosphorylate

the receptor but receptor regulation by GRK3 appears to occur primarily through

modulation of PLC-β activity (Willets et al., 2001; Willets et al., 2002; Willets et

al., 2003).  Willets and coworkers also showed that GRK6 regulates the M3

mAchR by phosphorylation while GRK2 and GRK5 were found to have no effect

(Willets et al., 2001; Willets et al., 2002; Willets et al., 2003). In addition to GRK-

mediated phosphorylation, casein kinase 1a (CK1α) has also been shown to

phosphorylate the M3 mAchR in an agonist dependent manner although this

alone was insufficient to mediate receptor desensitization (Budd et al., 2000).
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Finally, arrestins do not appear to be required for M3 mAchR internalization (Lee

et al., 1998; Mundell and Benovic, 2000), but are involved in receptor

desensitization with no discernable specificity between arrestin2 and arrestin3

(Mundell and Benovic, 2000).

One major unanswered question regarding the physiological regulation of

GPCRs is to understand which GRKs and arrestins regulate a given receptor

subtype.  To date, a limited number of GRKs and arrestins have been identified,

whereas more than 700 mammalian GPCRs have been cloned (Gainetdinov et

al., 2004).  Studies over the past decade have defined the ability of individual

GRKs, second messenger dependent kinases (e.g., PKA or PKC), and arrestins

to regulate GPCRs in model systems.  However, the mechanisms by which

GRKs target endogenous GPCRs are still unknown. Using either wild type

GRK2, kinase dead GRK2, or mutants deficient in Gaq binding, we previously

showed that the human H1 histamine receptor was specifically regulated by

GRK2 mainly through regulation of activated Gq (Iwata et al., 2005).  In this

report, we used RNA interference to target proteins specifically involved in the

agonist dependent regulation of the endogenous M3 mAchR in HEK293 cells. We

found that there was differential GRK-mediated regulation of this receptor as

assessed by calcium signaling and ERK activation.  In addition, knockdown of

either arrestin2 or arrestin3 resulted in enhanced signaling from the receptor,

with different temporal effects.  Furthermore, we show that, in addition to GRKs,

CK1α has a negative role in M3 mAchR mediated calcium mobilization. Taken
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together, our results show that multiple proteins mediate agonist-dependent

regulation of M3 mAchR signaling.

EXPERIMENTAL PROCEDURES

Materials

HEK293 cells were from Microbix Biosystems, Inc (Toronto, Canada)

while carbachol was from EMD Biosciences (San Diego, CA).  Pirenzepine and

p-fluorohexahydro-sila-difenol (pFHHsiD) were from Sigma-Aldrich (St. Louis,

MO) and Lipofectamine 2000 and Opti-MEM® were from Invitrogen (Carlsbad,

CA).  Phospho-specific p44/p42 polyclonal antibody was from Cell Signaling

Technologies (Beverly, MA).  Polyclonal ERK2, CK1a and GRK3 antibodies were

from Santa Cruz (Santa Cruz, CA).  Anti-β-arrestin monoclonal antibody was

from BD Biosciences Pharmagen (San Diego, CA).  Anti-GRK4-6 monoclonal

antibody was from Upstate Cell Signaling Solutions (Waltham, MA) while the

GRK2 monoclonal antibody was produced in our laboratory and anti-a-tubulin

monoclonal antibody was from Sigma (St. Louis, MO).

Synthesis of small interfering RNAs (siRNAs)

All siRNAs were chemically synthesized by Dharmacon, Inc (Chicago, IL).

The GRK2, GRK5 and CK-1a siRNAs were reported previously (Iwata et al.,

2005; Kim et al., 2005; Liu et al., 2002).  The GRK3 siRNA sequence was 5´-

GCAGAAGUCGACAAAUUUA-3′ while 5´-GCGCUUGGCCUACGCCUAU-3´ was

used for GRK6. Arrestin2 and 3 siRNAs were purchased as a SMARTpool®.
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Non-specific control siRNA VIII (5´-AAACUCUAUCUGCACGCUGAC-3´) was

used as the control for all siRNA experiments.

Cell Culture and siRNA transfection

HEK293 cells were maintained in Dulbecco’s modified Eagles Media

supplemented with 10% FBS, 25 mM HEPES, pH 7.2, and 0.1 mM non-essential

amino acids in a 5% CO2 incubator at 37˚C.  For transfection of GRK and casein

kinase siRNAs, HEK293 cells grown to 85 to 90% confluence in 100-mm dishes

were transfected with 600 pmol of siRNA using Lipofectamine 2000 in Opti-MEM.

After 6 hr, cells were split 1:2 and a second transfection of 600 pmol was

performed 24 hr after the initial transfection.  Forty-eight hr after the second

transfection, cells were split for assay the following day.  For arrestin

SMARTpool® siRNAs, cells ~70% confluent were transfected with 600 pmol of

siRNA corresponding to either arrestin2 or arrestin3.  Forty-eight hr later, cells

were split for assay the following day.  Control siRNA was transfected in a similar

fashion as described above for each transfection condition.

Immunoblotting

To analyze siRNA target proteins, siRNA transfected HEK293 cells in a 6-

well plate were washed twice with ice cold PBS and lysed with buffer (20 mM

HEPES, pH 7.5, 10 mM EDTA, 150 mM NaCl, 1% Triton X-100 and one tablet of

Complete Inhibitor (Roche)  per 50 ml) at 4°C on a rocker for 30 min. The lysates

were centrifuged at 4°C at 30,000 rpm in a TLA45 rotor for 30 min. The

supernatants were electrophoresed on a 10% SDS polyacrylamide gel,
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transferred to nitrocellulose, and immunoblotted using monoclonal anti-GRK2

(1:1000), polyclonal anti-GRK3 (1:200), monoclonal anti-GRK4-6 (1:3000),

monoclonal anti-β-arrestin-1 (1:1000) or polyclonal anti-CK1a (1:200), HRP-

labeled secondary antibodies, and chemiluminescence. The blots were stripped

and reprobed using an anti-tubulin (1:7500) monoclonal antibody.

Measurement of intracellular calcium mobilization

Calcium mobilization was performed as previously described with slight

modifications (Iwata et al., 2005). In brief, HEK293 cells transfected with siRNAs

were harvested with Cellstripper (Mediatech, Herndon, VA), washed twice with

phosphate-buffered saline, and resuspended at 5 x 106 cells/ml in Hanks'

balanced salt solution (140 mM NaCl, 5 mM KCl, 10 mM HEPES, pH 7.4, 1 mM

CaCl2, 1 mM MgCl2, 1 mg/ml glucose) (Invitrogen) containing 0.025% bovine

serum albumin. The cells were then loaded with 3 µM Fura-2 acetoxymethyl

ester derivative (Fura-2/AM) (Molecular Probes, Eugene, OR) for 30 min at 37°C.

The cells were washed once in Hanks' solution, resuspended in Hanks' solution

containing 0.025% bovine serum albumin, incubated at room temperature for 15

min, washed twice in Hanks' solution, and then resuspended in Hanks' at a

concentration of 3 x 107 cells/ml. A typical experiment contained 1.5 x 106

cells/1.6 ml in a quartz cuvette and stimulation with different concentrations of

carbachol. Calcium mobilization was measured using excitation at 340 and 380

nm and emission at 510 nm in a fluorescence spectrometer (LS55, Perkin-Elmer

Life Sciences). Calibration was performed using 0.1% Triton X-100 for total
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fluorophore release and 15 mM EGTA to chelate free calcium. When antagonists

were used, cells were preincubated with the indicated antagonist for 30 seconds

prior to starting the fluorescent spectrometer and an additional 30 seconds prior

to stimulation with carbachol.  Intracellular calcium concentrations were

calculated using a fluorescence spectrometer measurement program.

ERK activation assays

HEK293 cells, ~90% confluent in 6-well plates, were serum starved for at

least 6 hr.  Following serum starvation, cells were stimulated with 100 µM

carbachol as indicated and washed once with ice cold PBS.  Lysis buffer (1%

Triton X-100, 20 mM HEPES, pH 7.2, 150 mM NaCl, 10 mM EDTA, 1 µM sodium

orthovanadate, 3 mM sodium pyrophosphate, 10 mM sodium fluoride, and 1

Complete Inhibitor tablet per 50 ml) was added and plates were stored at –80˚C

until harvesting.  Cells were thawed and scraped into lysis buffer on ice, vortexed

briefly, and debris was cleared by centrifugation at 14,000 rpm for 15 min.  Equal

amounts of whole cell lysate were separated by electrophoresis on a 10% SDS

polyacrylamide gel, transferred to nitrocellulose, and proteins detected by

immunoblotting.  Nitrocellulose membranes were blocked for 1 hr at room

temperature in a 1:3 dilution of ODYSSEY® blocking buffer (LI-Cor® Biosciences).

A mixture of primary antibodies directed at ERK2 (monoclonal, Santa Cruz) and

phospho-ERK1/2 (polyclonal, Cell Signaling Technologies) in 100% ODYSSEY®

blocking buffer were incubated overnight at 4˚C.  Nitrocellulose membranes were

washed with Tris Buffered Saline containing 0.1% Tween-20 (TBS-T) over 40
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min.  The membranes were then incubated for 1 hr at room temperature with a

mixture of goat anti-rabbit Alexa® Fluorophore 680 conjugated (Molecular

Probes) and goat anti-mouse IRDye 800 conjugated (Rockland

Immunochemicals) antibodies.  Following a 1 hr incubation, the membranes were

washed with TBS-T for 60 min.  Fluorescence was detected simultaneously using

the ODYSSEY® infrared imaging system (LI-Cor® Biosciences). When

antagonists were used, cells were incubated at 37°C with the indicated

antagonist for 5 minutes prior to stimulation with carbachol.  Fluorescence

intensity of phosphorylated ERK2 was normalized to total ERK2 fluorescence,

and data are represented as fold-increase over basal (+/- SEM).

Statistical Analysis

Results were analyzed using a paired, two-tailed, students T-Test with

significance at p≤0.05.

RESULTS

Pharmacological characterization of the muscarinic acetylcholine receptor

subtype endogenously expressed in HEK293 cells

Using RNAi, we have previously shown that GRK2 regulates the

endogenously expressed H1 histamine receptor in HEK293 cells (Iwata et al.,

2005).  We wanted to expand this approach to determine the regulation of other

endogenous GPCRs. Previous work has shown that HEK293 cells respond to

stimulation with carbachol, a non-specific mAchR agonist, with robust IP3

production and calcium mobilization that had been attributed to the M1 mAchR
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subtype (Mundell and Benovic, 2000). However, a recent microarray analysis of

commonly used cell lines suggested that the mAchR endogenously expressed in

these cells is the M3 receptor subtype (Hakak et al., 2003). In light of this, we

sought to pharmacologically determine which mAchR subtype is actually

expressed in HEK293 cells. Cells loaded with the ratiometric calcium indicator

Fura-2/AM display a robust increase in calcium mobilization in response to

carbachol stimulation (Figure 6A) with an EC50 of 20 µM (data not shown).

Incubation with the antagonist p-FHHsiD, which has some selectivity for the M3

(pKi = 7.1) (de la Vega et al., 1997) completely inhibited calcium mobilization in

response to carbachol while the selective M1 mAchR antagonist pirenzepine,

only slightly inhibited calcium mobilization (Figure 6A). This result is in line with

previous reports demonstrating that pirenzepine selectively inhibits the M1

mAchR (pKi 8.0), but at higher concentrations is able to inhibit the M3 subtype

(pKi 6.7) (de la Vega et al., 1997). In addition, there was no calcium response

when the cells were stimulated with the M1/M4 mAChR-selective agonist McN-A-

343 (data not shown).

To further investigate the subtype of mAchR expressed, we also analyzed

the effects of the M1 and M3 selective antagonists on carbachol-stimulated ERK

activation. GPCRs activate ERK1/2 via a number of pathways (Werry et al.,

2005) and both the M1 and M3 mAchRs have been shown to activate ERK1/2 in a

number of cell types (Budd et al., 1999; Guo et al., 2001).  Carbachol-mediated

ERK activation in HEK293 cells is dose dependent (EC50 ~8 µM), peaking at 5

min and returned to basal levels by 60 min (Figure 6B, top panel). The addition of
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p-FHHsiD completely blocked ERK1/2 activation in response to carbachol,

whereas pirenzepine had no effect (Figure 6B). These results confirm that the

primary mAchR subtype in HEK293 cells is the M3.

We also wanted to determine whether PKC was responsible for ERK

activation following M3 mAchR stimulation.  Previous evidence suggests that the

novel PKC isoforms are responsible for M3 mAchR-mediated ERK activation,

including PKCε  in SK-N-BE2(C) cells (Kim et al., 1999) and a calcium

independent PKC in Chinese hamster ovary cells (Wylie et al., 1999).

Furthermore, it has been shown recently that the M3 mAchR was shown to

regulate the Kir 3.1/3.2 potassium channel through activation of PKC-δ in

HEK293 cells (Brown et al., 2005).  To establish whether PKC-δ is involved in M3

mAchR-mediated ERK activation, we used bisindolylmaleimide I (Bis I), a general

PKC inhibitor, and rottlerin, which selectively inhibits PKC-δ (Gschwendt et al.,

1994).  Rottlerin significantly inhibited carbachol-mediated ERK activation while

Bis I only partially inhibited ERK activation (Figure 6C).  The specificity of these

inhibitors was confirmed by the demonstration that rottlerin had minimal effects

on PMA-induced ERK activation while Bis I completely inhibited PMA-promoted

ERK activation (Figure 6C). Taken together, we conclude that HEK293 cells

endogenously express the M3 mAchR and that carbachol-mediated activation of

the ERK1/2 cascade is dependent on PKC-δ.
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Figure 6.  Charactrization of the Muscarinic Acetylcholine Receptor

Subtype Endogenously Expressed in HEK293 Cells

A) HEK293 cells loaded with the ratiometric calcium indicator Fura2/AM were

incubated with 100 nM pirenzepine (green), 1 µM p-FHHsiD (orange), vehicle

(red), or carbachol alone (black) and stimulated with 100 µM carbachol.

Changes in calcium mobilization were assayed by monitoring the change in Fura-

2AM fluorescence.  Shown is a representative tracing from three independent

experiments.  B) Following a 6 hr serum starve, HEK293 cells were incubated

with 100 nM pirenzepine, 1 µM p-FHHsiD, vehicle, or carbachol alone and

stimulated with 100 µM carbachol for the indicated times.  Cells from a 6-well

plate were harvested and equal amounts of total cellular lysate were separated

by SDS-PAGE and probed for phospho-ERK1/2 as described in Materials and

Methods.  Shown is a representative immunoblot of three independent

experiments.  C) Cells were treated with Bis I (2.5 µM), Bis V (2.5 µM) or rottlerin

(5 µM) for 30 min prior to stimulation with carbachol (100 µM) for 5 min or PMA

(100 nM) for 15 min.
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Regulation of M3 mAchR-mediated calcium mobilization in HEK293 cells

We next evaluated the effect of knocking down various regulatory proteins

on M3 mAchR signaling.  Since the phosphorylation of activated GPCRs by

GRKs is often an early step in signal termination, we initially determined the

effect that GRK knockdown would have on calcium mobilization following

carbachol treatment.  As shown in Figure 7A and 7B, we were able to selectively

and specifically knockdown each of the four individual GRKs expressed in

HEK293 cells.  A modest increase in GRK3 expression was observed when other

GRKs, in particular GRK2, were knocked down (Figure 7B).

Knockdown of GRK2, GRK3, and GRK6 led to increases of 210%

(p<0.001), 190% (p<0.05) and 230% (p<0.001), respectively, in the peak calcium

transients, whereas knockdown of GRK5 had no effect on calcium mobilization

(Figure 8A and 8B).  This effect was also observed when methacholine was used

to activate the M3 mAchR (data not shown).  These data suggest that multiple

GRKs are involved in the desensitization of the M3 mAChR.

GRK2 interaction with Gq is primarily responsible for increased calcium

mobilization

The enhanced mobilization of calcium seen following silencing of GRK2

may arise from phosphorylation-dependent and/or phosphorylation-independent

mechanisms (Ribas et al., 2007).  Therefore, we next sought to further delineate

the underlying mechanism observed for calcium mobilization when GRK2 was

knocked down. Because we showed previously that GRK2 interacts with Gαq
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Figure 7. Knock Down of Endogenous GRK Isoforms in HEK293 Cells

A) HEK293 cells were transfected twice within a 24 hr interval with GRK-specific

or non-specific control siRNA.  72 hr after the second transfection, cells were

harvested and equal amounts of total cellular lysate was separated by 10% SDS-

PAGE, transferred to nitrocellulose and incubated with the indicated antibodies.

Blots were stripped and re-probed for α-tubulin to control for loading.  Shown is a

representative immunoblot.  B) Mean relative level of GRK expression following

siRNA quantified by densitometry from five separate experiments.
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through the RGS-homology domain of GRK2 (Carman et al., 1999), the increase

in peak calcium mobilization could be a result of a loss of receptor

phosphorylation, a loss of the ability of GRK2 to inhibit activated Gaq, or both.  To

address this, we generated cell lines that stably express either wild-type bovine

GRK2, kinase dead GRK2 (K220R), GRK2 point mutants defective in binding

Gaq (R106A, D110A), or a GRK2 mutant that was both kinase-dead and Ga-

deficient (R106A/K220R).  Cloned cell lines expressing wild type or mutant

bovine GRK2 at levels close to endogenous GRK2 levels (1- to 5-fold

overexpression) were selected for study (Figure 8C).  SDS-PAGE revealed that

bovine GRK2 ran slightly slower than endogenous human GRK2 when

expressed in HEK293 cells (Figure 8C).  Stable expression of either wild type or

the kinase dead mutant reduced carbachol-stimulated calcium mobilization by

~50% (Figure 8D).  In striking contrast, stable expression of the Gaq-binding

deficient mutants (R106A and D110A) or the double mutant (R106A/K220R) had

no effect on calcium mobilization (Figure 8D).  This suggests that GRK2 primarily

regulates the activity of the M3 mAchR through its ability to interact with the

activated pool of Gaq.
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Figure 8. GRK-Mediated Regulation of Calcium Mobilization Following M3

Muscarinic Acetylcholine Receptor Activation

A) Effect on calcium mobilization.  72 hr after the second siRNA transfection,

HEK293 cells were loaded with Fura2/AM and stimulated with 10 µM carbachol.

B) Mean (+/- SEM) increase in the peak calcium transient following stimulation

with 10 µM carbachol from five individual experiments (*p<0.05, ***p<0.001 using

two-tailed T test).  C) Representative immunoblot showing relative levels of

GRK2 stably expressed in HEK293 cells.  D) Calcium mobilization in HEK293

cells stably expressing bovine GRK2. Mean (+/- SEM) increase in peak calcium

mobilization in cells expressing vector (pcDNA3), wild type, Gq-binding deficient

(R106A; D110A), kinase-dead (K220R), or the Gq-binding deficient/kinase dead

(R106A/K220R) bovine GRK2 (*p<0.05 for GRK2-K220R, ***p<0.001 for wild

type GRK2).
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The non-visual arrestins negatively regulate M3 mAchR-promoted calcium

mobilization

Our data suggest that GRK-mediated phosphorylation of the M3 mAchR

may contribute to subsequent desensitization.  Because GRK phosphorylation

often promotes arrestin binding, we next determined the effect siRNA knockdown

of arrestin2 and arrestin3 had on calcium mobilization.  Pooled siRNAs targeting

either arrestin2 or arrestin3 specifically reduced protein expression by ~90%

(Figure 9A and 9B).  As shown in Figure 9, C and D, knockdown of either

arrestin2 or arrestin3 resulted in a significant increase in the peak calcium

transient upon stimulation with carbachol.  The increase seen with arrestin3 was

slightly higher (74% increase) than that seen with arrestin2 (65% increase),

although silencing of arrestin3 also led to an increase in the prolonged phase of

the calcium transient (Figure 9C), suggesting prolonged IP3 production.

Regulation of M3 muscarinic acetylcholine receptor-mediated activation of

the ERK cascade

We next focused on understanding the roles of GRKs and arrestins in

regulating activation of ERK1/2 following M3 mAchR stimulation.  The kinetics of

ERK1/2 activation showed a consistent peak at 5 min that returned to basal

levels by 60 min (Figure 6C).  As shown in Figure 10, A and B, knocking down
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Figure 9. Effect of Arrestin Knockdown on Calcium Mobilization Following

M3 Muscarinic Acetylcholine Receptor Activation

A) Cells were transfected with SMARTpool siRNA and harvested 72 hr later.

Blots were incubated with a monoclonal antibody for arrestin2 that cross-reacts

with arrestin3.  Blots were stripped and re-probed for α-tubulin to control for

loading.  Shown is a representative immunoblot.  B) Mean relative level of

arrestin expression following siRNA quantified by densitometry from five separate

experiments. C) Effect on calcium mobilization.  Cells were harvested 72 hr post-

transfection and processed as described previously.  Shown is a representative

calcium trace from five independent experiments.  D) Mean (+/- SEM) increase in

the peak calcium transient following stimulation with 100 µM carbachol from five

individual experiments (* p<0.05, ***p<0.001 using two-tailed T test).
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 GRK2 resulted in a 2.5-fold increase in the peak of ERK1/2 activation and

prolonged ERK1/2 activation (Figure 10B).  Silencing of GRK5 or GRK6 also

enhanced ERK1/2 activation following a 5-min stimulation, although the effects

were modest and not statistically significant (1.3- and 1.5-fold increase,

respectively) (Figure 10A and 10B).  GRK knockdown did not change basal

phospho-ERK1/2 levels (data not shown).  It is interesting that in contrast to

calcium mobilization, knocking down GRK3 had no effect on ERK1/2 activation

(Figure 10, A and B).  Collectively, these data demonstrate that signaling

pathways downstream of M3 mAchR activation are regulated by multiple GRKs in

HEK293 cells, in a separate but coordinated fashion.

In contrast to some GPCRs (Ahn et al., 2004; Lefkowitz and Shenoy,

2005), internalization is not required for M3 mAchR-mediated ERK activation

(Budd et al., 1999).  Thus, it was not surprising that knockdown of either arrestin2

or arrestin3 resulted in an ~2-fold increase in ERK activation, with differential

temporal effects (Figure 10, C and D).  Silencing of arrestin2 led to enhanced

ERK1/2 activation at 5 min, whereas silencing of arrestin3 led to both enhanced

and prolonged activation (Figure 10D).  These data suggest that under normal

physiological conditions, either arrestin2 or arrestin3 is sufficient to negatively

regulate acute signaling events upon M3 mAchR activation, although arrestin3

appears to play a larger role in terminating signaling in response to prolonged

agonist exposure.
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Figure 10. Effect of GRK and Arrestin Knockdown on M3 Muscarinic

Acetylcholine Receptor ERK Activation

A) Effect of GRK knockdown on ERK1/2 activation.  Following a 6 hour serum

starve, cells were treated with 100 µM carbachol for indicated times.  Shown is a

representative immunoblot from six independent experiments.  B)  Mean fold

increase in ERK2 activation.  Blots were incubated simultaneously with

fluorophore conjugated primary antibodies specific for phospho-ERK1/2 and total

ERK2 overnight.  Phospho-ERK1/2 fluorescence was normalized to total ERK2

fluorescence and data are presented as fold-increase in ERK2 activation over

basal (n=6, +/- SEM; *p<0.05, **p<0.01).  C) Effect of arrestin knockdown on

ERK1/2 activation.  Following a 6 hour serum starve, cells were treated with 100

µM carbachol for indicated times.  Shown is a representative immunoblot from

eight independent experiments.  D) Mean fold increase in ERK2 activation.  Blots

were incubated simultaneously with fluorophore conjugated primary antibodies

specific for phospho-ERK1/2 and total ERK2 overnight.  Phospho-ERK1/2

fluorescence was normalized to total ERK2 fluorescence and data are presented

as fold-increase in ERK2 activation over basal (n=8, +/- SEM; **p<0.01).
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Regulation of the M3 muscarinic acetylcholine receptor by casein kinase 1α

CK1α also phosphorylates the M3 receptor in an agonist dependent

manner although it does not appear to be required for desensitization of the

receptor (Budd et al., 2000; Budd et al., 2001; Tobin et al., 1997).  CK1α has also

been shown to phosphorylate the M1 mAchR and rhodopsin in vitro (Tobin et al.,

1997; Waugh et al., 1999).  To determine whether CK1α has a role in regulating

the endogenous M3 mAchR, HEK293 cells were transfected with CK1α siRNA

that specifically reduced CK1α protein levels to ~40% of that seen in control cells

(Figure 11A).  Knockdown of CK1α resulted in a significant increase (62%,

p<0.01, n=4) in the peak calcium transient compared to cells treated with control

siRNA (Figure 11B).  To determine if this effect was specific to CK1α mediated

regulation of the M3 mAchR and not to some other aspect of the Gq signaling

pathway, we also tested the ability of CK1α to regulate the histamine H1 receptor

which is regulated by GRK2 in HEK293 cells (Iwata et al., 2005).  Knockdown of

CK1α had no effect on calcium mobilization upon stimulation with 100 µM

histamine (data not shown), suggesting that the effect of CK1α knockdown was

specific for M3 mAchR signaling.  Interestingly, knockdown of CK1α had no effect

on carbachol-mediated activation of ERK1/2 (Figures 11, C and D).  These data

demonstrate that, in addition to the GRK family, the agonist activated M3 mAchR

is also regulated by CK1α.
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Figure 11. Effect of CK1α Knockdown on M3 Muscarinic Acetylcholine

Receptor Signaling

A) 72 hr after the second siRNA transfection, cells were harvested and equal

amounts of total cellular lysate were separated by SDS-PAGE and

immunoblotted for CK1α using a specific antibody.  Blots were stripped and re-

probed for α -tubulin to control for loading.  Shown is a representative

immunoblot.  B) Effect on calcium mobilization.  72 hr after the second siRNA

transfection, cells were loaded with Fura-2/AM and stimulated with 100 µM

carbachol.  Shown is a representative tracing from five independent experiments.

C) Effect on ERK1/2 activation.  Following a 6 hr serum starve, cells were

stimulated with 100 µM carbachol for indicated times.  Shown is a representative

immunoblot from eight independent experiments.  D) Mean activation of ERK2.

Blots were incubated simultaneously with fluorophore conjugated primary

antibodies specific for phospho-ERK1/2 and total ERK2 overnight.  Phospho-

ERK1/2 fluorescence was normalized to total ERK2 fluorescence and data are

presented as fold-increase over basal (n=8, +/- SEM).
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DISCUSSION

GPCRs transduce extracellular stimuli into specific intracellular signals

that regulate a variety of cellular functions. GPCR desensitization is classically

mediated by members of the GRK family, which specifically phosphorylate the

agonist-occupied receptor, promoting the subsequent high-affinity binding of

arrestins. For most GPCRs, the specificity of GRKs and arrestins in cells remains

poorly defined. In this report, we used a siRNA-based approach in HEK293 cells

to characterize the role of these proteins in M3 mAchR signaling.  We found that

the M3 mAchR displays a complex pattern of regulation, such that GRK2, GRK3,

GRK6, arrestin2, arrestin3, and CK1α all participate to negatively regulate

calcium signaling upon receptor activation.

Previously, it was shown that GRK2 can be recruited to and phosphorylate

the M3 mAchR at two separate serine clusters within the third intracellular loop

(Wu et al., 2000).  In addition to receptor phosphorylation, GRK2 is able to bind

both GTP-bound Gαq (Carman et al., 1999) and free Gβγ (Pitcher et al., 1992).

The crystal structure of GRK2 (Tesmer et al., 2005) suggests that it may

simultaneously sequester both active Gαq and free Gβγ, which in addition to

receptor phosphorylation may increase the strength and effectiveness of GRK2-

mediated receptor regulation. Previously, we and others demonstrated that

GRK2 regulated GPCRs, such as the H1 histamine (Iwata et al., 2005), M1

mAchR (Willets et al., 2005), metabotropic glutamate (Dhami et al., 2005) and

mouse cytomegalovirus GPCR M33 (Sherrill and Miller, 2006), involved the

regulation of Gq. Studies analyzing GRK-mediated regulation of the M3 mAchR in
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SH-SY5Y cells have shown that GRK3 and GRK6 differentially regulate the

receptor whereas GRK2 and GRK5 did not appear to be involved (Willets et al.,

2001; Willets et al., 2002; Willets et al., 2003).  Overexpressed GRK3 could

phosphorylate the M3 mAchR, however, GRK3-mediated regulation appeared to

be the result of altering the activity of PLC-β and not via receptor phosphorylation

(Willets et al., 2001; Willets et al., 2002; Willets et al., 2003).  In contrast,

overexpressed GRK6 could phosphorylate the M3 mAchR leading to a decrease

in signaling.  This effect was reversed upon expression of a kinase dead GRK6

(Willets et al., 2003).

Using siRNA coupled with stable expression of low levels of various GRK2

mutants, we found that the enhanced calcium mobilization observed upon GRK2

knockdown is primarily due to a loss in regulation of activated Gq following M3

mAchR stimulation (Figure 8).  Furthermore, we showed that loss of GRK2 leads

to enhanced and prolonged activation of the ERK1/2 cascade (Figure 10).  The

observed effects of GRK2 knock down are 2-fold: the enhanced calcium

mobilization seems to be primarily due to the loss of inhibition of activated Gq,

whereas the enhanced and prolonged activation of ERK1/2 probably reflects

enhanced DAG production/PKC-δ activation and a relief of inhibition of mitogen

activated protein kinase kinase 1 (MEK1) (Jiménez-Sainz et al., 2006).  However,

we cannot completely rule out the possibility that GRK2 also mediates receptor

phosphorylation since endogenous M3 mAchR levels are too low to evaluate

phosphorylation (Tovey and Willars, 2004).
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We have also found that GRK3 and GRK6 negatively regulate calcium

mobilization following M3 mAchR stimulation.  While knockdown of either kinase

led to significant increases in calcium mobilization (Figure 8A and 8B), silencing

of GRK3 had no effect on activation of ERK1/2 while loss of GRK6 had only a

minor effect (Figure 10A and 10B). The possibility exists that there is overlap

between these kinases and that regulation might involve a competition for

receptor binding as has been suggested for the angiotensin receptor (Kim et al.,

2005).  These previous studies suggested that GRK2 and GRK3 negatively

regulate while GRK5 and GRK6 positively regulate ERK1/2 activation and that

differences in the phosphorylation pattern mediated by GRK2/3 or GRK5/6 could

alternatively promote the binding of arrestin2 or arrestin3, respectively (Kim et al.,

2005).  However, our results suggest that the M3 mAchR is not subject to this

type of overlapping regulation.  Furthermore, the GRKs do not play a positive role

in M3 mAchR signaling.  There is a growing number of non-receptor substrates

that have been identified for the GRKs (Ribas et al., 2007), and in line with

previous findings, GRK3 could be primarily regulating PLC-β activity via binding

to Gβγ or Gαq (Willets et al., 2001).  This might allow for a very rapid and robust

production of IP3 and subsequent calcium release that is not evident at later time

points because other kinases (e.g., GRK6) may phosphorylate the receptor

resulting in desensitization. In additional, mechanisms regulating downstream

signaling events (e.g., IP3 hydrolysis, calcium reuptake, etc) also shape both

calcium mobilization and ERK1/2 activation responses following carbachol

stimulation.  As we have identified three GRKs that are involved in M3 mAchR
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regulation, multiple proteins may need to be knocked down simultaneously to

produce more prolonged signaling.

We reported previously that an ~50% reduction in arrestin levels using

antisense strategies had no effect on calcium mobilization in HEK293 cells

(Mundell and Benovic, 2000). In the present study, we were able to reduce

protein levels by ~90% and show that the loss of either arrestin2 or arrestin3

enhanced the peak calcium transient seen upon activation of the M3 mAchR

(Figure 9, C and D).  Taking into consideration previous reports demonstrating

that the M3 mAchR internalizes in an arrestin-independent manner (Lee et al.,

1998), our results suggest that arrestins primarily mediate desensitization of the

M3 mAchR following agonist activation.  Consistent with this and with previous

reports (Budd et al., 1999), knockdown of either arrestin2 or arrestin3 also

enhanced ERK1/2 activation (Figure 10, C and D).  This is in contrast to the

emerging paradigm that has been proposed for a number of other GPCRs where

arrestins promote G protein-independent signaling pathways (reviewed in

Lefkowitz and Shenoy, 2005) or even have opposing effects to one another as

has been shown for the angiotensin II receptor (Ahn et al., 2004).  In light of the

fact that HEK293 cells express similar levels of endogenous arrestin2 and

arrestin 3 (J.L.B, unpublished results), our data suggest an inherent specificity for

the M3 mAchR by arrestin3 as both calcium mobilization and ERK activation were

enhanced and prolonged with arrestin3 knockdown.  This also suggests that the

PLC-β/PKC arm of signaling is responsible for ERK activation, consistent with

previous reports (Budd et al., 1999; Kim et al., 1999; Wylie et al., 1999).  It is
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interesting that arrestins can also terminate muscarinic receptor signaling by

recruiting diacylglycerol kinases and enhancing the degradation of the second

messenger DAG, thereby coordinately terminating GPCR/G protein interaction

and second messenger generation (Nelson et al., 2007).  Taken together, the

prolonged ERK activation observed following GRK2 and arrestin3 knockdown

can be attributed to enhanced Gq activity, sustained DAG production and

subsequent PKC-δ activation (Figure 12).

CK1α has a variety of functions within the cell (Knippschild et al., 2005)

and recently has been shown to regulate heterologously expressed M3 mAchR in

HEK293 and COS7 cells (Budd et al., 2000; Tobin et al., 1997).  These studies

showed that CK1α phosphorylated the receptor in an agonist dependent manner,

and that deletion of a portion of the third intracellular loop or transient expression

of a dominant-negative CK1α construct caused an increase in IP3 production

upon receptor stimulation.  Similarly, in the present study, we demonstrate that

CK1α knockdown results in enhanced calcium mobilization upon M3 receptor

activation, suggesting that CK1α  is also involved in desensitization of

endogenous M3 mAchR in HEK293 cells.  Knockdown of CK1α had no effect on

calcium mobilization upon H1 histamine receptor activation, demonstrating that

this effect was specific to the M3 mAchR.  Previous studies have also shown that

expression of a peptide corresponding to the CK1α  binding region or

overexpression of a mutated receptor lacking a portion of the third intracellular

loop led to a decrease in ERK1/2 activation upon receptor stimulation,

suggesting that CK1α-mediated phosphorylation was necessary for ERK
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activation (Budd et al., 2001).  While we show that knockdown of CK1α has no

effect on ERK1/2 activation (Figure 11, C and D), indicating CK1α only plays a

partial role in regulation of M3 mAchR similar to GRK3 and GRK6, this may be

due to the fact that we only achieved ~60% knockdown of CK1α.  It is interesting

to note that the peptide expressed in previous studies to sequester CK1α also

contained a portion of the Gβγ binding site of the third intracellular loop (Budd et

al., 2001; Wu et al., 2000).  While free Gβγ was preferred, the heterotrimeric G

protein complex could also bind to this region (Wu et al., 2000).  Therefore,

overexpression of this peptide could result in sequestration of the G protein,

decreasing activation of downstream signaling.  The third intracellular loop of the

M3 mAchR contains 12 putative CK1α phosphorylation motifs (Tobin, 2002), two

of which overlap with the proposed GRK2 phosphorylation sites (Wu et al.,

2000).  Thus, under physiological conditions, there could be competition between

these kinases for receptor binding and phosphorylation.

In this study, we demonstrate that multiple proteins coordinately regulate

the activity of the endogenous M3 mAchR in HEK293 cells (Figure 12).

Knockdown of GRK2, GRK3, GRK6, and CK1α, but not GRK5, enhanced

receptor calcium signaling, suggesting that multiple kinases regulate downstream

signaling following M3 mAchR activation.  The effect of GRK2 on calcium flux

could be enhanced by both wild type and a kinase-dead mutant but not by Gaq-

binding defective mutants demonstrating that GRK2 primarily regulates activated

Gq.  Interestingly, only silencing of GRK2 led to both an enhanced and prolonged

ERK activation.  Consistent with our findings that GRK2 primarily regulated Gq



88

activity, this is likely a result of enhanced activation of the Gq/PLC-β/PKC-δ

signaling pathway.  Finally, both arrestin2 and arrestin3 are involved in negatively

regulating the M3 mAchR as knockdown of either protein enhanced calcium

mobilization and ERK activation.  Overall, our data suggest that multiple proteins

dynamically regulate M3 mAchR-mediated signal transduction.
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Figure 12. Regulation of the endogenous M3 mAChR in HEK293 cells

A) carbachol binding to the M3 mAChR results in activation of the Gq family of

heterotrimeric G proteins, leading to the dissociation of Gq and Gβγ. Activated Gq

activates PLC-β, resulting in the hydrolysis of phosphatidylinositol bisphosphate

(PIP2) to form the second messengers IP3 and DAG. IP3 interacts with the IP3

receptor located at the endoplasmic reticulum, resulting in a robust but transient

increase in cytosolic calcium. The formation of DAG recruits and activates the

novel PKC isoform PKC-δ. Once activated, PKC-δ leads to the activation of a

Ras-Raf-MEK-ERK1/2 cascade. B) phosphorylation of the M3 mAChR by GRK6

and possibly CK1α recruits arrestin2 and arrestin3 to the receptor, preventing

further G protein activation and terminating signaling. In addition, arrestins are

able to recruit diacylglycerol kinases (DGK) to the membrane and terminate the

PKC-dependent arm of the signaling cascade. GRK2 and GRK3, through a

conserved RGS domain, are able to interact with and sequester free Gq and

prevent activation of PLC-β. This results in the inhibition of both calcium

mobilization and activation of the ERK1/2 cascade. GRK2 is also able to regulate

the activation of the ERK1/2 cascade by interacting with and negatively

regulating the activity of MEK1.
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Chapter III

Site-specific phosphorylation of CXCR4 is
dynamically regulated by multiple kinases and

results in differential modulation of CXCR4
signaling

John M. Busillo and Jeffrey L. Benovic
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INTRODUCTION

CXCR4 is a widely expressed chemokine receptor that is essential for

development, hematopoiesis, organogenesis, and vascularization (Busillo and

Benovic, 2007).   CXCR4 also plays a prominent role in a number of diseases

including WHIM syndrome (Hernandez et al., 2003), HIV-1 entry (Feng et al.,

1996) and cancer progression and metastasis (Zlotnik, 2006).  Interestingly,

WHIM syndrome is the direct result of C-terminal truncations of CXCR4 which

result in enhanced receptor function (Diaz and Gulino, 2005).  Moreover, CXCR4

is expressed in at least 23 different types of cancer (Balkwill, 2004) and

accumulating evidence suggests that this results in dysregulation of CXCR4

transcription, signaling and trafficking (Busillo and Benovic, 2007).

Protein phosphorylation is the most prevalent post-translational

modification and plays a major role in regulating protein function (Cohen, 1992;

Manning et al., 2002).  Importantly, phosphorylation is one of the earliest events

in regulating G protein-coupled receptor [GPCR] signaling, initiating a process

known as desensitization (Krupnick and Benovic, 1998; Pitcher et al., 1998).

Agonist-promoted desensitization is primarily mediated by members of the GPCR

kinase [GRK] family, which specifically phosphorylate agonist-occupied GPCRs

(Krupnick and Benovic, 1998; Pitcher et al., 1998; Gainetdinov et al., 2004).  This

results in the recruitment and high affinity binding of arrestins, which function to

uncouple the receptor from G protein, target receptors for internalization, and

promote G protein-independent signaling (DeWire et al., 2007; Moore et al.,

2007).  While the specific protein kinases that mediate phosphorylation of
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individual GPCRs have not been well defined, site-specific and tissue-specific

phosphorylation of GPCRs likely have distinct effects on signaling (Tobin et al.,

2008).

Upon activation, CXCR4 is rapidly phosphorylated within its 45 amino acid

serine/threonine-rich C-terminal tail.  Previous studies have suggested a number

of potential phosphorylation sites critical for agonist (CXCL12)- and PKC-

mediated receptor internalization (Signoret et al., 1998; Orsini et al., 1999) and

degradation (Marchese and Benovic, 2001).  In addition, GRK2 (Orsini et al.,

1999; Cheng et al., 2000; Jiminez-Sainz et al., 2006), GRK3 (Balabanian et al.,

2008), GRK6 (Fong et al., 2002; Vroon et al., 2004), and PKC (Signoret et al.,

1997; Orsini et al., 1999) have been implicated in CXCR4 regulation, although

the sites of phosphorylation, the kinases involved in the phosphorylation of

specific sites, and the functional role of site-specific phosphorylation remain

largely unknown.

 In order to better understand the role of phosphorylation in regulating

CXCR4 signaling, we sought to identify agonist-promoted sites of

phosphorylation and the kinases that mediate site-specific phosphorylation.

Using liquid chromatography tandem mass spectrometry [LC/MS/MS] and

phospho-specific antibodies, we identified seven serine residues that are

phosphorylated in response to CXCL12 stimulation.  We show that

phosphorylation of these sites occurs with distinct kinetics and kinase specificity:

namely Ser-324/325 phosphorylation is rapid, transient and is primarily mediated

by PKC and GRK6; Ser-330 phosphorylation is delayed and is mediated by
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GRK6; and Ser-339 is phosphorylated rapidly by GRK6.  Finally, we show that

GRK-mediated phosphorylation of CXCR4 and arrestin binding have differential

effects on calcium mobilization and ERK1/2 activation following CXCR4

activation.

RESULTS

Phospho-site mapping of CXCR4 by mass spectrometry

CXCR4 is rapidly phosphorylated and internalized following agonist-

activation (Haribabu et al., 1997; Signoret et al., 1997; Orsini et al., 1999).

Truncation of the C-terminal tail of CXCR4, which contains 15 serine and 3

threonine residues, eliminates agonist-promoted phosphorylation, attenuates

internalization, and enhances receptor activity (Haribabu et al., 1997; Signoret et

al., 1997).  Since alanine scanning mutagenesis suggested that multiple regions

of the C-tail may be phosphorylated following CXCL12 stimulation (Orsini et al.,

1999), we decided to use mass spectrometry to better define the specific sites

phosphorylated in CXCR4. We initially made a cell line stably expressing Flag-

tagged CXCR4 to enable rapid purification of the receptor, as previously

demonstrated for the β2-adrenergic receptor (β2AR) (Trester-Zedlitz et al., 2005).

HEK293 cells were chosen as a model cell because they express CXCR4

endogenously, though at very low levels (~20 fmol/mg membrane protein).  A

clonally selected HEK293 cell line expressing Flag-tagged CXCR4 at ~0.5

pmol/mg (termed Flag CXCR4 cells) was chosen for further study.  CXCL12

stimulation of endogenous CXCR4 in HEK293 cells resulted in robust calcium
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mobilization and ERK1/2 activation (Figures 13A and B), although we were

unable to detect CXCL12-mediated inhibition of cAMP production or activation of

p38 or AKT (data not shown).  Stable-expression of CXCR4 did not enhance

CXCL12-mediated calcium mobilization (Figure 13A) but did lead to an ~2.5 fold

increase in activation of ERK1/2 (Figure 13B).  In addition, as an indirect

measure of receptor phosphorylation, we looked at the ability of CXCL12 to

induce an electrophoretic mobility shift of CXCR4 on SDS-PAGE.  Stimulation of

either HEK293 cells (Figure 13C) or Flag CXCR4 cells (Figure 13D) resulted in a

rapid retardation of electrophoretic mobility, consistent with receptor

phosphorylation.  Thus, the Flag CXCR4 cells appear to be a good model system

in which to further characterize CXCR4 phosphorylation.

Mass spectrometry has become a valuable tool for identifying amino acids

that are post-translationally modified (Carr et al., 2005), a strategy recently

employed for the β2AR (Trester-Zedlitz et al., 2005).  Since phosphorylation adds

~80 daltons [Da] to the molecular mass of a peptide, peptides with changes of 80

Da (or multiples thereof) from the theoretical mass can be identified, trapped and

subsequently fragmented by MS/MS to provide site-specific information on

phosphorylation (Carr et al., 2005).  To identify sites of phosphorylation on

CXCR4, Flag CXCR4 cells were treated with CXCL12 for 10 min and the

receptor was then affinity purified on an anti-Flag column (Figure 14A). This

procedure resulted in ~80% recovery of the receptor and yielded ~0.5 mg of

purified CXCR4 per preparation (Figure 14B).  Duplicate samples of purified
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Figure 13. Establishing and characterizing HEK293 cells that stably express

CXCR4

A) HEK293 cells or cells stably expressing Flag CXCR4 (Flag CXCR4 cells) were

loaded with the ratiometric calcium indicator Fura-2/AM prior to stimulation with

CXCL12 (100 nM).  The change in intracellular calcium was calculated by

monitoring the change in fluorescence of Fura-2/AM.  Shown is a representative

trace of calcium mobilization from three independent experiments.  B) Following

a 6 hr serum starvation, HEK293 cells or Flag CXCR4 cells were stimulated with

CXCL12 for the times indicated. Shown in a representative Western blot from

three independent experiments. CXCL12-promoted retardation of electrophoretic

mobility of endogenous CXCR4 (C) or Flag tagged CXCR4 (D).  Following a 6 hr

serum starvation, cells were stimulated with 100 nM CXCL12 for the indicated

time.  Crude membranes were prepared and 50 µg of solubilized protein

(endogenous) or equal volume of whole cell lysate (Flag CXCR4) was separated

by 10% SDS-PAGE.  Shown is a representative Western blot from four

independent experiments.
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 CXCR4 were then digested with either Lys-C or chymotrypsin and the resulting

peptides were subjected to LC/MS/MS.  This identified peptides containing 38 of

the 45 C-terminal residues of CXCR4 including residues 310-328 and 334-352,

and several of the peptides were phosphorylated (Table 1).  Figure 14C shows a

representative mass spectrum of a peptide (Thr-318 to Leu-328) obtained from a

chymotryptic digest, which contains five potential phosphorylation sites (Thr-318,

Ser-319, Ser-321, Ser-324, and Ser-325).  The peak occurring with a mass ratio

of ~600 demonstrates that this peptide has two phosphates attached (M-

(H3PO4)2).  The loss of phosphates upon fragmentation was apparent when Ser-

324 and Ser-325 were present in the fragment (see peaks b9-(H3PO4)2 and [b10-

(H3PO4)2]2+) but not in a peptide containing Thr-318, Ser-319 and Ser-321 (peak

b4), suggesting that both Ser-324 and Ser-325 are phosphorylated.  These

results were confirmed from two separate experiments as well as with peptides

derived from Lys-C digestion (Table 1).  Since peptides containing Ser-325

phosphorylation alone were also observed, we speculate that Ser-325 is

phosphorylated before Ser-324 although we were unable to generate a pS325-

specific antibody to directly test this.  Overall, these studies identified six sites of

phosphorylation following a 10 min stimulation with CXCL12: Ser-321, Ser-324,

Ser-325, one residue from Ser-338 to Ser-341, one residue from Ser-346 to Ser-

348, and either Ser-351 or Ser-352 (Figure 14D).  The specific sites of

phosphorylation that occur from Ser-338 to Ser-352 were not able to be

specifically determined by LC/MS/MS due to the serine-rich nature of this region.
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Figure 14. Purification and mass spectrometry analysis of CXCR4

A) Flag CXCR4 was purified from five 15-cm plates following a 10 min stimulation

with 50 nM CXCL12.  The bulk of the receptor (~80%) elutes in fractions 2 and 3

and is highly purified as shown by Coomassie blue staining (B).  C) Shown is a

representative mass spectrum of the peptide Thr-318 to Leu-328 following a

chymotrypsin digest demonstrating that CXCR4 is phosphorylated on Ser-324

and Ser-325. D) Amino acid sequence of the C terminal tail of CXCR4.  Residues

highlighted in red are those that are predicted to be phosphorylated by mass

spectrometry.  Brackets under Ser-338-Ser-341, Ser-346-Ser-348, and Ser-

351/Ser-352 indicate that one residue in each cluster is phosphorylated, though

the exact residue was not identified by mass spectrometry.
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Table 1

Lys-C Digestion

Peptide Predicted m/z
Ratio

Observed m/z
Ratio

311TSAQHALTSVSRGSSLK326 1730 1730
311TSAQHALTSVSRGSS*LK326 1730 1810

311TSAQHALTSVSRGS*S*LK326 1730 1890
311TSAQHALTSVS*RGSSLK326 1730 1810

311TSAQHALTSVS*RGSS*LK326 1730 1890
334RGGHSSVSTESESSSFHSS352 1952 1951

334RGGHSSVSTESESSSFH[SS]352 1952 2031
334RGGHSSVSTESE[SSS]FHSS352 1952 2031
334RGGH[SSVS]TESESSSFHSS352 1952 2031

Chymotrypsin Digestion

Peptide Predicted m/z
Ratio

Observed m/z
Ratio

316ALTSVSRGSSLKIL328 1432 1432
316ALTSVSRGSS*LKIL328 1432 1511

316ALTSVSRGS*S*LKIL328 1432 1591
316ALTSVSRGSSL326 1077 1077

316ALTSVSRGSS*L326 1077 1157
318TSVSRGSSLKIL328 1248 1248

318TSVSRGS*S*LKIL328 1248 1408
310KTSAQHALTSVSRGSSLKIL328 2084 Not observed

310KTSAQHALTSVSRGS*S*LKIL328 2084 2244

* Denotes phosphorylated residues as predicted by LC/MS/MS

[ ] Denotes one of the highlighted residues is phosphorylated as predicted

by LC/MS/MS
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Protein kinase C is primarily responsible for phosphorylation of Ser-324/5

Previous mutagenesis studies have identified Ser-324/5 as critical for

CXCL12-induced internalization (Orsini et al., 1999) and degradation (Marchese

and Benovic, 2001) as well as PMA-promoted internalization (Signoret et al.,

1997; Orsini et al., 1999).  To further characterize Ser-324/5 phosphorylation, we

generated a phospho-specific antibody to evaluate the kinetics of

phosphorylation and kinase-specificity for these residues.  A 10 min stimulation

with CXCL12 results in robust phosphorylation of Ser-324/5 that was blocked by

pre-incubation with the immunizing phospho-peptide but not with vehicle or

unphosphorylated peptide (Figure 15A).  Flag CXCR4 cells were then stimulated

for various times with CXCL12 and cell lysates were electrophoresed and blotted

with anti-pS324/5 to assess the kinetics of phosphorylation. Phosphorylation of

Ser-324/5 rapidly increased peaking at ~4-fold over basal within 5-10 min and

returned to near basal levels within 60 min (Figure 15B).  Furthermore, the

increase in pS324/5 immuno-reactivity parallels the observed reduction in

electrophoretic mobility of CXCR4 following stimulation with CXCL12 (Figures

13D and 15B).

CXCR4, like other chemokine receptors, primarily couples to the Gi family

of heterotrimeric G proteins (Busillo and Benovic, 2007).  In order to determine if

G protein activation was involved in receptor phosphorylation, cells were

pretreated with pertussis toxin prior to CXCL12 stimulation. Pertussis toxin

pretreatment significantly attenuated both the rate and extent of Ser-324/5

phosphorylation (Figure 15C).  This suggests the possibility that activation of
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second messenger dependent kinases such as PKC are largely responsible for

phosphorylation of these residues.  Indeed, the primary amino acid sequence of

CXCR4 reveals that both Ser-324 and Ser-325 fall within a PKC consensus motif

(RGSSLK).

To initially address the role of PKC in agonist-promoted phosphorylation of

Ser-324/5, cells were pretreated with the broad-spectrum PKC inhibitor

Bisindolylmaleimide I [Bis I] or the negative control Bisindolylmaleimide V [Bis V]

(Toullec et al., 1991) prior to CXCL12 stimulation.  Bis I treatment led to a

significant reduction in basal phosphorylation as well as CXCL12-promoted

phosphorylation of Ser-324/5 (Figure 16A). Since Bis I inhibits conventional and

novel PKC isoforms, we attempted to better define the PKC subtype(s) involved

in Ser-324/5 phosphorylation by pretreating cells with either Gö 6976, which

inhibits the conventional PKC isoforms (α, βI, and βII) (Martiny-Baron et al., 1993)

or rottlerin, which is reported to inhibit PKCδ  (Gschwendt et al., 1994).

Treatment with rottlerin, but not with Gö 6976, led to a significant reduction of

Ser-324/5 phosphorylation (Figure 16B).  However, since rottlerin can have off-

target effects (Soltoff, 2007), we attempted to confirm the role of PKCδ in CXCR4

phosphorylation using siRNA treatment.  PKCδ levels could be effectively

reduced in Flag CXCR4 cells by siRNA treatment and this resulted in a partial but

significant decrease in Ser-324/5 phosphorylation (Figure 16C). In contrast,

knock down of PKCα had no effect on Ser-324/5 phosphorylation (Figure 16C).

Taken together, these data demonstrate that PKC plays a major role in

phosphorylating Ser-324/5 following CXCL12 stimulation.  The significant effect
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Figure 15. Characterization and pertussis toxin sensitivity of anti-pSer-

324/5 (pS324/5)

A) Shown is a representative Western blot demonstrating the specificity of the

pS324/5 antibody.  10 µg of purified antibody was incubated for 10 min with

vehicle (PBS), 10 µg of peptide (C-Ahx-RGSSLKIL) or 10 µg of phospho-peptide

(C-Ahx-RG(pS)(pS)LKIL) prior to overnight incubation with the nitrocellulose

blots.  B) Cells stably expressing Flag CXCR4 were stimulated at the time points

indicated with 100 nM CXCL12.  Lysates were processed and separated to

visualize the agonist promoted gel shift of CXCR4.  Blots were incubated

overnight with 1:1000 dilution of crude pS324/5 antibody.  pS3245 was

normalized to total CXCR4 and data is presented as fold increase over basal (±

S.E.M., n=4).  C) Cells stably expressing Flag CXCR4 were treated overnight

with vehicle (PBS) or pertussis toxin (100 ng/ml) prior to stimulation with 100 nM

CXCL12.  Left panel: representative Western blot using purified anti-pS324/5.

Right panel: pS324/5 was normalized to total CXCR4 and data is presented as

percent maximum of vehicle treated cells (± S.E.M., n=3; *p≤0.05, **p≤0.01,

***p≤0.001).
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Figure 16. PKC is primarily responsible for Ser-324/5 phosphorylation

following CXCL12 stimulation

A) Cells stably expressing Flag CXCR4 were serum starved for 6 hr.  30 min

prior to CXCL12 stimulation, cells were pretreated with 2.5 µM Bis I or Bis V.  Left

panel:  representative Western blot using crude anti-pS324/5 antibody.  Blots

were processed as to visualize the gel shift.  Right panel:  pS324/5 was

normalized to total CXCR4 and data is presented as percent maximal Ser-324/5

phosphorylation compared to control (Bis V) (± S.E.M., n=4).  B) To better define

the PKC isoforms responsible for CXCR4 phosphorylation, cells were pretreated

with vehicle (DMSO), 1 µM Gö 6976, or 5 µM Rottlerin for 30 min prior to

stimulation with CXCL12.  Left panel: Representative Western blot using purified

anti-pS324/5 antibody.  Right panel: pS324/5 was normalized to total CXCR4

and data is presented as percent maximal Ser-324/5 phosphorylation compared

to control (± S.E.M., n=4).  C) Cells were treated with PKC-specific siRNAs.  Left

panel: lysates were prepared 72 hr post-transfection and blotted for PKCα and

PKCδ as indicated.  Shown is representative Western blot demonstrating

efficiency and specificity of PKCα and PKCδ knock down.  Right panel: 72 hr

post-transfection, cells were serum starved for 6 hr prior to stimulation with

CXCL12 (± S.E.M., n=4; *p≤0.05, **p≤0.01, ***p≤0.001).
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of Bis I pretreatment coupled with the fact that knock down of PKCδ only partially

decreases phosphorylation, suggests that PKCδ as well as additional PKC

isoforms likely mediate CXCR4 phosphorylation.

GRK6 contributes to Ser-324/5 phosphorylation

As some phosphorylation of Ser-324/5 is still evident following pertussis

toxin treatment or PKC inhibition, we hypothesized that GRKs also contribute to

phosphorylation of these residues.  The GRKs consist of seven members, four of

which (GRK2, 3, 5, and 6) are expressed in HEK293 cells (Ren et al., 2005; Luo

et al., 2008).  Since there are no specific GRK inhibitors available, we assessed

the effect of individual GRK knock down on Ser-324/5 phosphorylation.  While

efficient and specific knock down of each of the individual GRKs expressed in

HEK293 cells was achieved (Figure 17A), only GRK6 knock down had a

significant effect on Ser-324/5 phosphorylation (Figure 17B).  Since our results

suggest that both GRK6 and PKC contribute to Ser-324/5 phosphorylation, we

also evaluated the effect of PKC inhibition and GRK6 knock down.  While PKC

inhibition or GRK6 knock down alone resulted in an ~50% or ~40% reduction in

phosphorylation, respectively, the combination resulted in an almost complete

loss of Ser-324/5 phosphorylation (Figure 17C).  These data demonstrate that

both PKC and GRK6 are needed for maximal agonist-promoted phosphorylation

of Ser-324/5 following CXCL12 stimulation.
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Figure 17. GRK6 contributes to Ser-324/5 phosphorylation following

CXCL12 stimulation

A) Representative Western blot demonstrating specific and efficient knock down

of GRKs endogenously expressed in HEK293 cells 72 hr post-transfection. B)

Knock down of GRK6, but not GRK2, GRK3 or GRK5 led to a significant

reduction in phosphorylation of Ser-324/5.  Left panel: representative Western

blot using purified anti-pS324/5.  Right panel: comparison of pS324/5

phosphorylation following a 5 min stimulation with CXCL12.  pS324/5 was

normalized to total CXCR4 and data is presented as percent of control at 5 min

(± S.E.M., n=4).  C) GRK6 knock down and PKC inhibition almost completely

abolishes phosphorylation of Ser-324/5.  Cells transfected with GRK6 siRNA

were pretreated with 2.5 µM Bis I or Bis V 30 min prior to stimulation with

CXCL12.  Left panel:  representative Western blot using purified anti-pS324/5.

Right panel:  pS324/5 was normalized to total CXCR4 and data is presented as

percent maximal phosphorylation of Ser-324/5 as compared to control/Bis V

treated cells (± S.E.M., n=3; *p≤0.05, **p≤0.01, ***p≤0.001).
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Ser-330 and Ser-339 are phosphorylated by GRK6

Previous studies have demonstrated a prominent role of Ser-330 in

regulating CXCL12-promoted degradation (Marchese and Benovic, 2001) while

Ser-339 contributes to receptor internalization (Signoret et al., 1998; Orsini et al.,

1999).  Although a peptide containing Ser-330 was not observed in our mass

spectrometry analysis, we generated and characterized a phospho-specific

antibody to this site.  In addition, a phospho-specific antibody has been

generated against Ser-339 (Woerner et al., 2005) and phosphorylation within this

region was also detected by mass spectrometry (Figure 14D).   As shown in

Figure 18A, both Ser-330 and Ser-339 undergo agonist-promoted

phosphorylation, albeit with different kinetics.  Phosphorylation of Ser-330 is

relatively slow peaking at ~20 min, whereas phosphorylation of Ser-339 is very

rapid peaking at ~2 min (Figure 18A).  Interestingly, despite the kinetic

differences, we found that both Ser-330 and Ser-339 are primarily

phosphorylated by GRK6 (Figures 18B and C).

Overall, we found that GRK6 phosphorylates multiple sites within the C

terminal tail of CXCR4 including Ser-324/5, Ser-330 and Ser-339 while GRK2, 3,

and 5 do not contribute to CXCR4 phosphorylation at these sites.  Additional

studies demonstrate that PKC inhibition had no effect on CXCL12-promoted

phosphorylation of Ser-330 and Ser-339 (data not shown), demonstrating that

phosphorylation of these residues is completely GRK6-dependent in response to

CXCL12.
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Figure 18. Ser-330 and Ser-339 are GRK6 substrates

A) Cells expressing Flag CXCR4 were serum starved for 6 hr prior to stimulation

with 100 nM CXCL12 for times indicated.  An equal volume of lysate was

separated by SDS-PAGE and blotted with purified anti-pS330 (top left panel) or

anti-pS339 (bottom left panel).  pS330 blots were processed in order to visualize

gel shift of CXCR4.     Right panel:  pS330 or pS339 blotting was normalized to

total CXCR4 and data presented as fold increase over basal (± S.E.M., n=4).  B)

72 hr post-transfection, an equal volume of cell lysate was separated to visualize

the gel shift of CXCR4 and blotted using purified anti-pS330.  Shown are

representative Western blots of four separate experiments.  C) 72 hr post-

transfection, an equal volume of cell lysate was separated by SDS-PAGE and

blotted using anti-pS339.  Shown are representative Western blots from four

separate experiments.
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GRKs differentially regulate CXCR4 signaling in HEK293 cells

Phosphorylation of GPCRs is one of the earliest mechanisms of

regulation, initiating the process of desensitization (Krupnick and Benovic, 1998).

Recent evidence suggests that differential phosphorylation of GPCRs can have

specific but disparate effects on receptor regulation (Kim et al., 2005; Ren et al.,

2005; Torrecilla et al., 2007; Luo et al., 2008).   Since CXCR4 activation in

HEK293 cells leads to calcium mobilization (Figure 13A) and activation of

ERK1/2 (Figure 13B), we next evaluated the functional role of GRKs in regulating

CXCR4-mediated signaling.  Knock down of GRK2 or GRK6, but not GRK3 or

GRK5, led to a statistically significant increase in the peak calcium transient

observed following CXCL12 stimulation of endogenous CXCR4 in HEK293 cells

(Figure 19A).  Interestingly, knock down of GRK2 led to an ~30% increase in

ERK1/2 activation while knock down of GRK3 or GRK6 led to an ~40% reduction

in ERK1/2 activation (Figures 19B and C).  In contrast, inhibition of PKC by Bis I

had no effect on activation of ERK1/2 following CXCL12 activation (data not

shown).
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Figure 19. GRKs differentially regulate signaling following activation of

endogenous CXCR4 in HEK293 cells

A) HEK293 cells were loaded with the ratiometric calcium indicator Fura-2A/M 72

hr after siRNA transfection.  Cells were stimulated with 100 nM CXCL12 and

changes in intracellular calcium were calculated from changes in fluorescence.

Left panel: shown is a representative trace from six separate experiments.  Right

panel: mean (± S.E.M.) increase in peak calcium transient calculated from six

separate experiments.  B) Effect of GRK knock down on CXCL12-mediated

activation of ERK1/2.  72 hr post-transfection, cells were serum starved for 6 hr

prior to stimulation with CXCL12 (100 nM).  Shown is a representative Western

blot from five independent experiments. C) Left panel: pERK2 was normalized to

total ERK2 and data are presented as percent maximal ERK2 activation as

compared to control (± S.E.M., n=4). Right panel: comparison of maximal ERK2

activation (5 min) following stimulation with CXCL12 (100 nM) (± S.E.M., n=4;

*p≤0.05, **p≤0.01, ***p≤0.001).
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We also evaluated whether the stable over-expression of CXCR4 altered

GRK-mediated regulation.  Similar to endogenous CXCR4, knock down of either

GRK2 or GRK6 in the Flag CXCR4 cells enhanced calcium mobilization,

although GRK6 had the larger effect  (Figure 20A).  Similarly, knock down of

GRK2 enhanced while knock down of GRK3 or GRK6 decreased activation of

ERK1/2 (Figures 20B and C).  Thus, stable over-expression of CXCR4 in

HEK293 cells did not alter the signaling or regulation of CXCR4.  Our data

suggest that phosphorylation of CXCR4 by GRK6 and possibly GRK2 uncouples

the receptor from activation of Gi, decreasing calcium mobilization.  In contrast,

GRK3 and GRK6-mediated phosphorylation of CXCR4 positively regulates

activation of ERK1/2.
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Figure 20. Differential GRK-mediated regulation is conserved in Flag

CXCR4 cells

Cells expressing Flag CXCR4 were analyzed for calcium flux (A) and ERK1/2

activation (B and C) exactly as described in the legend to Figure 19.
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Arrestins differentially regulate signaling following CXCR4 activation

Agonist-dependent phosphorylation of many GPCRs leads to the

recruitment of the non-visual arrestins, arrestin2 and arrestin3 (also termed β-

arrestin1 and β-arrestin2, respectively), which effectively uncouples the receptor

from heterotrimeric G proteins as well as targeting the receptor for internalization

(Moore et al., 2007).  Recent evidence has highlighted the ability of arrestins to

nucleate signaling events in addition to their classical role in desensitization

(DeWire et al., 2007). Therefore, we next examined the effect of siRNA-mediated

knock down of arrestin2 and 3 on CXCR4 signaling in HEK293 cells.  Knock

down of arrestin3 led to a significant increase, whereas arrestin 2 had only a

modest effect, in the peak calcium transient observed following CXCL12

stimulation of endogenous (Figure 21A) or overexpressed CXCR4 (Figure 21B).

Conversely, knock down of arrestin2 led to a significant reduction in ERK1/2

activation following CXCL12 stimulation of endogenous (Figure 21C) or

overexpressed (Figure 21D) CXCR4, while knock down of arrestin3 had lesser

effects. These results reveal that both arrestins contribute to regulating CXCR4

signaling although arrestin3 appears to play the primary role in desensitization of

calcium mobilization while arrestin2 plays the primary role in activation of ERK1/2

signaling.
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Figure 21. Non-visual arrestins differentially regulate CXCR4-mediated

signaling

A) Mean (± S.E.M.) increase in peak calcium transient following stimulation of

endogenous CXCR4 calculated from seven separate experiments.  B) Mean (±

S.E.M.) increase in peak calcium transient following stimulation of Flag CXCR4

calculated from three separate experiments.  C and D) Effect of arrestin knock

down on ERK1/2 activation following activation of HEK293 (C) or Flag CXCR4

(D) cells.  72 hr post-transfection, cells were serum starved for 6 hr prior to

stimulation with CXCL12 (100 nM).  Left panels: shown are representative

Western blots from seven (C) and four (D) separate experiments.  Right panels:

pERK2 was normalized to total ERK2 and data is presented as percent maximal

ERK2 activation as compared to control (± S.E.M.; *p≤0.05, **p≤0.01,

***p≤0.001).
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DISCUSSION
Phosphorylation has long been recognized as an initiating step in the

process of GPCR desensitization (Krupnick and Benovic, 1998; Pitcher et al.,

1998).  Characterizing the mechanisms involved in receptor regulation under

“normal” physiological conditions will add significantly to our understanding of

receptor signaling as well as receptor dysregulation in disease.  CXCR4 has

emerged as a prominent GPCR due to its reported role in cancer progression

and metastasis (Zlotnik, 2006) and recent studies have provided evidence for the

dysregulation of CXCR4 in cancer cells (Li et al., 2004; Slagsvold et al., 2006).

Given the wealth of knowledge on the role of CXCR4-mediated signaling in

cancer (Kucia et al., 2005), it is surprising that the regulation of CXCR4 function

is not better understood. In this report, we characterize site-specific

phosphorylation of CXCR4 and provide evidence that kinase-specific

phosphorylation has distinct effects on CXCR4 signaling.

Since mutagenesis and metabolic labeling studies have suggested that

multiple regions of the C terminal tail of CXCR4 may be phosphorylated (Orsini et

al., 1999), we used mass spectrometry and phospho-specific antibodies to define

specific sites of phosphorylation.  Using these approaches we found that

CXCL12 promotes the phosphorylation of 7 serines in the C terminal tail (Figure

14D), although we cannot rule out the presence of additional sites. We confirmed

previous studies suggesting that Ser-324 and Ser-325 are phosphorylated

(Signoret et al., 1998; Orsini et al., 1999) as well as one study showing that Ser-

339 is phosphorylated (Woerner et al., 2005) (Figure 15C and D).  In addition, we

found that Ser-321 is phosphorylated, a site that has not been previously
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implicated in CXCR4 regulation, and we demonstrated that Ser-330 is also

phosphorylated in response to CXCL12 (Figure 18A).

Phospho-specific antibodies have provided a powerful tool to enable

characterization of phosphorylation kinetics for a number of GPCRs (Pollok-Kopp

et al., 2003; Schulz et al., 2004; Tran et al., 2004).  Here, we successfully used

phospho-specific antibodies against Ser-324/5, Ser-330 and Ser-339 and found

that phosphorylation at these sites occurs with disparate kinetics, peaking at 5-10

min, ~20 min, and ~2 min following CXCL12 stimulation, respectively. Based on

these results, we hypothesize that phosphorylation at these sites would have

distinct effects on desensitization, signaling, and/or trafficking following CXCR4

activation.  In this regard, previous studies have suggested that Ser-324/5 and

Ser-330 play an important role in CXCR4 degradation (Marchese and Benovic,

2001) while CXCR4 recycles to the plasma membrane with varying efficiencies in

different cell lines (Amara et al., 1997; Tarasova et al., 1998; Marchese et al.,

2003; Venkatesan et al., 2003).  These findings suggest cell type differences in

Ser-324/5 or Ser-330 phosphorylation may regulate differential CXCR4 sorting.

These phospho-specific antibodies should enable a more in-depth analysis of

CXCR4 phosphorylation in various tissues and cells.

To address if site-specific phosphorylation can differentially dictate the

regulation of CXCR4 signaling, we evaluated the role of site- and kinase-specific

phosphorylation in CXCR4-mediated signaling.  We provide evidence for PKCδ in

selectively phosphorylating Ser-324/5 following CXCL12 stimulation with no

effect on Ser-330 or Ser-339 (Figure 16 and data not shown). Previously, PKC
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has been thought to be primarily involved in heterologous desensitization of

CXCR4, downstream of a number of receptors (Busillo and Benovic, 2007).

Interestingly, Ser-324 and Ser-325 have been shown to play a prominent role in

PKC-mediated internalization of CXCR4 (Signoret et al., 1998; Orsini et al.,

1999), although there have been conflicting reports for the role of these residues

in CXCL12-mediated internalization.  For example, mutation of Ser-324/5 to

alanine had no effect on internalization in Mv-1-Lu cells (Signoret et al., 1998) but

effectively attenuated internalization in HEK293 cells (Orsini et al., 1999).  Since

Ser-324/5 is robustly phosphorylated following CXCL12 stimulation in HEK293

cells, cell type dependent differences in trafficking may be attributed to

differences in phosphorylation or in subsequent protein/protein interactions.  In

addition, since PKC inhibition had no effect on CXCR4 activation of ERK1/2 (data

not shown), Ser-324/5 phosphorylation does not appear to participate in CXCR4

signaling or in arrestin recruitment (discussed below).

GRK6 was found to contribute to Ser-324/5 phosphorylation and be

principally responsible for Ser-330 and Ser-339 phosphorylation (Figures 17 and

18).  While no GRK-specific phosphorylation motifs have been identified, GRK2

and 3 prefer acidic residues N terminal to the phosphorylation site while GRK5

and 6 prefer basic residues (Pitcher et al., 1998).  Consistent with our GRK6

results, there are basic residues located N terminally to Ser-324/5, Ser-330 and

Ser-339 (Figure 14D).  Previous studies have shown that the deletion of GRK6 in

a mouse had marked effects on the activity of CXCR4, leading to enhanced

function and a lack of desensitization (Fong et al., 2002; Vroon et al., 2004).
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Surprisingly, loss of GRK6 had different effects on CXCL12-mediated chemotaxis

in neutrophils and T cells, suggesting that the regulation of CXCR4 function by

phosphorylation may be cell type dependent (Fong et al., 2002; Vroon et al.,

2004).  While these previous studies did not evaluate signaling, our work has

shown that loss of GRK6 significantly increased calcium mobilization while

reducing ERK1/2 activation.  We propose that GRK6-mediated phosphorylation

of CXCR4 plays an essential role in the recruitment of arrestins to the receptor as

discussed below.

Two residues at the extreme C terminus of CXCR4 (one between Ser-

346-348 and either Ser-351 or Ser-352) are also phosphorylated in response to

CXCL12 stimulation (Figure 14D).  Based on the acidotropic nature of these

serines, we postulate that these residues are phosphorylated by GRK2 and/or

GRK3 (Figure 14D).  Interestingly, recent studies suggest that GRK3

phosphorylates the far C-terminal region of CXCR4 (Balabanian et al., 2008).

Over-expression of GRK3 enhanced internalization of wild type CXCR4 but not a

C-terminally truncated CXCR4 lacking the last 15 amino acids (which contains 10

serines and threonines). Since previous work has demonstrated that Ser-338 is

not phosphorylated in response to CXCL12 (Woerner et al., 2005) and we have

shown that Ser-339 is phosphorylated by GRK6 (Figure 18C), we speculate that

GRK3 is responsible for phosphorylating a serine within the Ser-346-348 cluster

as well as either Ser-351 or Ser-352 in response to CXCL12 stimulation.

Furthermore, as knock down of GRK3 had no effect on calcium mobilization but

significantly decreased ERK1/2 activation (Figures 19 and 20), we propose that
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GRK3-mediated phosphorylation of C-terminal residues acts in concert with

GRK6-mediated phosphorylation to participate in ERK1/2 activation by stabilizing

CXCR4 interaction with arrestin (Figure 22).

Interestingly, we found that GRK2 negatively regulates CXCR4-mediated

activation of both calcium flux and ERK1/2 (Figures 19 and 20).  Previous over-

expression studies showed that GRK2 enhances CXCR4 internalization (Orsini

et al., 1999; Cheng et al., 2000) and negatively regulates CXCL12-mediated ERK

activation downstream of the receptor in HEK293 cells, possibly through

interaction with MEK (Jimenez-Sainz et al., 2006).  While we cannot rule out the

possibility that GRK2 directly phosphorylates CXCR4, we hypothesize that the

observed effects of GRK2 knock down occur downstream of CXCR4.  This could

include interaction with free Gβγ  (Pitcher et al., 1992; Carman et al., 1998),

resulting in inhibition of Gβγ-mediated activation of PLC-β (Camps et al., 1992)

and the observed increase in calcium mobilization when GRK2 levels are

reduced.  In addition, GRK2 inhibition of MEK would result in enhanced ERK1/2

activation when GRK2 levels are reduced (Jimenez-Sainz et al., 2006). It is also

possible that there may be tissue specific differences in site-specific

phosphorylation of CXCR4 by GRK2 and GRK3.

The positive role of GRK3 and GRK6 on ERK1/2 activation prompted us to

evaluate the role of arrestins in CXCR4 signaling.  Previous studies have

suggested that arrestin3 is involved in desensitization, internalization, and

activation of p38 and ERK1/2 (Orsini et al., 1999; Cheng et al., 2000; Fong et al.,

2002; Sun et al., 2002), whereas arrestin2 is involved in sorting CXCR4 to the
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lysosomes for degradation (Bhandari et al., 2007). Similar to studies on the

angiotensin and vasopressin receptors (Ahn et al., 2004; Ren et al., 2005), we

have found that arrestin2 and arrestin3 have different effects on CXCR4

signaling.  Our results suggest that arrestin3 plays a primary role in desensitizing

G protein activation (i.e., inhibiting calcium mobilization), a pathway that appears

dependent on GRK6 phosphorylation of CXCR4.  Conversely, arrestin2 plays a

positive role in ERK1/2 activation and appears to require phosphorylation of the

receptor by both GRK3 and GRK6.  This pattern of arrestin-mediated activation

of ERK1/2 is somewhat unique since most GPCRs either require both arrestins

(DeWire et al., 2007) or arrestin3 (Ahn et al., 2004; Ren et al., 2005) for ERK

activation although there is one report that PAR1 selectively utilizes arrestin2

(Kuo et al., 2006).  In addition, the involvement of multiple GRKs in receptor

regulation is analogous to studies on the β2AR where GRK2- and GRK6-

mediated phosphorylation mediates arrestin3 binding, although GRK6 plays the

prodominant role (Violin et al., 2006).   We hypothesize that the observed

decrease in ERK activation is likely due to a decrease in the extent of arrestin2

recruitment with GRK3 or GRK6 knock down and the inability to form a stable

CXCR4-arrestin2 complex (Tohgo et al., 2003; Jafri et al., 2006).  Another

possibility is that CXCR4 phosphorylation by GRK3 and GRK6 allows arrestin2 to

adopt a conformation (Kim et al., 2005; Ren et al., 2005) that allows for full

activation of ERK1/2.

In summary, our results support a model where GRK6-mediated

phosphorylation leads to recruitment of arrestin3 (Figure 22).  This serves to
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uncouple CXCR4 from activation of Gi thereby  regulating calcium release.  In

contrast, GRK3- and GRK6-mediated phosphorylation of CXCR4 promotes

interaction with arrestin2 and results in full activation of ERK1/2.  GRK2, on the

other hand, likely attenuates calcium release and activation of ERK1/2 through its

interaction with Gβγ and MEK, respectively.  While we cannot specifically pinpoint

the phosphorylation sites that mediate differential arrestin association, the finding

that PKC inhibition does not affect ERK1/2 activation suggests that Ser-324/5

phosphorylation does not contribute to arrestin binding. These results provide a

foundation to better understand how CXCR4 is regulated and identify distinct

regulatory molecules that can be targeted to modulate CXCR4 signaling in

disease.
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Figure 22. Regulation of CXCR4 activity and signaling

Upon activation, CXCR4 is phosphorylated on seven residues: Ser-321, Ser-324,

Ser-325, Ser-330, Ser-339, a residue from Ser-346-S348, and either Ser-351 or

Ser-352.  We propose that GRK6-mediated phosphorylation results in the

recruitment of arrestin3 to CXCR4, thereby attenuating G protein activation and

calcium release.  GRK2 also attenuates G protein activation and calcium release

most likely by regulating Gβγ activation of PLCβ.  We also propose that

phosphorylation by GRK3 and GRK6 results in more stable interaction with

arrestin2 allowing for activation of ERK1/2.  In contrast, GRK2 inhibits ERK1/2 by

regulating the activity of MEK.  Although robustly phosphorylated by PKC and, to

a lesser extent by GRK6, phosphorylation of Ser-324/5 does not contribute to

signaling.
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EXPERIMENTAL PROCEDURES

Cell culture and RNAi transfections

HEK293 cells (Microbix, Toronto, Canada) were maintained in complete

Dulbecco’s modified Eagle’s media [DMEM] with 10% fetal bovine serum and 25

mM HEPES, pH 7.4.  Cells stably expressing CXCR4 were selected and

maintained in complete DMEM supplemented with 0.8 mg/ml G418 and

penicillin/streptomycin. HEK293 cells were plated in fresh complete DMEM 24 hr

prior to RNAi transfection.  All siRNAs were synthesized by Dharmacon

(Lafayette, CO) with the ON-TARGET plus modification.  Four separate siRNAs

were reconstituted and pooled at a final concentration of 15 pmol/µl.  GRKs were

targeted against the following sense strands: GRK2 – 5 ’

GGGACGUGUUCCAGAAAUU 3’; 5’ GCUCGCAUCCCUUCUCGAA 3’; 5’

GGAAUCAAGUUACUGGACA 3’; 5’ GCAAUAAGUUCACACGGUU 3’; GRK3 –

5’ GGAGUGUGAUGCAGAAGUA 3’; 5’ GAGGAUACCAAAGGGAUUA 3’; 5’

GGGAAGGACUGUAUUAUGC 3’; 5’ GAACACGUACAAAGUCAUU 3’; GRK5 –

5’CCAACACGGUCUUGCUGAA 3’; 5’ GGGAGAACCAUUCCACGAA 3’;

CAAACCAUGUCAGCUCGAA 3’; 5’ GAUUAUGGCCACAUUAGGAUU 3’; GRK6

– 5’GGUGAAGAAUGAACGGUAC 3’; 5’ GAGCUUGGCCUACGCCUAU 3’;

GCACGUAACGCAGAAUUUU 3’; 5’ CGCCAAGAUUGCUGUGGAA 3’.  PKCδ

was targeted against  the fo l lowing sense st rands:  5 ’

CCAUGAGUUUAUCGCCACC 3’; 5’ CAGCACAGAGCGUGGGAAA 3’. The

arrestin and PKCα siRNAs have been previously described (Luo et al., 2008;

Oliva et al., 2008).  The PKC siRNAs were reconstituted individually at 60
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pmol/µl. Prior to transfection, 300 pmol of each were combined for a total of 600

pmol/transfection.  Non-targeting siRNA pooled control modified with the ON-

TARGET plus modification was used for all experiments. HEK293 cells, ~65 to

70% confluent, were transfected with 600 pmol of siRNA using Lipofectamine

2000 (Invitrogen) in OPTI-MEM (Invitrogen) per the manufacturer’s instructions.

Cells were maintained in low-serum media for 4 hr, at which point an equal

volume of 2X complete media (20% FBS and 25 mM HEPES) was added.  Cells

were split 48 hours post-transfection for assay the following day.

Purification of Flag CXCR4

Purification of Flag-tagged CXCR4 was performed as previously described

for the β2AR (Trester-Zedlitz et al., 2005) with minor modifications.  Cells grown

to ~90% confluency in five 15-cm plates were washed twice with phosphate

buffered saline [PBS].  Cells were then incubated in serum free DMEM media

[SFM] for 6 hr, the media was aspirated, and replaced with fresh SFM containing

50 nM CXCL12 for 10 min.  Cells were scrapped into 10 ml of hypotonic lysis

buffer (20 mM Tris-HCl, pH 7.5, 2.5 mM CaCl2, 10 mM NaF, and one Complete

Protease inhibitor tablet (EDTA-free)) and lysed by 10 strokes in a Dounce

homogenizer (tight pestle).  Membranes were pelleted by centrifugation at 40,000

x g for 20 min at 4°C.  Pellets were resuspended in 10 ml of Buffer A (20 mM

Tris-HCl, pH 7.5, 100 mM NaCl, 10 mM NaF, 1% dodecyl maltoside [DDM], 2.5

mM CaCl2, and one Complete protease inhibitor tablet (EDTA-free)) and

homogenized by 20 strokes in a Dounce homogenizer.   Cellular debris was
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cleared by centrifugation at 40,000 x g  for 20 min at 4°C.  The resulting

supernatant was passed over an M1 anti-flag affinity (Sigma-Aldrich, St Louis

MO) column (0.4 ml resin/10 ml of lysate, flow rate of 5 ml/hr) equilibrated in

Buffer B (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% DDM, 2.5 mM CaCl2) at

room temperature.  The column was washed once with 5 ml of Buffer C (20 mM

Tris-HCl, pH 7.5, 300 mM NaCl, 0.1% DDM, 2.5 mM CaCl2) at a rate of 10 ml/hr

followed by an additional wash with 5 ml of Buffer B.  Bound receptor was then

eluted from the column in Buffer D (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1%

DDM, 200 µM Flag peptide, 1 µM AMD 3100, 10 mM EDTA) in 1 ml fractions and

immediately snap frozen in liquid nitrogen and stored at –80°C. Fractions

containing CXCR4 (by Western blot) were concentrated using Microcon ultracell

YM-10 concentrators (Millipore Cooperation, Billerica, MA). Purified CXCR4 was

electrophoresed on a 4-20% SDS-Glycine gradient gel (Invitrogen, Carlsbad CA),

stained with Coomassie blue, de-stained, excised and shipped on ice for

LC/MS/MS analysis.

LC/MS/MS procedure

Gel pieces were transferred to siliconized tubes, washed and destained

overnight in 200 µl of 50% methanol.  The gel pieces were dehydrated in

acetonitrile and then rehydrated in 30 µl of 10 mM dithiothreitol [DTT] in 0.1 M

ammonium bicarbonate and incubated at room temperature for 30 min.  The DTT

solution was removed and the sample was alkylated in 30 µl of 50 mM

iodoacetamide in 0.1 M ammonium bicarbonate at room temperature for 30 min.
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The gel pieces were dehydrated in 100 µl of acetonitrile, rehydrated in 100 µl of

0.1 M ammonium bicarbonate, dehydrated in 100 µl of acetonitrile, completely

dried by vacuum centrifugation and then rehydrated in 20 µl of 50 mM

ammonium bicarbonate containing 20 ng/µl Lys-C or chymotrypsin and incubated

overnight at 37oC.  Peptides were extracted from the polyacrylamide in two 30 µl

aliquots of 50% acetonitrile/5% formic acid and the extracts were combined and

evaporated to 15 µl for MS analysis.

The LC/MS system consisted of a Thermo Electron LTQ-FT mass

spectrometer system with a Protana nanospray ion source interfaced to a self-

packed 8 cm x 75 µm id Phenomenex Jupiter 10 µm C18 reversed-phase

capillary column. Extract (1-5 µl) was injected and peptides eluted from the

column using an acetonitrile/0.1 M acetic acid gradient at a flow rate of 0.25

µl/min.  The nanospray ion source was operated at 2.8 kV.  The digest was

analyzed using the double play capability of the instrument acquiring full scan

mass spectra (ICR; 100K resolution) to determine peptide molecular weights and

five product ion spectra (ion trap) to determine amino acid sequence in

sequential scans.  This mode of analysis produces approximately 1500 CAD

spectra of ions ranging in abundance over several orders of magnitude.  The

data were analyzed by database searching using the Sequest search algorithm

against CXCR4.  Putative phosphorylated peptides were confirmed by manual

analysis.
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Generation of polyclonal antibodies specific for pS324/5 and pS330

Polyclonal antibodies specific for pS324/5 and pS330 were generated by

Open Biosystems (Huntsville, AL).  Briefly, peptides corresponding to

phosphorylated CXCR4 at Ser-324/5 (C-Ahx-RG(pS)(pS)LKIL where Ahx is

amino hexonic acid) and Ser-330 (CLKIL(pS)KGKRGGH) were synthesized,

coupled to hemocyanin and used to immunize rabbits following a standard

immunization protocol.  Crude sera from each rabbit was collected at days 28, 56

and 72 following primary immunization and tested for immuno-reactivity.

Antibody was purified from pooled bulk sera (days 56 and 72) from animal E5199

(pS324/5) and E5198 (pS330) using the immunizing peptide, concentrated to 1

mg/ml, and aliquots were stored at –80°C.  Antibody specificity was evaluated by

preincubating 10 µg of purified antibody with vehicle (PBS), 10 µg of the

immunizing peptide or 10 µg of the non-phosphorylated peptide.

Calcium mobilization and ERK1/2 activation

Calcium mobilization was performed as previously described (Luo et al.,

2008).  For analyzing ERK1/2 activation, cells were plated into 6-well plates 24 hr

prior to stimulation.  Confluent cells were washed twice with PBS and maintained

in 1 ml of SFM for 6 hr at 37°C prior to stimulation.  Following stimulation, media

was aspirated on ice and cells were lysed by the addition of 300 µl of 2x SDS

sample buffer and stored at –80°C until processed.  Lysates were thawed on ice,

sonicated for 10 sec (10% amplitude) and allowed to sit at room temperature for

30 min prior to electrophoresis.  Equal volumes were separated by 10% SDS-
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PAGE, transferred to nitrocellulose, blocked with ODYSSEY® blocking buffer (Li-

Cor® Biosciences) and blotted overnight with a mixture of anti-phospho-p42/44

(Cell Signaling Technologies, Boston MA) and anti-ERK2 (Santa Cruz, Santa

Cruz, CA).  The following day, blots were washed extensively with Tris Buffered

Saline containing 0.1% Tween-20 [TBS-T], incubated with a mixture of goat anti-

rabbit Alexa® Fluorophore 680 conjugated (Molecular Probes) and goat anti-

mouse IRDye 800 conjugated secondary (Rockland Immunochemicals)

antibodies (1:5000) for 1 hr at room temperature.  Blots were washed extensively

with TBS-T and visualized using the ODYSSEY® infrared imaging system (Li-

Cor® Biosciences).

Detection of pS324/5, pS330 and pS339

HEK293 cells stably expressing Flag CXCR4 were stimulated and

processed as described for ERK1/2 activation.  An equal volume of cell lysate

was separated by 10% SDS-PAGE, transferred to nitrocellulose and blocked for

1 hr in 0.25% gelatin.  Blots were incubated overnight at 4°C with a mixture of

anti-CXCR4 (BD Bioscience) and anti-pS324/5, anti-pS330, or anti-pS339

primary antibodies.  Blots were extensively washed with TBS-T and incubated

with a mixture of goat anti-rabbit Alexa® Fluorophore 680 conjugated (Molecular

Probes) and goat anti-rat IRDye 800 conjugated secondary (Rockland

Immunochemicals) antibodies for 1 hr at room temperature. Blots were

developed as described above for phospho-ERK.  Phospho-CXCR4 was then

normalized to total CXCR4 and is represented as percent maximum.  For assays
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with PKC inhibition, cells were pretreated with vehicle (DMSO) or appropriate

inhibitor for 30 min prior to stimulation with CXCL12.

Electrophoretic mobility shift assay

An equal volume of cell lysate was separated by 10% SDS-PAGE for 1 hr

40 min at ~135V, transferred to nitrocellulose and blocked for 1 hr in 5% milk in

TBS-T.  Blots were subsequently probed for CXCR4 as described above for

phospho-CXCR4.

Statistical Analysis

All data are represented as the mean ± standard error of the mean

[S.E.M.].   Data were analyzed using a two-tailed student’s t-test with significance

set at p≤0.05.
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Being one of the largest families of cell surface receptors, GPCRs are

critically involved in nearly every physiological process.  Accordingly, strict

regulatory mechanisms need to be in place to ensure proper spatial and temporal

control of receptor activity and signaling.  Research over the past 20 years has

significantly enhanced our understanding of these regulatory mechanisms and

established an elegant paradigm of GPCR regulation (Moore et al., 2007; DeWire

et al., 2007).  However, it is becoming increasingly clear that not all GPCRs fit

this paradigm and a comprehensive analysis of receptor regulation is needed.

Therefore, we investigated the molecular mechanisms that underlie regulation of

GPCR signaling.  Specifically, we looked at the roles of the GRKs and arrestins

in regulating signal transduction following activation of two endogenous GPCRs

expressed in HEK293 cells: the M3 mAChR and CXCR4.  In addition, using

CXCR4 as a model receptor, we identified agonist-promoted sites of

phosphorylation by mass spectrometry.  Using a combination of phospho-specific

antibodies, RNA interference, and specific inhibitors, we then characterized the

kinetics and kinases involved in agonist-promoted phosphorylation.  Together,

these studies have significantly enhanced our understanding of CXCR4

regulation and provide the groundwork for understanding dysregulation of

CXCR4 in disease.

 
Differential Regulation of GPCR-Mediated Signaling Events By GRKs and

Arrestins
The role of GRKs in initiating the process of desensitization is a well-

established paradigm in GPCR regulation (Krupnick and Benovic, 1998).
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However, emerging evidence has uncovered a previously unappreciated role for

the GRKs and arrestins in initiating G protein-independent signaling cascades

following receptor activation (Reiter and Lefkowitz, 2006). Seminal studies with

the angiotensin and vasopressin receptors have provided evidence for the

following model:  GRK2/3, although primarily responsible for receptor

phosphorylation, negatively regulate arrestin-dependent ERK activation.

Conversely, GRK5/6 play a lesser role in overall receptor phosphorylation, but

positively regulate arrestin-dependent ERK activation (Kim et al., 2005; Ren et

al., 2005).  There are two important features implicit in this model: 1) GPCRs are

regulated by numerous GRKs in a coordinated fashion, and 2) GRK-specific

phosphorylation of GPCRs has distinct consequences on receptor activity and

signaling.  As similar phenomena have been described for the β2AR (Shenoy SK

et al., 2006) and follicle-stimulating hormone receptor (Kara E et al., 2006), it has

been suggested that this model is applicable to all GPCRs.

As the above-mentioned studies primarily used stable overexpression of

individual receptors, we wanted to better understand how phosphorylation

regulates signaling of endogenous GPCRs.  Therefore, we initially analyzed how

siRNA-mediated knock down of the GRKs affected signaling pathways activated

by the M3 mAChR (Gq-coupled) and CXCR4 (Gi-coupled), two receptors

endogenously expressed in HEK293 cells.  Using a two-pronged approach of

assaying calcium mobilization and ERK activation, we were able to define and

monitor changes in both the G protein-dependent and –independent signaling

pathways.  We found that GRK2, 3, and 6, and arrestin2 and 3 each has a
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distinct and separable role in regulating the activity of each receptor.

Interestingly, knock down of GRK5 did not effect signaling via either receptor.

Our studies with the M3 mAChR suggest that signaling is strictly through a

G protein-dependent manner and relief of inhibitory constraints (GRKs and

arrestins) subsequently enhances receptor function.  In contrast, CXCR4 uses

both a G protein-dependent and –independent (arrestin-dependent) means of

signaling.  Intriguingly, and in contrast to previous studies (Kim et al., 2005; Ren

et al., 2005; Kara et al., 2006; Shenoy et al., 2006), G protein-independent

signaling requires both GRK3 and 6, while GRK2 was inhibitory.  It is interesting

to note that, to date, GRK2 is largely a negative regulator and GRK6 is largely a

positive regulator of ERK activation. While this is the first demonstration that

GRK2/3 and GRK5/6 cooperate in terms of signaling, it has been recently shown

that GRK2 and 6 are required for the recruitment and high affinity interaction of

arrestin3 with the β2AR (Violin et al., 2006).  As more is learned regarding

differences in receptor phosphorylation, the underlying mechanisms should

become apparent.

We have also shown that arrestin2 and 3 differentially regulate the activity

and signaling of CXCR4.  Specifically, only knock down of arrestin3 led to

enhanced calcium mobilization following CXCR4 activation, suggesting a loss of

desensitization.  In contrast, arrestin2 is primarily responsible for the arrestin-

dependent phase of ERK activation.  This apparent reciprocal regulation has

been described for both the angiotensin (Ahn et al., 2004) and PAR1 receptor

(Kuo et al., 2006), where arrestin3 and 2 positively regulated signaling,
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respectively.  However, in contrast to the PAR1 receptor (Kuo et al., 2006),

arrestin3 is not completely inhibitory and seems to be required for early activation

of ERK1/2, suggesting a certain degree of codependence (reviewed in DeWire et

al., 2007).  In fact, overexpression of arrestin2 and 3 enhances ERK activation of

transiently expressed CXCR4 in HEK293 cells (Cheng et al., 2000).

Interestingly, G protein-dependent and arrestin-dependent signaling are not

temporally distinct (Ahn et al., 2004).  How arrestin modulates the subcellular

localization (Luttrell et al., 2001; Tohgo et al., 2002; Ahn et al., 2004) of these

signaling molecules, remains to be seen.

Taken together, these results clearly demonstrate that 1) GPCRs are

dynamically regulated by a number of proteins in a coordinated manner; 2) clear

differences exist between receptors expressed within the same cell type; and 3)

a comprehensive evaluation of individual receptors is needed to truly appreciate

and understand the intricacies of receptor regulation and signaling.  One major

limitation of assaying endogenous GPCRs is the inability to directly assess

whether or not the observed effect following GRK knock down is due to a loss of

receptor phosphorylation or through interaction with some downstream signaling

component.  This is a critical distinction as the functional consequences of GRK-

mediated signaling are just beginning to be uncovered.  As we have

demonstrated for the M3 mAChR, using specific point mutants helped delineate

that GRK2 primarily regulated Gαq following receptor activation.  As the GRKs

represent important pharmacological targets (Premont RT and Gainetdinov RR,

2007) that interact with a number of proteins (Ribas et al., 2007), the ability to
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specifically target and disrupt these interactions would be a benefit

therapeutically.

Determining Site- and Kinase-Specific Phosphorylation of GPCRs

In order to elucidate a functional role of site- or GRK-specific

phosphorylation, the sites phosphorylated and the kinases involved need to be

determined. Based on our initial studies examining the role of the GRKs in

receptor-mediated signaling, we wanted to further characterize agonist-promoted

phosphorylation of CXCR4.  With very few exceptions, the sites of agonist-

promoted phosphorylation of GPCRs are largely unknown.  CXCR4 is

extensively phosphorylated on as many as 18 potential phospho-acceptor sites in

the C terminal tail (Haribabu et al, 1997; Orsini et al., 1999).  Therefore, in order

to determine agonist-promoted sites of phosphorylation of CXCR4, we needed to

develop a number of biochemical approaches.  With the identification of mass

spectrometry-friendly detergents (Cadene et al., 2000) and epitope tag-based

purification (Kobilka 1995), it is now feasible to readily analyze non-visual

GPCRs by mass spectrometry for a myriad of post-translational modifications

(Trester-Zedlitz et al., 2005).  Importantly, as has been demonstrated with the

β2AR, differences in receptor phosphorylation clearly exist between in vitro and

“in vivo” studies (Fredericks et al., 1996; Trester-Zedlitz et al., 2005).  Therefore,

in an attempt to more closely mimic biologically relevant regulation, we chose to

purify CXCR4 from cell culture.

Mass spectrometry identified 6 sites of phosphorylation following SDF-

stimulation: Ser321, Ser324, Ser325, one between Ser338-341, and two
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between Ser346-352.  Unfortunately, the ability of mass spectrometry to identify

sites of phosphorylation is limited, to a certain degree, by the nature of the

peptides.  Using the endopeptidases Lys-C and chymotrypsin, we were able to

generate and identify peptides derived from the C terminal tail and portions of

intracellular loops 2 and 3 of CXCR4.  However, a complete complement of

peptides was not observed during the mass spectrometric analysis.  Namely,

peptides containing Ser330, the seventh phospho-acceptor site, were not

observed.  This demonstrates that a variety of techniques are needed in order to

comprehensively characterize receptor phosphorylation.

Having identified sites of phosphorylation, we next wanted to determine

the kinetics and kinase-specificity of phosphorylation.  Therefore, using both the

mass spectrometry results and previous studies (Marchese et al., 2001), we

successfully generated and characterized antibodies directed against pS324/5

and pS330.  Additionally, we were able to use a previously characterized

antibody directed at pS339 (Woerner et al., 2005). These antibodies proved to be

invaluable for identifying and characterizing the kinetics of and kinase-mediated

phosphorylation of CXCR4.  Unfortunately, attempts to generate an antibody

directed at pS321, a novel site of phosphorylation, were unsuccessful.

Furthermore, as we were not able to pinpoint the exact residues phosphorylated

between Ser346-352, we were unable to generate antibodies against these

residues.

We have found that GRK6 phosphorylates four serine residues (Ser324/5,

Ser330, and Ser339) and appears to be the kinase primarily responsible for
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CXCR4 phosphorylation.  Our data also suggest that GRK3 is responsible for

phosphorylation of two residues between Ser346-352.  Finally, we have provided

evidence for a direct and novel role of PKC in agonist-promoted phosphorylation

of CXCR4.  Overall, our results are consistent with the C terminal tail acting as

the primary site of phosphorylation (Haribabu et al., 1997).  However, we cannot

exclude that residues of the intracellular loops may also be phosphorylated.  In

fact, tyrosyl phosphorylation of the first or second intracellular loop has also been

suggested to occur and activate the JAK/STAT pathway independent of G

protein activation (Villa-Coro et al., 1999).

Functional Significance of Site-Specific Phosphorylation of GPCRs
Can a particular functional outcome be directly linked to site-specific

phosphorylation of a GPCR?  If so, delineating whether or not certain phospho-

sites are critical for receptor desensitization, trafficking, and signaling would be of

particular interest.  Furthermore, linking individual kinases with site-specific

phosphorylation (and function) would provide significant insight into receptor

regulation and, possibly, a novel area of therapeutic research. To date, the only

comprehensive study linking kinase-specific phosphorylation with a functional

outcome has been with smoothened, a 7 transmembrane receptor closely related

to GPCRs (Zhang et al., 2004; Fredriksson et al., 2003).  CXCR4 is of particular

interest as it plays a critical role in diverse physiological processes and is one of

the most commonly expressed receptors found on tumor cells, detected in more

than 20 distinct tumor types (reviewed in Busillo and Benovic, 2007). Here, we

have demonstrated that the GRKs and arrestins differentially regulate activity and
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signaling of CXCR4, providing insight into the functional significance of site-

specific phosphorylation of CXCR4.  While these results have direct implications

for CXCR4, the methods developed here are applicable to all GPCRs.

Much of the research on CXCR4 over the past 10 years has focused on

understanding the signaling pathways critical for tumor progression and

metastases (Vandercappellen et al., 2008).  Of these pathways, activation of

MAP kinases (i.e., ERK1/2, p38, and JNK) has been linked to cellular migration,

proliferation and survival (reviewed in Kucia et al., 2005).  Interestingly, G

protein-dependent and -independent MAP kinase activation are spatially distinct

(Luttrell et al., 2001; Tohgo et al., 2002; Ahn et al., 2004), providing a target of

potential therapeutic intervention.  Notably, we have found that GRK3 and 6

positively regulate arrestin-dependent ERK activation.  As knock down of GRK6

significantly enhances receptor activity we would predict that targeted disruption

of GRK6 would lead to global enhancement of CXCR4 activity.  Conversely,

disrupting GRK3 would be predicted to have no effect on receptor activity while

specifically altering arrestin-dependent ERK activation.  However, the differences

between G protein-dependent and –independent signaling downstream of

CXCR4 activation are currently unknown and warrant further investigation.

In addition to the potential importance in signaling, receptor

phosphorylation also drives specific protein/protein interactions, namely with

arrestin2 and 3.  Our results suggest that recruitment of the arrestins is

specifically driven by the differences in receptor phosphorylation, specifically of

residues within the last 15 amino acids of CXCR4.  All know WHIM syndrome
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truncations, which significantly enhance receptor function, occur within this

region (Diaz and Gulino, 2005).  Furthermore, deletion of either GRK6 or

arrestin3 in a mouse enhances receptor function (Fong et al., 2002).  Consistent

with these observations, knock down of GRK6 and arrestin3 significantly

enhances calcium mobilization.  Of the 4 sites phosphorylated by GRK6, Ser339

occurs the quickest, peaking within 2 minutes of stimulation.  Moreover,

overexpression of arrestin3 is unable to rescue desensitization and

internalization of CXCR4 lacking the last 15 amino acids (Balabanian et al.,

2008).  Collectively, based on these results, we could hypothesize that

phosphorylation of Ser339 is responsible for the initial recruitment of arrestin3 to

CXCR4.  Notably, GRK6 phosphorylation is also primarily responsible for the

recruitment of arrestin3 to the β2AR in HEK293 cells (Violin et al., 2006).  On the

other hand, the interaction of arrestin2 with CXCR4 appears to be driven by

GRK6- and GRK3-mediated phosphorylation of Ser 330 and Ser339 and Ser346-

352, respectively.  However, it is important to note that we were unable to

determine the kinetics of GRK3-mediated phosphorylation of Ser346-352.

Intriguingly, PKC-mediated phosphorylation of Ser324/5, though robust,

does not appear to contribute to either the recruitment of arrestin or G protein-

independent signaling.  Given the critical role of these residues in receptor

degradation (Marchese and Benovic, 2001), it is reasonable to hypothesize that

PKC-mediated phosphorylation drives receptor degradation. In fact,

phosphorylation of Ser324/5 appears to be required for the interaction of AIP4

with CXCR4 and subsequent receptor ubiquitination (A. Marchese, personal
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communication).  Accordingly, preliminary studies have suggested that PKC

inhibition is sufficient to completely block receptor degradation (data not shown).

Additionally, arrestin2 interacts with both CXCR4 and AIP4 at the endosome,

directing CXCR4 into the degradative pathway (Bhandari et al., 2007).  This

interaction could be largely driven/stabilized by phosphorylation of Ser330, which

we found to peak between 10 and 20 min of SDF-stimulation.

A conservative estimate puts GPCRs as targets for ~30% of currently

marketed pharmaceutical drugs (Jacoby et al., 2006).  The overall significance of

the research presented here, and linking site-specific phosphorylation to a

functional outcome in general, will have a broad impact on both basic and clinical

research.  For CXCR4 specifically, we can now begin to address the functional

role of site- and kinase-specific phosphorylation of CXCR4 in a variety of tissues.

More importantly, we can also begin to have a better understanding of whether or

not there is altered regulation of CXCR4 in a variety of diseases.  It is clear that

from the work presented here that CXCR4 phosphorylation is not just an off

switch for receptor activity, but in fact drives signaling pathways and likely a

variety of protein-protein interactions.  How these pathways are integrated in vivo

presents a significant, but interesting challenge for future research.

Future Directions
The work presented here has significantly enhanced our current

understanding of the mechanisms regulating CXCR4 activity and signaling.

However, despite these advances, additional biochemical and cellular studies are

warranted to further expand on the novel insights gained here.
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One of the novel findings of the research presented in this thesis was the

demonstration that individual kinases phosphorylate distinct sites on CXCR4.  It

is expected that receptor regulation and site-specific phosphorylation would

largely depend on tissue-specific differences in protein expression.  In fact, cell

type-dependent phosphorylation has been noted for the M3 mAChR (Torrecilla et

al., 2007).  Importantly, these studies revealed both common and cell type-

specific sites of phosphorylation (Torrecilla et al., 2007).  Using the phospho-

specific antibodies described here will allow us to quickly assess site-specific

phosphorylation in a variety of tissues.  Furthermore, and of substantial interest,

these could be used to determine if kinase-specificity is conserved in tissues and

tumors or is it a result of the relative expression of the individual GRKs (Violin et

al., 2006).

  Our data show a direct, and novel role for PKC as the primary kinase

responsible for agonist-promoted phosphorylation of Ser324/5. Determining to

what extent PKC is involved in Ser324/5 phosphorylation in a variety of tissues

would help substantiate our findings. Furthermore, preliminary results suggest

that PKC is critically involved in regulating CXCR4 degradation.  Inhibition of

PKC significantly blocks agonist-promoted degradation of CXCR4, however, we

are currently unable to distinguish if this is due to alterations in receptor

trafficking, ubiquitination, or combination of the two.  Extensive studies examining

cellular localization and receptor ubiquitination are warranted to fully delineate

how PKC, and to a larger extent Ser324/5 phosphorylation, affects receptor

degradation.
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We have observed that phosphorylation of CXCR4 occurs with clear

kinetic differences.  However, in the experiments presented here, we have not

fully addressed the biological relevance of this.  Our current hypothesis is that

phosphorylation of Ser339 is critical for arrestin3 recruitment, while

phosphorylation of Ser330, Ser339, and Ser346-352 are critical for forming a

stable arrestin2/CXCR4 complex.  In order to address arrestin recruitment and

interaction, we are currently investigating whether CXCR4 results in a

conformational change of arrestin2 and 3 by intramolecular bioluminescent

energy transfer (BRET) (Charest et al., 2005).  These studies should additionally

provide both the kinetics and the relative stability of arrestin recruitment and

interaction with CXCR4, respectively.  If positive, these studies would then be

expanded to look at how the knock down of GRK3 and GRK6 and specific

receptor point mutants affect these parameters.  Furthermore, detailed cellular

localization studies using individual point mutants would provide further functional

insight into site-specific phosphorylation.

How the GRKs and arrestins contribute to cancer progression and

metastases in CXCR4-positive tumors is also of significant interest.  Specifically,

what arrestin-dependent signaling pathways are activated that contribute to

cancer progression and metastases of these tumors?  Interestingly, to date there

have been no studies describing cancer progression/metastases in patients with

WHIM syndrome.  All of the WHIM mutations described to date either truncate

the last 10-15 amino acids of CXCR4 or have selective loss of GRK3 (Diaz and

Gulino, 2005; Balabanian et al., 2008), which we would predict are critical for
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activation of arrestin2-dependent signaling.  A simple way to address this

question would be to compare the signaling pathways activated downstream of

wild type or C terminally truncated (to Ser338) CXCR4 by western blot or

microarray analysis.  Given the clear role of arrestins in G protein-independent

signaling and the recent demonstration that arrestin directly regulates gene

transcription (Kang et al., 2005), it would be interesting to study how CXCR4

affecs the subcellular localization of arrestin following activation.

Immunohistochemical studies analyzing the expression pattern of arrestin in

breast cancer tissue have been initiated in the laboratory.  Using a similar

approach for the individual GRKs could provide correlations between CXCR4

expression and any alterations in the levels of the GRKs.

Finally, we have described an efficient and rapid protocol for purifying

activated, phosphorylated CXCR4.  Using this protocol, it may be possible to

determine proteins that specifically interact with CXCR4 in an agonsit-dependent

manner.  However, it should be noted that the relative affinities of these

interactions may be weak and would need experimental manipulation (i.e.,

chemical crosslinking) to maintain.  Additionally, with further optimization,

activated phosphorylated CXCR4 may be purified to sufficient homogeneity to

allow for crystallization and structural determination.  To date, the crystal

structures of a handful of GPCRs have been solved (Palczewski et al., 2001;

Cherezov et al., 2007; Rasmussen et al., 2007; Jaakola et al., 2008; Park et al.,

2008).  Each of these structures has had a substantial impact, however with the

exception of metarhodopsin (Park et al., 2008), they are inactive and, for some,
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are chimeras that allowed for receptor stabilization and crystallization (Cherezov

et al., 2007; Jaakola et al., 2008).  While undoubtedly a daunting task, the

possibility of obtaining a crystal structure of a GPCR in its active form, and

possibly complexed with other proteins (e.g., G proteins or arrestin), would be a

significant revelation for the field of GPCR biology.



171

BIBLIOGRAPHY

Agrawal, L., Lu, X., Jin, Q. and Alkhatib, G. (2006) Anti-HIV Therapy: Current and
Future Directions. Curr Pharm Des, 12, 2031-2055.

Agrawal, L., Lu, X., Qingwen, J., VanHorn-Ali, Z., Nicolescu, I.V., McDermott,
D.H., Murphy, P.M. and Alkhatib, G. (2004) Role for CCR5Delta32 protein
in resistance to R5, R5X4, and X4 human immunodeficiency virus type 1
in primary CD4+ cells. J Virol, 78, 2277-2287.

Ahn, S., Wei, H., Garrison, T.R. and Lefkowitz, R.J. (2004) Reciprocal regulation
of angiotensin receptor-activated extracellular signal-regulated kinases by
beta-arrestins 1 and 2. J Biol Chem, 279, 7807-7811.

Allinen, M., Beroukhim, R., Cai, L., Brennan, C., Lahti-Domenici, J., Huang, H.,
Porter, D., Hu, M., Chin, L., Richardson, A., Schnitt, S., Sellers, W.R. and
Polyak, K. (2004) Molecular characterization of the tumor
microenvironment in breast cancer. Cancer Cell, 6, 17-32.

Ambrose, C., James, M., Barnes, G., Lin, C., Bates, G., Altherr, M., Duyao, M.,
Groot, N., Church, D., Wasmuth, J.J. and et al. (1992) A novel G protein-
coupled receptor kinase gene cloned from 4p16.3. Hum Mol Genet, 1,
697-703.

Angers, S., Salahpour, A. and Bouvier, M. (2002) Dimerization: an emerging
concept for G protein-coupled receptor ontogeny and function. Annu Rev
Pharmacol Toxicol, 42, 409-435.

Ara, T., Itoi, M., Kawabata, K., Egawa, T., Tokoyoda, K., Sugiyama, T., Fujii, N.,
Amagai, T. and Nagasawa, T. (2003) A role of CXC chemokine ligand
12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its
receptor CXCR4 in fetal and adult T cell development in vivo. J Immunol,
170, 4649-4655.

Attramadal, H., Arriza, J.L., Aoki, C., Dawson, T.M., Codina, J., Kwatra, M.M.,
Snyder, S.H., Caron, M.G. and Lefkowitz, R.J. (1992) Beta-arrestin2, a
novel member of the arrestin/beta-arrestin gene family. J Biol Chem, 267,
17882-17890.



172

Azzi, M., Charest, P.G., Angers, S., Rousseau, G., Kohout, T., Bouvier, M. and
Pineyro, G. (2003) Beta-arrestin-mediated activation of MAPK by inverse
agonists reveals distinct active conformations for G protein-coupled
receptors. Proc Natl Acad Sci U S A, 100, 11406-11411.

Babcock, G.J., Farzan, M. and Sodroski, J. (2003) Ligand-independent
dimerization of CXCR4, a principal HIV-1 coreceptor. J Biol Chem, 278,
3378-3385.

Bachelder, R.E., Wendt, M.A. and Mercurio, A.M. (2002) Vascular endothelial
growth factor promotes breast carcinoma invasion in an autocrine manner
by regulating the chemokine receptor CXCR4. Cancer Res, 62, 7203-
7206.

Bai, M. (2004) Dimerization of G-protein-coupled receptors: roles in signal
transduction. Cell Signal, 16, 175-186.

Balabanian, K., Lagane, B., Pablos, J.L., Laurent, L., Planchenault, T., Verola,
O., Lebbe, C., Kerob, D., Dupuy, A., Hermine, O., Nicolas, J.F., Latger-
Cannard, V., Bensoussan, D., Bordigoni, P., Baleux, F., Le Deist, F.,
Virelizier, J.L., Arenzana-Seisdedos, F. and Bachelerie, F. (2005) WHIM
syndromes with different genetic anomalies are accounted for by impaired
CXCR4 desensitization to CXCL12. Blood, 105, 2449-2457.

Balabanian, K., Levoye, A., Klemm, L., Lagane, B., Hermine, O., Harriague, J.,
Baleux, F., Arenzana-Seisdedos, F. and Bachelerie, F. (2008) Leukocyte
analysis from WHIM syndrome patients reveals a pivotal role for GRK3 in
CXCR4 signaling. J Clin Invest, 118, 1074-1084.

Balkwill, F. (2004a) Cancer and the chemokine network. Nat Rev Cancer, 4, 540-
550.

Balkwill, F. (2004b) The significance of cancer cell expression of the chemokine
receptor CXCR4. Semin Cancer Biol, 14, 171-179.

Basmaciogullari, S., Pacheco, B., Bour, S. and Sodroski, J. (2006) Specific
interaction of CXCR4 with CD4 and CD8alpha: Functional analysis of the
CD4/CXCR4 interaction in the context of HIV-1 envelope glycoprotein-
mediated membrane fusion. Virology.



173

Benovic, J.L. and Gomez, J. (1993) Molecular cloning and expression of GRK6.
A new member of the G protein-coupled receptor kinase family. J Biol
Chem, 268, 19521-19527.

Benovic, J.L., Kuhn, H., Weyand, I., Codina, J., Caron, M.G. and Lefkowitz, R.J.
(1987) Functional desensitization of the isolated beta-adrenergic receptor
by the beta-adrenergic receptor kinase: potential role of an analog of the
retinal protein arrestin (48-kDa protein). Proc Natl Acad Sci U S A, 84,
8879-8882.

Benovic, J.L., Onorato, J.J., Arriza, J.L., Stone, W.C., Lohse, M., Jenkins, N.A.,
Gilbert, D.J., Copeland, N.G., Caron, M.G. and Lefkowitz, R.J. (1991)
Cloning, expression, and chromosomal localization of beta-adrenergic
receptor kinase 2. A new member of the receptor kinase family. J Biol
Chem, 266, 14939-14946.

Benovic, J.L., Strasser, R.H., Caron, M.G. and Lefkowitz, R.J. (1986) Beta-
adrenergic receptor kinase: identification of a novel protein kinase that
phosphorylates the agonist-occupied form of the receptor. Proc Natl Acad
Sci U S A, 83, 2797-2801.

Benovic, J.L., DeBlasi, A., Stone, W.C., Caron, M.G., and Lefkowitz, R.J. (1989)
Beta-adrenergic receptor kinase: primary structure delineates a multigene
family. Science 246, 235-240.

Berson, J.F., Long, D., Doranz, B.J., Rucker, J., Jirik, F.R. and Doms, R.W.
(1996) A seven-transmembrane domain receptor involved in fusion and
entry of T-cell-tropic human immunodeficiency virus type 1 strains. J Virol,
70, 6288-6295.

Bhandari, D., Trejo, J., Benovic, J.L. and Marchese, A. (2007) Arrestin-2 interacts
with the ubiquitin-protein isopeptide ligase atrophin-interacting protein 4
and mediates endosomal sorting of the chemokine receptor CXCR4. J Biol
Chem, 282, 36971-36979.

Boyer, J.L., Waldo, G.L. and Harden, T.K. (1992) Beta gamma-subunit activation
of G-protein-regulated phospholipase C. J Biol Chem, 267, 25451-25456.

Brelot, A., Heveker, N., Montes, M. and Alizon, M. (2000) Identification of
residues of CXCR4 critical for human immunodeficiency virus coreceptor
and chemokine receptor activities. J Biol Chem, 275, 23736-23744.



174

Brelot, A., Heveker, N., Pleskoff, O., Sol, N. and Alizon, M. (1997) Role of the
first and third extracellular domains of CXCR-4 in human
immunodeficiency virus coreceptor activity. J Virol, 71, 4744-4751.

Bruchas, M.R., Macey, T.A., Lowe, J.D. and Chavkin, C. (2006) Kappa opioid
receptor activation of p38 MAPK is GRK3- and arrestin-dependent in
neurons and astrocytes. J Biol Chem, 281, 18081-18089.

Budd, D.C., McDonald, J.E., and Tobin, A.B. (2000) Phosphorylation and
regulation of a Gq/11-coupled receptor by casein kinase 1-alpha. J Biol
Chem, 275, 19667-19675.

Burger, J.A. and Kipps, T.J. (2006) CXCR4: a key receptor in the crosstalk
between tumor cells and their microenvironment. Blood, 107, 1761-1767.

Burger, J.A., Tsukada, N., Burger, M., Zvaifler, N.J., Dell'Aquila, M. and Kipps,
T.J. (2000) Blood-derived nurse-like cells protect chronic lymphocytic
leukemia B cells from spontaneous apoptosis through stromal cell-derived
factor-1. Blood, 96, 2655-2663.

Burger, M., Glodek, A., Hartmann, T., Schmitt-Graff, A., Silberstein, L.E., Fujii,
N., Kipps, T.J. and Burger, J.A. (2003) Functional expression of CXCR4
(CD184) on small-cell lung cancer cells mediates migration, integrin
activation, and adhesion to stromal cells. Oncogene, 22, 8093-8101.

Busillo, J.M and Benovic, J.L. (2007) Regulation of CXCR4 signaling. Biochim
Biophys Acta, 1768, 952-963.

Cadene, M. and Chait, B.T. (2000) A robust, detergent-friendly method for mass
spectrometric analysis of integral membrane proteins. Anal Chem, 72,
5655-5658.

Campbell, J.J., Hedrick, J., Zlotnik, A., Siani, M.A., Thompson, D.A. and Butcher,
E.C. (1998) Chemokines and the arrest of lymphocytes rolling under flow
conditions. Science, 279, 381-384.

Carman, C.V., Lisanti, M.P. and Benovic, J.L. (1999a) Regulation of G protein-
coupled receptor kinases by caveolin. J Biol Chem, 274, 8858-8864.



175

Carman, C.V., Parent, J.L., Day, P.W., Pronin, A.N., Sternweis, P.M.,
Wedegaertner, P.B., Gilman, A.G., Benovic, J.L. and Kozasa, T. (1999b)
Selective regulation of Galpha(q/11) by an RGS domain in the G protein-
coupled receptor kinase, GRK2. J Biol Chem, 274, 34483-34492.

Caruz, A., Samsom, M., Alonso, J.M., Alcami, J., Baleux, F., Virelizier, J.L.,
Parmentier, M. and Arenzana-Seisdedos, F. (1998) Genomic organization
and promoter characterization of human CXCR4 gene. FEBS Lett, 426,
271-278.

Castellone, M.D., Guarino, V., De Falco, V., Carlomagno, F., Basolo, F., Faviana,
P., Kruhoffer, M., Orntoft, T., Russell, J.P., Rothstein, J.L., Fusco, A.,
Santoro, M. and Melillo, R.M. (2004) Functional expression of the CXCR4
chemokine receptor is induced by RET/PTC oncogenes and is a common
event in human papillary thyroid carcinomas. Oncogene, 23, 5958-5967.

Chabot, D.J., Chen, H., Dimitrov, D.S. and Broder, C.C. (2000) N-linked
glycosylation of CXCR4 masks coreceptor function for CCR5-dependent
human immunodeficiency virus type 1 isolates. J Virol, 74, 4404-4413.

Chabot, D.J., Zhang, P.F., Quinnan, G.V. and Broder, C.C. (1999) Mutagenesis
of CXCR4 identifies important domains for human immunodeficiency virus
type 1 X4 isolate envelope-mediated membrane fusion and virus entry and
reveals cryptic coreceptor activity for R5 isolates. J Virol, 73, 6598-6609.

Charest, P.G., Terrillon, S., and Bouvier, M. (2005) Monitoring agonist-promoted
conformational changes of beta-arrestin in living cells by intramolecular
BRET. EMBO Rep, 6, 334-340.

Cheng, Z.J., Zhao, J., Sun, Y., Hu, W., Wu, Y.L., Cen, B., Wu, G.X. and Pei, G.
(2000) beta-arrestin differentially regulates the chemokine receptor
CXCR4-mediated signaling and receptor internalization, and this
implicates multiple interaction sites between beta-arrestin and CXCR4. J
Biol Chem, 275, 2479-2485.

Cherezov, V., Rosenbaum, D.M., Hanson, M.A., Rasmussen, S.G., Thian, F.S.,
Kobilka, T.S., Choi H.J., Kuhn, P., Weis, W.I., Kobilka, B.K., and Stevens,
R.C. (2007) High-resolution crystal structure of an engineered human
beta2-adrenergic G protein-coupled receptor. Science, 318, 1258-1265.



176

Christopherson, K.W., 2nd, Hangoc, G. and Broxmeyer, H.E. (2002) Cell surface
peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-
derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+
progenitor cells. J Immunol, 169, 7000-7008.

Cong, M., Perry, S.J., Lin, F.T., Fraser, I.D., Hu, L.A., Chen, W., Pitcher, J.A.,
Scott, J.D. and Lefkowitz, R.J. (2001) Regulation of membrane targeting
of the G protein-coupled receptor kinase 2 by protein kinase A and its
anchoring protein AKAP79. J Biol Chem, 276, 15192-15199.

Contento, R.L., Molon, B., Boularan, C., Pozzan, T., Manes, S., Marullo, S. and
Viola, A. (2008) CXCR4-CCR5: a couple modulating T cell functions. Proc
Natl Acad Sci U S A, 105, 10101-10106.

Corcione, A., Ottonello, L., Tortolina, G., Facchetti, P., Airoldi, I., Guglielmino, R.,
Dadati, P., Truini, M., Sozzani, S., Dallegri, F. and Pistoia, V. (2000)
Stromal cell-derived factor-1 as a chemoattractant for follicular center
lymphoma B cells. J Natl Cancer Inst, 92, 628-635.

Cristillo, A.D., Highbarger, H.C., Dewar, R.L., Dimitrov, D.S., Golding, H. and
Bierer, B.E. (2002) Up-regulation of HIV coreceptor CXCR4 expression in
human T lymphocytes is mediated in part by a cAMP-responsive element.
Faseb J, 16, 354-364.

Crump, M.P., Gong, J.H., Loetscher, P., Rajarathnam, K., Amara, A., Arenzana-
Seisdedos, F., Virelizier, J.L., Baggiolini, M., Sykes, B.D. and Clark-Lewis,
I. (1997) Solution structure and basis for functional activity of stromal cell-
derived factor-1; dissociation of CXCR4 activation from binding and
inhibition of HIV-1. Embo J, 16, 6996-7007.

Daaka, Y., Luttrell, L.M., Ahn, S., Della Rocca, G.J., Ferguson, S.S., Caron, M.G.
and Lefkowitz, R.J. (1998) Essential role for G protein-coupled receptor
endocytosis in the activation of mitogen-activated protein kinase. J Biol
Chem, 273, 685-688.

Damiano, J.S., Cress, A.E., Hazlehurst, L.A., Shtil, A.A. and Dalton, W.S. (1999)
Cell adhesion mediated drug resistance (CAM-DR): role of integrins and
resistance to apoptosis in human myeloma cell lines. Blood, 93, 1658-
1667.



177

de Nigris, F., Rossiello, R., Schiano, C., Arra, C., Williams-Ignarro, S., Barbieri,
A., Lanza, A., Balestrieri, A., Giuliano, M.T., Ignarro, L.J. and Napoli, C.
(2008) Deletion of Yin Yang 1 protein in osteosarcoma cells on cell
invasion and CXCR4/angiogenesis and metastasis. Cancer Res, 68,
1797-1808.

Dealwis, C., Fernandez, E.J., Thompson, D.A., Simon, R.J., Siani, M.A. and
Lolis, E. (1998) Crystal structure of chemically synthesized [N33A] stromal
cell-derived factor 1alpha, a potent ligand for the HIV-1 "fusin" coreceptor.
Proc Natl Acad Sci U S A, 95, 6941-6946.

DebBurman, S.K., Ptasienski, J., Benovic, J.L. and Hosey, M.M. (1996) G
protein-coupled receptor kinase GRK2 is a phospholipid-dependent
enzyme that can be conditionally activated by G protein betagamma
subunits. J Biol Chem, 271, 22552-22562.

DebBurman, S.K., Ptasienski, J., Boetticher, E., Lomasney, J.W., Benovic, J.L.
and Hosey, M.M. (1995) Lipid-mediated regulation of G protein-coupled
receptor kinases 2 and 3. J Biol Chem, 270, 5742-5747.

DeFea, K.A., Vaughn, Z.D., O'Bryan, E.M., Nishijima, D., Dery, O. and Bunnett,
N.W. (2000a) The proliferative and antiapoptotic effects of substance P
are facilitated by formation of a beta -arrestin-dependent scaffolding
complex. Proc Natl Acad Sci U S A, 97, 11086-11091.

DeFea, K.A., Zalevsky, J., Thoma, M.S., Dery, O., Mullins, R.D. and Bunnett,
N.W. (2000b) beta-arrestin-dependent endocytosis of proteinase-activated
receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell
Biol, 148, 1267-1281.

Delgado, M.B., Clark-Lewis, I., Loetscher, P., Langen, H., Thelen, M., Baggiolini,
M. and Wolf, M. (2001) Rapid inactivation of stromal cell-derived factor-1
by cathepsin G associated with lymphocytes. Eur J Immunol, 31, 699-707.

DeWire, S.M., Ahn, S., Lefkowitz, R.J. and Shenoy, S.K. (2007) Beta-arrestins
and cell signaling. Annu Rev Physiol, 69, 483-510.

Diaz, G.A. and Gulino, A.V. (2005) WHIM syndrome: a defect in CXCR4
signaling. Curr Allergy Asthma Rep, 5, 350-355.



178

Doranz, B.J., Orsini, M.J., Turner, J.D., Hoffman, T.L., Berson, J.F., Hoxie, J.A.,
Peiper, S.C., Brass, L.F. and Doms, R.W. (1999) Identification of CXCR4
domains that support coreceptor and chemokine receptor functions. J
Virol, 73, 2752-2761.

Drake, M.T., Violin, J.D., Whalen, E.J., Wisler, J.W., Shenoy, S.K. and Lefkowitz,
R.J. (2008) beta-arrestin-biased agonism at the beta2-adrenergic
receptor. J Biol Chem, 283, 5669-5676.

Egawa, T., Kawabata, K., Kawamoto, H., Amada, K., Okamoto, R., Fujii, N.,
Kishimoto, T., Katsura, Y. and Nagasawa, T. (2001) The earliest stages of
B cell development require a chemokine stromal cell-derived factor/pre-B
cell growth-stimulating factor. Immunity, 15, 323-334.

Fan, G., Shumay, E., Malbon, C.C. and Wang, H. (2001) c-Src tyrosine kinase
binds the beta 2-adrenergic receptor via phospho-Tyr-350, phosphorylates
G-protein-linked receptor kinase 2, and mediates agonist-induced receptor
desensitization. J Biol Chem, 276, 13240-13247.

Farzan, M., Babcock, G.J., Vasilieva, N., Wright, P.L., Kiprilov, E., Mirzabekov, T.
and Choe, H. (2002a) The role of post-translational modifications of the
CXCR4 amino terminus in stromal-derived factor 1 alpha association and
HIV-1 entry. J Biol Chem, 277, 29484-29489.

Farzan, M., Chung, S., Li, W., Vasilieva, N., Wright, P.L., Schnitzler, C.E.,
Marchione, R.J., Gerard, C., Gerard, N.P., Sodroski, J. and Choe, H.
(2002b) Tyrosine-sulfated peptides functionally reconstitute a CCR5
variant lacking a critical amino-terminal region. J Biol Chem, 277, 40397-
40402.

Farzan, M., Mirzabekov, T., Kolchinsky, P., Wyatt, R., Cayabyab, M., Gerard,
N.P., Gerard, C., Sodroski, J. and Choe, H. (1999) Tyrosine sulfation of
the amino terminus of CCR5 facilitates HIV-1 entry. Cell, 96, 667-676.

Fedyk, E.R., Ryyan, D.H., Ritterman, I. and Springer, T.A. (1999) Maturation
decreases responsiveness of human bone marrow B lineage cells to
stromal-derived factor 1 (SDF-1). J Leukoc Biol, 66, 667-673.

Feil, C. and Augustin, H.G. (1998) Endothelial cells differentially express
functional CXC-chemokine receptor-4 (CXCR-4/fusin) under the control of



179

autocrine activity and exogenous cytokines. Biochem Biophys Res
Commun, 247, 38-45.

Feng, Y., Broder, C.C., Kennedy, P.E. and Berger, E.A. (1996) HIV-1 entry
cofactor: functional cDNA cloning of a seven-transmembrane, G protein-
coupled receptor. Science, 272, 872-877.

Ferguson, S.S. (2001) Evolving concepts in G protein-coupled receptor
endocytosis: the role in receptor desensitization and signaling. Pharmacol
Rev, 53, 1-24.

Ferguson, S.S., Downey, W.E., 3rd, Colapietro, A.M., Barak, L.S., Menard, L.
and Caron, M.G. (1996) Role of beta-arrestin in mediating agonist-
promoted G protein-coupled receptor internalization. Science, 271, 363-
366.

Fernandez, E.J. and Lolis, E. (2002) Structure, function, and inhibition of
chemokines. Annu Rev Pharmacol Toxicol, 42, 469-499.

Fernandis, A.Z., Prasad, A., Band, H., Klosel, R. and Ganju, R.K. (2004)
Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast
cancer cells. Oncogene, 23, 157-167.

Flower, D.R. (1999) Modelling G-protein-coupled receptors for drug design.
Biochim Biophys Acta, 1422, 207-234.

Fong, A.M., Alam, S.M., Imai, T., Haribabu, B. and Patel, D.D. (2002a) CX3CR1
tyrosine sulfation enhances fractalkine-induced cell adhesion. J Biol
Chem, 277, 19418-19423.

Fong, A.M., Premont, R.T., Richardson, R.M., Yu, Y.R., Lefkowitz, R.J. and
Patel, D.D. (2002b) Defective lymphocyte chemotaxis in beta-arrestin2-
and GRK6-deficient mice. Proc Natl Acad Sci U S A, 99, 7478-7483.

Fredericks, Z.L., Pitcher, J.A., and Lefkowitz, R.J. (1996) Identification of the G
protein-coupled receptor kinase phosphorylation sites in the human beta2-
adrenergic receptor. J Biol Chem, 271, 13796-13803.



180

Fredriksson, R., Lagerstrom, M.C., Lundin, L.G. and Schioth, H.B. (2003) The G-
protein-coupled receptors in the human genome form five main families.
Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol,
63, 1256-1272.

Freeman, J.L., Pitcher, J.A., Li, X., Bennett, V. and Lefkowitz, R.J. (2000) alpha-
Actinin is a potent regulator of G protein-coupled receptor kinase activity
and substrate specificity in vitro. FEBS Lett, 473, 280-284.

Futahashi, Y., Komano, J., Urano, E., Aoki, T., Hamatake, M., Miyauchi, K.,
Yoshida, T., Koyanagi, Y., Matsuda, Z. and Yamamoto, N. (2007)
Separate elements are required for ligand-dependent and -independent
internalization of metastatic potentiator CXCR4. Cancer Sci, 98, 373-379.

Gaidarov, I., Krupnick, J.G., Falck, J.R., Benovic, J.L. and Keen, J.H. (1999)
Arrestin function in G protein-coupled receptor endocytosis requires
phosphoinositide binding. Embo J, 18, 871-881.

Geminder, H., Sagi-Assif, O., Goldberg, L., Meshel, T., Rechavi, G., Witz, I.P.
and Ben-Baruch, A. (2001) A possible role for CXCR4 and its ligand, the
CXC chemokine stromal cell-derived factor-1, in the development of bone
marrow metastases in neuroblastoma. J Immunol, 167, 4747-4757.

Glodek, A.M., Honczarenko, M., Le, Y., Campbell, J.J. and Silberstein, L.E.
(2003) Sustained activation of cell adhesion is a differentially regulated
process in B lymphopoiesis. J Exp Med, 197, 461-473.

Goodman, O.B., Jr., Krupnick, J.G., Santini, F., Gurevich, V.V., Penn, R.B.,
Gagnon, A.W., Keen, J.H. and Benovic, J.L. (1996) Beta-arrestin acts as a
clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature,
383, 447-450.

Guinamard, R., Signoret, N., Ishiai, M., Marsh, M., Kurosaki, T. and Ravetch, J.V.
(1999) B cell antigen receptor engagement inhibits stromal cell-derived
factor (SDF)-1alpha chemotaxis and promotes protein kinase C (PKC)-
induced internalization of CXCR4. J Exp Med, 189, 1461-1466.

Gulino, A.V. (2003) WHIM syndrome: a genetic disorder of leukocyte trafficking.
Curr Opin Allergy Clin Immunol, 3, 443-450.



181

Gulino, A.V., Moratto, D., Sozzani, S., Cavadini, P., Otero, K., Tassone, L.,
Imberti, L., Pirovano, S., Notarangelo, L.D., Soresina, R., Mazzolari, E.,
Nelson, D.L., Notarangelo, L.D. and Badolato, R. (2004) Altered leukocyte
response to CXCL12 in patients with warts hypogammaglobulinemia,
infections, myelokathexis (WHIM) syndrome. Blood, 104, 444-452.

Gupta, S.K., Lysko, P.G., Pillarisetti, K., Ohlstein, E. and Stadel, J.M. (1998)
Chemokine receptors in human endothelial cells. Functional expression of
CXCR4 and its transcriptional regulation by inflammatory cytokines. J Biol
Chem, 273, 4282-4287.

Gurevich, V.V. and Benovic, J.L. (1993a) Visual arrestin interaction with
rhodopsin. Sequential multisite binding ensures strict selectivity toward
light-activated phosphorylated rhodopsin. J Biol Chem, 268, 11628-11638.

Gurevich, V.V., Dion, S.B., Onorato, J.J., Ptasienski, J., Kim, C.M., Sterne-Marr,
R., Hosey, M.M. and Benovic, J.L. (1995) Arrestin interactions with G
protein-coupled receptors. Direct binding studies of wild type and mutant
arrestins with rhodopsin, beta 2-adrenergic, and m2 muscarinic cholinergic
receptors. J Biol Chem, 270, 720-731.

Gurevich, V.V. and Gurevich, E.V. (2006) The structural basis of arrestin-
mediated regulation of G-protein-coupled receptors. Pharmacol Ther, 110,
465-502.

Gurevich, V.V., Richardson, R.M., Kim, C.M., Hosey, M.M. and Benovic, J.L.
(1993b) Binding of wild type and chimeric arrestins to the m2 muscarinic
cholinergic receptor. J Biol Chem, 268, 16879-16882.

Han, Y., Wang, J., He, T. and Ransohoff, R.M. (2001) TNF-alpha down-regulates
CXCR4 expression in primary murine astrocytes. Brain Res, 888, 1-10.

Hanks, S.K. and Hunter, T. (1995) Protein kinases 6. The eukaryotic protein
kinase superfamily: kinase (catalytic) domain structure and classification.
Faseb J, 9, 576-596.

Hargrave, P.A. and McDowell, J.H. (1992) Rhodopsin and phototransduction: a
model system for G protein-linked receptors. Faseb J, 6, 2323-2331.



182

Hargreaves, D.C., Hyman, P.L., Lu, T.T., Ngo, V.N., Bidgol, A., Suzuki, G., Zou,
Y.R., Littman, D.R. and Cyster, J.G. (2001) A coordinated change in
chemokine responsiveness guides plasma cell movements. J Exp Med,
194, 45-56.

Haribabu, B., Richardson, R.M., Fisher, I., Sozzani, S., Peiper, S.C., Horuk, R.,
Ali, H. and Snyderman, R. (1997) Regulation of human chemokine
receptors CXCR4. Role of phosphorylation in desensitization and
internalization. J Biol Chem, 272, 28726-28731.

Hartmann, T.N., Burger, J.A., Glodek, A., Fujii, N. and Burger, M. (2005) CXCR4
chemokine receptor and integrin signaling co-operate in mediating
adhesion and chemoresistance in small cell lung cancer (SCLC) cells.
Oncogene, 24, 4462-4471.

Hasegawa, A., Yasukawa, M., Sakai, I. and Fujita, S. (2001) Transcriptional
down-regulation of CXC chemokine receptor 4 induced by impaired
association of transcription regulator YY1 with c-Myc in human
herpesvirus 6-infected cells. J Immunol, 166, 1125-1131.

Hecht, I., Cahalon, L., Hershkoviz, R., Lahat, A., Franitza, S. and Lider, O. (2003)
Heterologous desensitization of T cell functions by CCR5 and CXCR4
ligands: inhibition of cellular signaling, adhesion and chemotaxis. Int
Immunol, 15, 29-38.

Helbig, G., Christopherson, K.W., 2nd, Bhat-Nakshatri, P., Kumar, S., Kishimoto,
H., Miller, K.D., Broxmeyer, H.E. and Nakshatri, H. (2003) NF-kappaB
promotes breast cancer cell migration and metastasis by inducing the
expression of the chemokine receptor CXCR4. J Biol Chem, 278, 21631-
21638.

Hernandez, P.A., Gorlin, R.J., Lukens, J.N., Taniuchi, S., Bohinjec, J., Francois,
F., Klotman, M.E. and Diaz, G.A. (2003) Mutations in the chemokine
receptor gene CXCR4 are associated with WHIM syndrome, a combined
immunodeficiency disease. Nat Genet, 34, 70-74.

Hesselgesser, J., Liang, M., Hoxie, J., Greenberg, M., Brass, L.F., Orsini, M.J.,
Taub, D. and Horuk, R. (1998) Identification and characterization of the
CXCR4 chemokine receptor in human T cell lines: ligand binding,
biological activity, and HIV-1 infectivity. J Immunol, 160, 877-883.



183

Hidalgo-Estevez, A.M., Punzon, C., Sanchez-Duffhues, G., Munoz, E. and
Fresno, M. (2008) HIV-1-Tat potentiates CXCL12/Stromal Cell-Derived
Factor 1-induced downregulation of membrane CXCR4 in T lymphocytes
through Protein kinase C zeta. Mol Immunol.

Hildebrandt, J.D. and Birnbaumer, L. (1983) Inhibitory regulation of adenylyl
cyclase in the absence of stimulatory regulation. Requirements and
kinetics of guanine nucleotide-induced inhibition of the cyc- S49 adenylyl
cyclase. J Biol Chem, 258, 13141-13147.

Hirota, K. and Semenza, G.L. (2006) Regulation of angiogenesis by hypoxia-
inducible factor 1. Crit Rev Oncol Hematol, 59, 15-26.

Holland, J.D., Kochetkova, M., Akekawatchai, C., Dottore, M., Lopez, A. and
McColl, S.R. (2006) Differential functional activation of chemokine
receptor CXCR4 is mediated by G proteins in breast cancer cells. Cancer
Res, 66, 4117-4124.

Holmes, W.D., Consler, T.G., Dallas, W.S., Rocque, W.J. and Willard, D.H.
(2001) Solution studies of recombinant human stromal-cell-derived factor-
1. Protein Expr Purif, 21, 367-377.

Honczarenko, M., Douglas, R.S., Mathias, C., Lee, B., Ratajczak, M.Z. and
Silberstein, L.E. (1999) SDF-1 responsiveness does not correlate with
CXCR4 expression levels of developing human bone marrow B cells.
Blood, 94, 2990-2998.

Hoogewerf, A.J., Kuschert, G.S., Proudfoot, A.E., Borlat, F., Clark-Lewis, I.,
Power, C.A. and Wells, T.N. (1997) Glycosaminoglycans mediate cell
surface oligomerization of chemokines. Biochemistry, 36, 13570-13578.

Huang, X., Shen, J., Cui, M., Shen, L., Luo, X., Ling, K., Pei, G., Jiang, H. and
Chen, K. (2003) Molecular dynamics simulations on SDF-1alpha: binding
with CXCR4 receptor. Biophys J, 84, 171-184.

Huhn, J., Ehrlich, S., Fleischer, B. and von Bonin, A. (2000) Molecular analysis of
CD26-mediated signal transduction in T cells. Immunol Lett, 72, 127-132.

Huttenrauch, F., Pollok-Kopp, B. and Oppermann, M. (2005) G protein-coupled
receptor kinases promote phosphorylation and beta-arrestin-mediated



184

internalization of CCR5 homo- and hetero-oligomers. J Biol Chem, 280,
37503-37515.

Hwang, J.H., Hwang, J.H., Chung, H.K., Kim, D.W., Hwang, E.S., Suh, J.M., Kim,
H., You, K.H., Kwon, O.Y., Ro, H.K., Jo, D.Y. and Shong, M. (2003) CXC
chemokine receptor 4 expression and function in human anaplastic thyroid
cancer cells. J Clin Endocrinol Metab, 88, 408-416.

Inglese, J., Koch, W.J., Caron, M.G. and Lefkowitz, R.J. (1992) Isoprenylation in
regulation of signal transduction by G-protein-coupled receptor kinases.
Nature, 359, 147-150.

Issafras, H., Angers, S., Bulenger, S., Blanpain, C., Parmentier, M., Labbe-Jullie,
C., Bouvier, M. and Marullo, S. (2002) Constitutive agonist-independent
CCR5 oligomerization and antibody-mediated clustering occurring at
physiological levels of receptors. J Biol Chem, 277, 34666-34673.

Jaakola, V.P., Griffith, M.T., Hanson, M.A., Cherezov, V., Chien, E.Y., Lane, J.R.,
Ijzerman, A.P., and Stevens, R.C. (2008) The 2.6 angstrom crystal
structure of a human A2A adenosine receptor bound to antagonist.
Science, October 2008 (e-published).

Jacoby, E., Bouhelal, R., Gerspacher, M. and Seuwen, K. (2006) The 7 TM G-
protein-coupled receptor target family. ChemMedChem, 1, 761-782.

Janowska-Wieczorek, A., Majka, M., Kijowski, J., Baj-Krzyworzeka, M., Reca, R.,
Turner, A.R., Ratajczak, J., Emerson, S.G., Kowalska, M.A. and
Ratajczak, M.Z. (2001) Platelet-derived microparticles bind to
hematopoietic stem/progenitor cells and enhance their engraftment.
Blood, 98, 3143-3149.

Janowska-Wieczorek, A., Marquez, L.A., Dobrowsky, A., Ratajczak, M.Z. and
Cabuhat, M.L. (2000) Differential MMP and TIMP production by human
marrow and peripheral blood CD34(+) cells in response to chemokines.
Exp Hematol, 28, 1274-1285.

Jimenez-Sainz, M.C., Murga, C., Kavelaars, A., Jurado-Pueyo, M., Krakstad,
B.F., Heijnen, C.J., Mayor, F., Jr. and Aragay, A.M. (2006) G protein-
coupled receptor kinase 2 negatively regulates chemokine signaling at a
level downstream from G protein subunits. Mol Biol Cell, 17, 25-31.



185

Jones, P.A. and Baylin, S.B. (2002) The fundamental role of epigenetic events in
cancer. Nat Rev Genet, 3, 415-428.

Jordan, N.J., Kolios, G., Abbot, S.E., Sinai, M.A., Thompson, D.A., Petraki, K.
and Westwick, J. (1999) Expression of functional CXCR4 chemokine
receptors on human colonic epithelial cells. J Clin Invest, 104, 1061-1069.

Jourdan, P., Vendrell, J.P., Huguet, M.F., Segondy, M., Bousquet, J., Pene, J.
and Yssel, H. (2000) Cytokines and cell surface molecules independently
induce CXCR4 expression on CD4+ CCR7+ human memory T cells. J
Immunol, 165, 716-724.

Kajumo, F., Thompson, D.A., Guo, Y. and Dragic, T. (2000) Entry of R5X4 and
X4 human immunodeficiency virus type 1 strains is mediated by negatively
charged and tyrosine residues in the amino-terminal domain and the
second extracellular loop of CXCR4. Virology, 271, 240-247.

Kang, J., Shi, Y., Xiang, B., Qu, B., Su, W., Zhu, M., Zhang, M., Bao, G., Wang,
F., Zhang, X., Yang, R., Fan, F., Chen, X., Pei, G., and Ma, L. (2005) A
nuclear function of beta-arrestin1 in GPCR signaling: regulation of histone
acetylation and gene transcription. Cell, 123, 833-847.

Kara, E., Crépieux, P., Gauthier, C., Martinat, N., Piketty, V., Guillou, F., and
Reiter E. (2006) A phosphorylation cluster of five serine and threonine
residues in the C-terminus of the follicle-stimulating hormone receptor is
important for desensitization but not beta-arrestin-ediated ERK activation.
Mol Endocrinol, 20, 3014-3026.

Kato, M., Kitayama, J., Kazama, S. and Nagawa, H. (2003) Expression pattern of
CXC chemokine receptor-4 is correlated with lymph node metastasis in
human invasive ductal carcinoma. Breast Cancer Res, 5, R144-150.

Kawai, T., Choi, U., Whiting-Theobald, N.L., Linton, G.F., Brenner, S., Sechler,
J.M., Murphy, P.M. and Malech, H.L. (2005) Enhanced function with
decreased internalization of carboxy-terminus truncated CXCR4
responsible for WHIM syndrome. Exp Hematol, 33, 460-468.

Kieselbach, T., Irrgang, K.D. and Ruppel, H. (1994) A segment corresponding to
amino acids Val170-Arg182 of bovine arrestin is capable of binding to
phosphorylated rhodopsin. Eur J Biochem, 226, 87-97.



186

Kijima, T., Maulik, G., Ma, P.C., Tibaldi, E.V., Turner, R.E., Rollins, B., Sattler,
M., Johnson, B.E. and Salgia, R. (2002) Regulation of cellular
proliferation, cytoskeletal function, and signal transduction through CXCR4
and c-Kit in small cell lung cancer cells. Cancer Res, 62, 6304-6311.

Kim, J., Ahn, S., Ren, X.R., Whalen, E.J., Reiter, E., Wei, H. and Lefkowitz, R.J.
(2005) Functional antagonism of different G protein-coupled receptor
kinases for beta-arrestin-mediated angiotensin II receptor signaling. Proc
Natl Acad Sci U S A, 102, 1442-1447.

Kim, Y.M. and Benovic, J.L. (2002) Differential roles of arrestin-2 interaction with
clathrin and adaptor protein 2 in G protein-coupled receptor trafficking. J
Biol Chem, 277, 30760-30768.

Klenchin, V.A., Calvert, P.D. and Bownds, M.D. (1995) Inhibition of rhodopsin
kinase by recoverin. Further evidence for a negative feedback system in
phototransduction. J Biol Chem, 270, 16147-16152.

Kobilka, B.K. (1995) Amino and carboxy terminal modifications to facilitate the
production and purification of a G protein-coupled receptor. Anal Biochem,
231, 269-271.

Koshiba, T., Hosotani, R., Miyamoto, Y., Ida, J., Tsuji, S., Nakajima, S.,
Kawaguchi, M., Kobayashi, H., Doi, R., Hori, T., Fujii, N. and Imamura, M.
(2000) Expression of stromal cell-derived factor 1 and CXCR4 ligand
receptor system in pancreatic cancer: a possible role for tumor
progression. Clin Cancer Res, 6, 3530-3535.

Kovoor, A., Celver, J., Abdryashitov, R.I., Chavkin, C. and Gurevich, V.V. (1999)
Targeted construction of phosphorylation-independent beta-arrestin
mutants with constitutive activity in cells. J Biol Chem, 274, 6831-6834.

Krupnick, J.G. and Benovic, J.L. (1998) The role of receptor kinases and
arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol
Toxicol, 38, 289-319.

Kucia, M., Jankowski, K., Reca, R., Wysoczynski, M., Bandura, L., Allendorf,
D.J., Zhang, J., Ratajczak, J. and Ratajczak, M.Z. (2004) CXCR4-SDF-1
signalling, locomotion, chemotaxis and adhesion. J Mol Histol, 35, 233-
245.



187

Kucia, M., Reca, R., Miekus, K., Wanzeck, J., Wojakowski, W., Janowska-
Wieczorek, A., Ratajczak, J. and Ratajczak, M.Z. (2005) Trafficking of
normal stem cells and metastasis of cancer stem cells involve similar
mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells, 23, 879-
894.

Kuhn, H., Hall, S.W. and Wilden, U. (1984) Light-induced binding of 48-kDa
protein to photoreceptor membranes is highly enhanced by
phosphorylation of rhodopsin. FEBS Lett, 176, 473-478.

Kumar, A., Humphreys, T.D., Kremer, K.N., Bramati, P.S., Bradfield, L., Edgar,
C.E. and Hedin, K.E. (2006) CXCR4 physically associates with the T cell
receptor to signal in T cells. Immunity, 25, 213-224.

Kunapuli, P. and Benovic, J.L. (1993) Cloning and expression of GRK5: a
member of the G protein-coupled receptor kinase family. Proc Natl Acad
Sci U S A, 90, 5588-5592.

Kunapuli, P., Gurevich, V.V., and Benovic, J.L. (1994) Phospholipid-stimulated
autophosphorylation activates the G protein-coupled receptor kinase
GRK5. J Biol Chem, 269, 10209-10212.

Kuo, F.T., Lu, T.L., and Fu, H.W. (2006) Opposing effects of beta-arrestin1 and
beta-arrestin2 on activation and degradation of Src induced by protease-
activated receptor 1. Cell Signal, 18, 1914-1923.

Lagane, B., Chow, K.Y., Balabanian, K., Levoye, A., Harriague, J., Planchenault,
T., Baleux, F., Gunera-Saad, N., Arenzana-Seisdedos, F. and Bachelerie,
F. (2008) CXCR4 dimerization and beta-arrestin-mediated signaling
account for the enhanced chemotaxis to CXCL12 in WHIM syndrome.
Blood, 112, 34-44.

Lambeir, A.M., Proost, P., Durinx, C., Bal, G., Senten, K., Augustyns, K.,
Scharpe, S., Van Damme, J. and De Meester, I. (2001) Kinetic
investigation of chemokine truncation by CD26/dipeptidyl peptidase IV
reveals a striking selectivity within the chemokine family. J Biol Chem,
276, 29839-29845.

Lapham, C.K., Romantseva, T., Petricoin, E., King, L.R., Manischewitz, J.,
Zaitseva, M.B. and Golding, H. (2002) CXCR4 heterogeneity in primary
cells: possible role of ubiquitination. J Leukoc Biol, 72, 1206-1214.



188

Lapidot, T. and Kollet, O. (2002) The essential roles of the chemokine SDF-1 and
its receptor CXCR4 in human stem cell homing and repopulation of
transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice.
Leukemia, 16, 1992-2003.

Laporte, S.A., Oakley, R.H., Holt, J.A., Barak, L.S., and Caron, M.G. (2000) The
interaction of beta-arrestin with the AP-2 adaptor is required for the
clustering of beta 2-adrenergic receptor into clathrin-coated pits. J Biol
Chem, 275, 23120-23126.

Lapteva, N., Yang, A.G., Sanders, D.E., Strube, R.W. and Chen, S.Y. (2005)
CXCR4 knockdown by small interfering RNA abrogates breast tumor
growth in vivo. Cancer Gene Ther, 12, 84-89.

Le, Y., Honczarenko, M., Glodek, A.M., Ho, D.K. and Silberstein, L.E. (2005)
CXC chemokine ligand 12-induced focal adhesion kinase activation and
segregation into membrane domains is modulated by regulator of G
protein signaling 1 in pro-B cells. J Immunol, 174, 2582-2590.

Lee, B.C., Lee, T.H., Zagozdzon, R., Avraham, S., Usheva, A. and Avraham,
H.K. (2005) Carboxyl-terminal Src kinase homologous kinase negatively
regulates the chemokine receptor CXCR4 through YY1 and impairs
CXCR4/CXCL12 (SDF-1alpha)-mediated breast cancer cell migration.
Cancer Res, 65, 2840-2845.

Lefkowitz, R.J. and Shenoy, S.K. (2005) Transduction of receptor signals by
beta-arrestins. Science, 308, 512-517.

Li, B.Q., Wetzel, M.A., Mikovits, J.A., Henderson, E.E., Rogers, T.J., Gong, W.,
Le, Y., Ruscetti, F.W. and Wang, J.M. (2001) The synthetic peptide
WKYMVm attenuates the function of the chemokine receptors CCR5 and
CXCR4 through activation of formyl peptide receptor-like 1. Blood, 97,
2941-2947.

Li, Y.M., Pan, Y., Wei, Y., Cheng, X., Zhou, B.P., Tan, M., Zhou, X., Xia, W.,
Hortobagyi, G.N., Yu, D. and Hung, M.C. (2004) Upregulation of CXCR4 is
essential for HER2-mediated tumor metastasis. Cancer Cell, 6, 459-469.

Liang, Z., Yoon, Y., Votaw, J., Goodman, M.M., Williams, L. and Shim, H. (2005)
Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res, 65,
967-971.



189

Libura, J., Drukala, J., Majka, M., Tomescu, O., Navenot, J.M., Kucia, M.,
Marquez, L., Peiper, S.C., Barr, F.G., Janowska-Wieczorek, A. and
Ratajczak, M.Z. (2002) CXCR4-SDF-1 signaling is active in
rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and
adhesion. Blood, 100, 2597-2606.

Loetscher, M., Geiser, T., O'Reilly, T., Zwahlen, R., Baggiolini, M. and Moser, B.
(1994) Cloning of a human seven-transmembrane domain receptor,
LESTR, that is highly expressed in leukocytes. J Biol Chem, 269, 232-237.

Logothetis, D.E., Kurachi, Y., Galper, J., Neer, E.J. and Clapham, D.E. (1987)
The beta gamma subunits of GTP-binding proteins activate the muscarinic
K+ channel in heart. Nature, 325, 321-326.

Lohse, M.J., Benovic, J.L., Codina, J., Caron, M.G. and Lefkowitz, R.J. (1990)
beta-Arrestin: a protein that regulates beta-adrenergic receptor function.
Science, 248, 1547-1550.

Lorenz, W., Inglese, J., Palczewski, K., Onorato, J.J., Caron, M.G., and
Lefkowitz, R.J. (1991) The receptor kinase family: primary structure of
rhodopsin kinase reveals similarities to the beta-adrenergic receptor
kinase. Proc Natl Acad Sci U S A, 19, 8715-8719.

Lusso, P. (2006) HIV and the chemokine system: 10 years later. Embo J, 25,
447-456.

Luttrell, L.M., Ferguson, S.S., Daaka, Y., Miller, W.E., Maudsley, S., Della Rocca,
G.J., Lin, F., Kawakatsu, H., Owada, K., Luttrell, D.K., Caron, M.G. and
Lefkowitz, R.J. (1999) Beta-arrestin-dependent formation of beta2
adrenergic receptor-Src protein kinase complexes. Science, 283, 655-661.

Luttrell, L.M., Roudabush, F.L., Choy, E.W., Miller, W.E., Field, M.E., Pierce, K.L.
and Lefkowitz, R.J. (2001) Activation and targeting of extracellular signal-
regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci U S A,
98, 2449-2454.

Ma, Q., Jones, D., Borghesani, P.R., Segal, R.A., Nagasawa, T., Kishimoto, T.,
Bronson, R.T. and Springer, T.A. (1998) Impaired B-lymphopoiesis,
myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and
SDF-1-deficient mice. Proc Natl Acad Sci U S A, 95, 9448-9453.



190

Majka, M., Janowska-Wieczorek, A., Ratajczak, J., Kowalska, M.A., Vilaire, G.,
Pan, Z.K., Honczarenko, M., Marquez, L.A., Poncz, M. and Ratajczak,
M.Z. (2000) Stromal-derived factor 1 and thrombopoietin regulate distinct
aspects of human megakaryopoiesis. Blood, 96, 4142-4151.

Marchese, A. and Benovic, J.L. (2001) Agonist-promoted ubiquitination of the G
protein-coupled receptor CXCR4 mediates lysosomal sorting. J Biol
Chem, 276, 45509-45512.

Marchese, A., Chen, C., Kim, Y.M. and Benovic, J.L. (2003a) The ins and outs of
G protein-coupled receptor trafficking. Trends Biochem Sci, 28, 369-376.

Marchese, A., Paing, M.M., Temple, B.R. and Trejo, J. (2008) G protein-coupled
receptor sorting to endosomes and lysosomes. Annu Rev Pharmacol
Toxicol, 48, 601-629.

Marchese, A., Raiborg, C., Santini, F., Keen, J.H., Stenmark, H. and Benovic,
J.L. (2003b) The E3 ubiquitin ligase AIP4 mediates ubiquitination and
sorting of the G protein-coupled receptor CXCR4. Dev Cell, 5, 709-722.

Marinissen, M.J. and Gutkind, J.S. (2001) G-protein-coupled receptors and
signaling networks: emerging paradigms. Trends Pharmacol Sci, 22, 368-
376.

McCudden, C.R., Hains, M.D., Kimple, R.J., Siderovski, D.P. and Willard, F.S.
(2005) G-protein signaling: back to the future. Cell Mol Life Sci, 62, 551-
577.

McDonald, P.H., Chow, C.W., Miller, W.E., Laporte, S.A., Field, M.E., Lin, F.T.,
Davis, R.J. and Lefkowitz, R.J. (2000) Beta-arrestin 2: a receptor-
regulated MAPK scaffold for the activation of JNK3. Science, 290, 1574-
1577.

McGrath, K.E., Koniski, A.D., Maltby, K.M., McGann, J.K. and Palis, J. (1999)
Embryonic expression and function of the chemokine SDF-1 and its
receptor, CXCR4. Dev Biol, 213, 442-456.

Mellado, M., Rodriguez-Frade, J.M., Vila-Coro, A.J., de Ana, A.M. and Martinez,
A.C. (1999) Chemokine control of HIV-1 infection. Nature, 400, 723-724.



191

Miller, W.E., Houtz, D.A., Nelson, C.D., Kolattukudy, P.E. and Lefkowitz, R.J.
(2003) G-protein-coupled receptor (GPCR) kinase phosphorylation and
beta-arrestin recruitment regulate the constitutive signaling activity of the
human cytomegalovirus US28 GPCR. J Biol Chem, 278, 21663-21671.

Moore, C.A., Milano, S.K. and Benovic, J.L. (2007) Regulation of receptor
trafficking by GRKs and arrestins. Annu Rev Physiol, 69, 451-482.

Moriuchi, M., Moriuchi, H. and Fauci, A.S. (1999a) HTLV type I Tax activation of
the CXCR4 promoter by association with nuclear respiratory factor 1.
AIDS Res Hum Retroviruses, 15, 821-827.

Moriuchi, M., Moriuchi, H., Margolis, D.M. and Fauci, A.S. (1999b) USF/c-Myc
enhances, while Yin-Yang 1 suppresses, the promoter activity of CXCR4,
a coreceptor for HIV-1 entry. J Immunol, 162, 5986-5992.

Moriuchi, M., Moriuchi, H., Turner, W. and Fauci, A.S. (1997) Cloning and
analysis of the promoter region of CXCR4, a coreceptor for HIV-1 entry. J
Immunol, 159, 4322-4329.

Moser, B. and Loetscher, P. (2001) Lymphocyte traffic control by chemokines.
Nat Immunol, 2, 123-128.

Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M.E.,
McClanahan, T., Murphy, E., Yuan, W., Wagner, S.N., Barrera, J.L.,
Mohar, A., Verastegui, E. and Zlotnik, A. (2001) Involvement of chemokine
receptors in breast cancer metastasis. Nature, 410, 50-56.

Murakami, A., Yajima, T., Sakuma, H., McLaren, M.J. and Inana, G. (1993) X-
arrestin: a new retinal arrestin mapping to the X chromosome. FEBS Lett,
334, 203-209.

Murphy, P.M. (1994) The molecular biology of leukocyte chemoattractant
receptors. Annu Rev Immunol, 12, 593-633.

Murphy, P.M., Baggiolini, M., Charo, I.F., Hebert, C.A., Horuk, R., Matsushima,
K., Miller, L.H., Oppenheim, J.J. and Power, C.A. (2000) International
union of pharmacology. XXII. Nomenclature for chemokine receptors.
Pharmacol Rev, 52, 145-176.



192

Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura,
Y., Yoshida, N., Kikutani, H. and Kishimoto, T. (1996) Defects of B-cell
lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC
chemokine PBSF/SDF-1. Nature, 382, 635-638.

Nagasawa, T., Tachibana, K. and Kishimoto, T. (1998) A novel CXC chemokine
PBSF/SDF-1 and its receptor CXCR4: their functions in development,
hematopoiesis and HIV infection. Semin Immunol, 10, 179-185.

Nanki, T., Hayashida, K., El-Gabalawy, H.S., Suson, S., Shi, K., Girschick, H.J.,
Yavuz, S. and Lipsky, P.E. (2000) Stromal cell-derived factor-1-CXC
chemokine receptor 4 interactions play a central role in CD4+ T cell
accumulation in rheumatoid arthritis synovium. J Immunol, 165, 6590-
6598.

Nelson, C.D., Perry, S.J., Regier, D.S., Prescott, S.M., Topham, M.K. and
Lefkowitz, R.J. (2007) Targeting of diacylglycerol degradation to M1
muscarinic receptors by beta-arrestins. Science, 315, 663-666.

Netelenbos, T., Zuijderduijn, S., Van Den Born, J., Kessler, F.L., Zweegman, S.,
Huijgens, P.C. and Drager, A.M. (2002) Proteoglycans guide SDF-1-
induced migration of hematopoietic progenitor cells. J Leukoc Biol, 72,
353-362.

Nguyen, D.H., Giri, B., Collins, G. and Taub, D.D. (2005) Dynamic reorganization
of chemokine receptors, cholesterol, lipid rafts, and adhesion molecules to
sites of CD4 engagement. Exp Cell Res, 304, 559-569.

Nguyen, D.H. and Taub, D. (2002) CXCR4 function requires membrane
cholesterol: implications for HIV infection. J Immunol, 168, 4121-4126.

Nomura, H., Nielsen, B.W. and Matsushima, K. (1993) Molecular cloning of
cDNAs encoding a LD78 receptor and putative leukocyte chemotactic
peptide receptors. Int Immunol, 5, 1239-1249.

Oakley, R.H., Laporte, S.A., Holt, J.A., Barak, L.S. and Caron, M.G. (2001)
Molecular determinants underlying the formation of stable intracellular G
protein-coupled receptor-beta-arrestin complexes after receptor
endocytosis*. J Biol Chem, 276, 19452-19460.



193

Oldham, W.M. and Hamm, H.E. (2008) Heterotrimeric G protein activation by G-
protein-coupled receptors. Nat Rev Mol Cell Biol, 9, 60-71.

Orsini, M.J., Parent, J.L., Mundell, S.J., Marchese, A. and Benovic, J.L. (1999)
Trafficking of the HIV coreceptor CXCR4. Role of arrestins and
identification of residues in the c-terminal tail that mediate receptor
internalization. J Biol Chem, 274, 31076-31086.

Palczewski, K., Buczylko, J., Kaplan, M.W., Polans, A.S. and Crabb, J.W. (1991)
Mechanism of rhodopsin kinase activation. J Biol Chem, 266, 12949-
12955.

Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A.,
Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M. and
Miyano, M. (2000) Crystal structure of rhodopsin: A G protein-coupled
receptor. Science, 289, 739-745.

Pao, C.S. and Benovic, J.L. (2005) Structure/function analysis of alpha2A-
adrenergic receptor interaction with G protein-coupled receptor kinase 2. J
Biol Chem, 280, 11052-11058.

Park, J.H., Scheerer, P., Hofmann, K.P., Choe, H.W., and Ernst, O.P. (2008)
Crystal structure of the ligand-free G-protein-coupled receptor opsin.
Nature, 454, 183-187.

Peacock, J.W. and Jirik, F.R. (1999) TCR activation inhibits chemotaxis toward
stromal cell-derived factor-1: evidence for reciprocal regulation between
CXCR4 and the TCR. J Immunol, 162, 215-223.

Pello, O.M., Martinez-Munoz, L., Parrillas, V., Serrano, A., Rodriguez-Frade,
J.M., Toro, M.J., Lucas, P., Monterrubio, M., Martinez, A.C. and Mellado,
M. (2008) Ligand stabilization of CXCR4/delta-opioid receptor
heterodimers reveals a mechanism for immune response regulation. Eur J
Immunol, 38, 537-549.

Penela, P., Elorza, A., Sarnago, S. and Mayor, F., Jr. (2001) Beta-arrestin- and
c-Src-dependent degradation of G-protein-coupled receptor kinase 2.
Embo J, 20, 5129-5138.



194

Penela, P., Ribas, C. and Mayor, F., Jr. (2003) Mechanisms of regulation of the
expression and function of G protein-coupled receptor kinases. Cell
Signal, 15, 973-981.

Penn, R.B., Pronin, A.N. and Benovic, J.L. (2000) Regulation of G protein-
coupled receptor kinases. Trends Cardiovasc Med, 10, 81-89.

Percherancier, Y., Berchiche, Y.A., Slight, I., Volkmer-Engert, R., Tamamura, H.,
Fujii, N., Bouvier, M. and Heveker, N. (2005) Bioluminescence resonance
energy transfer reveals ligand-induced conformational changes in CXCR4
homo- and heterodimers. J Biol Chem, 280, 9895-9903.

Perry, S.J., Baillie, G.S., Kohout, T.A., McPhee, I., Magiera, M.M., Ang, K.L.,
Miller, W.E., McLean, A.J., Conti, M., Houslay, M.D. and Lefkowitz, R.J.
(2002) Targeting of cyclic AMP degradation to beta 2-adrenergic receptors
by beta-arrestins. Science, 298, 834-836.

Pfister, C., Chabre, M., Plouet, J., Tuyen, V.V., De Kozak, Y., Faure, J.P. and
Kuhn, H. (1985) Retinal S antigen identified as the 48K protein regulating
light-dependent phosphodiesterase in rods. Science, 228, 891-893.

Phillips, R.J., Mestas, J., Gharaee-Kermani, M., Burdick, M.D., Sica, A., Belperio,
J.A., Keane, M.P. and Strieter, R.M. (2005) Epidermal growth factor and
hypoxia-induced expression of CXC chemokine receptor 4 on non-small
cell lung cancer cells is regulated by the phosphatidylinositol 3-
kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and
activation of hypoxia inducible factor-1alpha. J Biol Chem, 280, 22473-
22481.

Pierce, K.L., Premont, R.T. and Lefkowitz, R.J. (2002) Seven-transmembrane
receptors. Nat Rev Mol Cell Biol, 3, 639-650.

Pitcher, J.A., Fredericks, Z.L., Stone, W.C., Premont, R.T., Stoffel, R.H., Koch,
W.J. and Lefkowitz, R.J. (1996) Phosphatidylinositol 4,5-bisphosphate
(PIP2)-enhanced G protein-coupled receptor kinase (GRK) activity.
Location, structure, and regulation of the PIP2 binding site distinguishes
the GRK subfamilies. J Biol Chem, 271, 24907-24913.

Pitcher, J.A., Inglese, J., Higgins, J.B., Arriza, J.L., Casey, P.J., Kim, C., Benovic,
J.L., Kwatra, M.M., Caron, M.G. and Lefkowitz, R.J. (1992) Role of beta



195

gamma subunits of G proteins in targeting the beta-adrenergic receptor
kinase to membrane-bound receptors. Science, 257, 1264-1267.

Pitcher, J.A., Tesmer, J.J., Freeman, J.L., Capel, W.D., Stone, W.C. and
Lefkowitz, R.J. (1999) Feedback inhibition of G protein-coupled receptor
kinase 2 (GRK2) activity by extracellular signal-regulated kinases. J Biol
Chem, 274, 34531-34534.

Pitcher, J.A., Touhara, K., Payne, E.S. and Lefkowitz, R.J. (1995) Pleckstrin
homology domain-mediated membrane association and activation of the
beta-adrenergic receptor kinase requires coordinate interaction with G
beta gamma subunits and lipid. J Biol Chem, 270, 11707-11710.

Premont, R.T., Macrae, A.D., Stoffel, R.H., Chung, N., Pitcher, J.A., Ambrose, C.,
Inglese, J., MacDonald, M.E. and Lefkowitz, R.J. (1996) Characterization
of the G protein-coupled receptor kinase GRK4. Identification of four splice
variants. J Biol Chem, 271, 6403-6410.

Premont, R.T. and Gainetdinov, R.R. (2007) Physiological roles of G protein-
coupled receptor kinases and arrestins. Annu Rev Physiol, 69, 511-534.

Preobrazhensky, A.A., Dragan, S., Kawano, T., Gavrilin, M.A., Gulina, I.V.,
Chakravarty, L. and Kolattukudy, P.E. (2000) Monocyte chemotactic
protein-1 receptor CCR2B is a glycoprotein that has tyrosine sulfation in a
conserved extracellular N-terminal region. J Immunol, 165, 5295-5303.

Pronin, A.N. and Benovic, J.L. (1997a) Regulation of the G protein-coupled
receptor kinase GRK5 by protein kinase C. J Biol Chem, 272, 3806-3812.

Pronin, A.N., Carman, C.V. and Benovic, J.L. (1998) Structure-function analysis
of G protein-coupled receptor kinase-5. Role of the carboxyl terminus in
kinase regulation. J Biol Chem, 273, 31510-31518.

Pronin, A.N., Satpaev, D.K., Slepak, V.Z. and Benovic, J.L. (1997b) Regulation of
G protein-coupled receptor kinases by calmodulin and localization of the
calmodulin binding domain. J Biol Chem, 272, 18273-18280.

Rasmussen, S.G., Choi, H.J., Rosenbaum, D.M., Kobilka, T.S., Thian, F.S.,
Edwards, P.C., Burghammer, M., Ratnala, V.R., Sanishvili, R., Fischetti,
R.F., Schertler, G.F., Weis, W.I. and Kobilka, B.K. (2007) Crystal structure



196

of the human beta2 adrenergic G-protein-coupled receptor. Nature, 450,
383-387.

Reeves, J.D. and Piefer, A.J. (2005) Emerging drug targets for antiretroviral
therapy. Drugs, 65, 1747-1766.

Reiter, E. and Lefkowitz, R.J. (2006) GRKs and beta-arrestins: roles in receptor
silencing, trafficking, and signaling. Trends Endocrinol Metab, 17, 159-
165.

Ren, X.R., Reiter, E., Ahn, S., Kim, J., Chen, W. and Lefkowitz, R.J. (2005)
Different G protein-coupled receptor kinases govern G protein and beta-
arrestin-mediated signaling of V2 vasopressin receptor. Proc Natl Acad
Sci U S A, 102, 1448-1453.

Rhee, S.G. (2001) Regulation of phosphoinositide-specific phospholipase C.
Annu Rev Biochem, 70, 281-312.

Ribas, C., Penela, P., Murga, C., Salcedo, A., Garcia-Hoz, C., Jurado-Pueyo, M.,
Aymerich, I., and Mayor, F., Jr. (2007) The G protein-coupled receptor
kinase (GRK) interactome: role of GRKs in GPCR regulation and
signaling. Biochim Biophys Acta, 1768, 913-922.

Richardson, R.M., Tokunaga, K., Marjoram, R., Sata, T. and Snyderman, R.
(2003) Interleukin-8-mediated heterologous receptor internalization
provides resistance to HIV-1 infectivity. Role of signal strength and
receptor desensitization. J Biol Chem, 278, 15867-15873.

Rodriguez-Frade, J.M., del Real, G., Serrano, A., Hernanz-Falcon, P., Soriano,
S.F., Vila-Coro, A.J., de Ana, A.M., Lucas, P., Prieto, I., Martinez, A.C.
and Mellado, M. (2004) Blocking HIV-1 infection via CCR5 and CXCR4
receptors by acting in trans on the CCR2 chemokine receptor. Embo J,
23, 66-76.

Ross, E.M. and Gilman, A.G. (1977) Resolution of some components of
adenylate cyclase necessary for catalytic activity. J Biol Chem, 252, 6966-
6969.

Rossi, D. and Zlotnik, A. (2000) The biology of chemokines and their receptors.
Annu Rev Immunol, 18, 217-242.



197

Sadir, R., Baleux, F., Grosdidier, A., Imberty, A. and Lortat-Jacob, H. (2001)
Characterization of the stromal cell-derived factor-1alpha-heparin
complex. J Biol Chem, 276, 8288-8296.

Salcedo, R., Wasserman, K., Young, H.A., Grimm, M.C., Howard, O.M., Anver,
M.R., Kleinman, H.K., Murphy, W.J. and Oppenheim, J.J. (1999) Vascular
endothelial growth factor and basic fibroblast growth factor induce
expression of CXCR4 on human endothelial cells: In vivo
neovascularization induced by stromal-derived factor-1alpha. Am J Pathol,
154, 1125-1135.

Sallese, M., Mariggio, S., D'Urbano, E., Iacovelli, L. and De Blasi, A. (2000)
Selective regulation of Gq signaling by G protein-coupled receptor kinase
2: direct interaction of kinase N terminus with activated galphaq. Mol
Pharmacol, 57, 826-831.

Samara, G.J., Lawrence, D.M., Chiarelli, C.J., Valentino, M.D., Lyubsky, S.,
Zucker, S. and Vaday, G.G. (2004) CXCR4-mediated adhesion and MMP-
9 secretion in head and neck squamous cell carcinoma. Cancer Lett, 214,
231-241.

Sarnago, S., Elorza, A. and Mayor, F., Jr. (1999) Agonist-dependent
phosphorylation of the G protein-coupled receptor kinase 2 (GRK2) by Src
tyrosine kinase. J Biol Chem, 274, 34411-34416.

Sato, N., Matsubayashi, H., Fukushima, N. and Goggins, M. (2005) The
chemokine receptor CXCR4 is regulated by DNA methylation in pancreatic
cancer. Cancer Biol Ther, 4, 70-76.

Schimanski, C.C., Bahre, R., Gockel, I., Muller, A., Frerichs, K., Horner, V.,
Teufel, A., Simiantonaki, N., Biesterfeld, S., Wehler, T., Schuler, M.,
Achenbach, T., Junginger, T., Galle, P.R. and Moehler, M. (2006)
Dissemination of hepatocellular carcinoma is mediated via chemokine
receptor CXCR4. Br J Cancer, 95, 210-217.

Schioppa, T., Uranchimeg, B., Saccani, A., Biswas, S.K., Doni, A., Rapisarda, A.,
Bernasconi, S., Saccani, S., Nebuloni, M., Vago, L., Mantovani, A., Melillo,
G. and Sica, A. (2003) Regulation of the chemokine receptor CXCR4 by
hypoxia. J Exp Med, 198, 1391-1402.



198

Scotton, C.J., Wilson, J.L., Milliken, D., Stamp, G. and Balkwill, F.R. (2001)
Epithelial cancer cell migration: a role for chemokine receptors? Cancer
Res, 61, 4961-4965.

Scotton, C.J., Wilson, J.L., Scott, K., Stamp, G., Wilbanks, G.D., Fricker, S.,
Bridger, G. and Balkwill, F.R. (2002) Multiple actions of the chemokine
CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res,
62, 5930-5938.

Selleri, C., Montuori, N., Ricci, P., Visconte, V., Carriero, M.V., Sidenius, N.,
Serio, B., Blasi, F., Rotoli, B., Rossi, G. and Ragno, P. (2005) Involvement
of the urokinase-type plasminogen activator receptor in hematopoietic
stem cell mobilization. Blood, 105, 2198-2205.

Shenoy, S.K., Drake, M.T., Nelson, C.D., Houtz, D.A., Xiao, K., Madabushi, S.,
Reiter, E., Premont, R.T., Lichtarge, O. and Lefkowitz, R.J. (2006) beta-
arrestin-dependent, G protein-independent ERK1/2 activation by the beta2
adrenergic receptor. J Biol Chem, 281, 1261-1273.

Shichi, H. and Somers, R.L. (1978) Light-dependent phosphorylation of
rhodopsin. Purification and properties of rhodopsin kinase. J Biol Chem,
253, 7040-7046.

Shinohara, T., Dietzschold, B., Craft, C.M., Wistow, G., Early, J.J., Donoso, L.A.,
Horwitz, J. and Tao, R. (1987) Primary and secondary structure of bovine
retinal S antigen (48-kDa protein). Proc Natl Acad Sci U S A, 84, 6975-
6979.

Shirozu, M., Nakano, T., Inazawa, J., Tashiro, K., Tada, H., Shinohara, T. and
Honjo, T. (1995) Structure and chromosomal localization of the human
stromal cell-derived factor 1 (SDF1) gene. Genomics, 28, 495-500.

Siderovski, D.P., Hessel, A., Chung, S., Mak, T.W. and Tyers, M. (1996) A new
family of regulators of G-protein-coupled receptors? Curr Biol, 6, 211-212.

Signoret, N., Oldridge, J., Pelchen-Matthews, A., Klasse, P.J., Tran, T., Brass,
L.F., Rosenkilde, M.M., Schwartz, T.W., Holmes, W., Dallas, W., Luther,
M.A., Wells, T.N., Hoxie, J.A. and Marsh, M. (1997) Phorbol esters and
SDF-1 induce rapid endocytosis and down modulation of the chemokine
receptor CXCR4. J Cell Biol, 139, 651-664.



199

Signoret, N., Rosenkilde, M.M., Klasse, P.J., Schwartz, T.W., Malim, M.H.,
Hoxie, J.A. and Marsh, M. (1998) Differential regulation of CXCR4 and
CCR5 endocytosis. J Cell Sci, 111 ( Pt 18), 2819-2830.

Simon, M.I., Strathmann, M.P. and Gautam, N. (1991) Diversity of G proteins in
signal transduction. Science, 252, 802-808.

Slagsvold, T., Marchese, A., Brech, A. and Stenmark, H. (2006) CISK attenuates
degradation of the chemokine receptor CXCR4 via the ubiquitin ligase
AIP4. Embo J.

Sloane, A.J., Raso, V., Dimitrov, D.S., Xiao, X., Deo, S., Muljadi, N., Restuccia,
D., Turville, S., Kearney, C., Broder, C.C., Zoellner, H., Cunningham, A.L.,
Bendall, L. and Lynch, G.W. (2005) Marked structural and functional
heterogeneity in CXCR4: separation of HIV-1 and SDF-1alpha responses.
Immunol Cell Biol, 83, 129-143.

Spiegel, A., Kollet, O., Peled, A., Abel, L., Nagler, A., Bielorai, B., Rechavi, G.,
Vormoor, J. and Lapidot, T. (2004) Unique SDF-1-induced activation of
human precursor-B ALL cells as a result of altered CXCR4 expression and
signaling. Blood, 103, 2900-2907.

Staller, P., Sulitkova, J., Lisztwan, J., Moch, H., Oakeley, E.J. and Krek, W.
(2003) Chemokine receptor CXCR4 downregulated by von Hippel-Lindau
tumour suppressor pVHL. Nature, 425, 307-311.

Stephens, L., Smrcka, A., Cooke, F.T., Jackson, T.R., Sternweis, P.C. and
Hawkins, P.T. (1994) A novel phosphoinositide 3 kinase activity in
myeloid-derived cells is activated by G protein beta gamma subunits. Cell,
77, 83-93.

Sterne-Marr, R., Tesmer, J.J., Day, P.W., Stracquatanio, R.P., Cilente, J.A.,
O'Connor, K.E., Pronin, A.N., Benovic, J.L. and Wedegaertner, P.B.
(2003) G protein-coupled receptor Kinase 2/G alpha q/11 interaction. A
novel surface on a regulator of G protein signaling homology domain for
binding G alpha subunits. J Biol Chem, 278, 6050-6058.

Stoffel, R.H., Randall, R.R., Premont, R.T., Lefkowitz, R.J. and Inglese, J. (1994)
Palmitoylation of G protein-coupled receptor kinase, GRK6. Lipid
modification diversity in the GRK family. J Biol Chem, 269, 27791-27794.



200

Sun, Y., Cheng, Z., Ma, L. and Pei, G. (2002) Beta-arrestin2 is critically involved
in CXCR4-mediated chemotaxis, and this is mediated by its enhancement
of p38 MAPK activation. J Biol Chem, 277, 49212-49219.

Sun, Y.X., Wang, J., Shelburne, C.E., Lopatin, D.E., Chinnaiyan, A.M., Rubin,
M.A., Pienta, K.J. and Taichman, R.S. (2003) Expression of CXCR4 and
CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell
Biochem, 89, 462-473.

Suratt, B.T., Petty, J.M., Young, S.K., Malcolm, K.C., Lieber, J.G., Nick, J.A.,
Gonzalo, J.A., Henson, P.M. and Worthen, G.S. (2004) Role of the
CXCR4/SDF-1 chemokine axis in circulating neutrophil homeostasis.
Blood, 104, 565-571.

Tachibana, K., Hirota, S., Iizasa, H., Yoshida, H., Kawabata, K., Kataoka, Y.,
Kitamura, Y., Matsushima, K., Yoshida, N., Nishikawa, S., Kishimoto, T.
and Nagasawa, T. (1998) The chemokine receptor CXCR4 is essential for
vascularization of the gastrointestinal tract. Nature, 393, 591-594.

Tanaka, Y., Adams, D.H. and Shaw, S. (1993) Proteoglycans on endothelial cells
present adhesion-inducing cytokines to leukocytes. Immunol Today, 14,
111-115.

Tang, W.J. and Gilman, A.G. (1991) Type-specific regulation of adenylyl cyclase
by G protein beta gamma subunits. Science, 254, 1500-1503.

Tarasova, N.I., Stauber, R.H. and Michejda, C.J. (1998) Spontaneous and
ligand-induced trafficking of CXC-chemokine receptor 4. J Biol Chem, 273,
15883-15886.

Thordsen, I., Polzer, S. and Schreiber, M. (2002) Infection of cells expressing
CXCR4 mutants lacking N-glycosylation at the N-terminal extracellular
domain is enhanced for R5X4-dualtropic human immunodeficiency virus
type-1. BMC Infect Dis, 2, 31.

Tobin, A.B., Butcher, A.J. and Kong, K.C. (2008) Location, location,
location...site-specific GPCR phosphorylation offers a mechanism for cell-
type-specific signalling. Trends Pharmacol Sci, 29, 413-420.



201

Tohgo, A., Choy, E.W., Gesty-Palmer, D., Pierce, K.L., Laporte, S., Oakley, R.H.,
Caron, M.G., Lefkowitz, R.J., and Luttrell, L.M. (2003) The stability of the
G protein-coupled receptor-beta-arrestin interaction determines the
mechanism and functional consequence of ERK activation. J Biol Chem,
278, 6258-6267.

Tomescu, O., Xia, S.J., Strezlecki, D., Bennicelli, J.L., Ginsberg, J., Pawel, B.
and Barr, F.G. (2004) Inducible short-term and stable long-term cell
culture systems reveal that the PAX3-FKHR fusion oncoprotein regulates
CXCR4, PAX3, and PAX7 expression. Lab Invest, 84, 1060-1070.

Torrecilla, I., Spragg, E.J., Poulin, B., McWilliams, P.J., Mistry, S.C., Blaukat, A.,
and Tobin, A.B. (2007) Phosphorylation and regulation of a G protein-
coupled receptor by protein kinase CK2.  J Cell Biol, 177, 127-137.

Toth, P.T., Ren, D. and Miller, R.J. (2004) Regulation of CXCR4 receptor
dimerization by the chemokine SDF-1alpha and the HIV-1 coat protein
gp120: a fluorescence resonance energy transfer (FRET) study. J
Pharmacol Exp Ther, 310, 8-17.

Trester-Zedlitz, M., Burlingame, A., Kobilka, B., and von Zastrow, M. (2005)
Mass spectrometric analysis of agonist effects on posttranslational
modifications of the beta-2 adrenoceptor in mammalian cells.
Biochemistry, 44, 6133-6143.

Ueda, Y., Neel, N.F., Schutyser, E., Raman, D. and Richmond, A. (2006)
Deletion of the COOH-terminal domain of CXC chemokine receptor 4
leads to the down-regulation of cell-to-cell contact, enhanced motility and
proliferation in breast carcinoma cells. Cancer Res, 66, 5665-5675.

Valenzuela-Fernandez, A., Palanche, T., Amara, A., Magerus, A., Altmeyer, R.,
Delaunay, T., Virelizier, J.L., Baleux, F., Galzi, J.L. and Arenzana-
Seisdedos, F. (2001) Optimal inhibition of X4 HIV isolates by the CXC
chemokine stromal cell-derived factor 1 alpha requires interaction with cell
surface heparan sulfate proteoglycans. J Biol Chem, 276, 26550-26558.

Valenzuela-Fernandez, A., Planchenault, T., Baleux, F., Staropoli, I., Le-Barillec,
K., Leduc, D., Delaunay, T., Lazarini, F., Virelizier, J.L., Chignard, M.,
Pidard, D. and Arenzana-Seisdedos, F. (2002) Leukocyte elastase
negatively regulates Stromal cell-derived factor-1 (SDF-1)/CXCR4 binding



202

and functions by amino-terminal processing of SDF-1 and CXCR4. J Biol
Chem, 277, 15677-15689.

Vandercappellen, J., Van Damme, J., and Struyf, S. (2008) The role of CXC
chemokines and their receptors in cancer. Cancer Lett, 267, 226-244.

Veldkamp, C.T., Seibert, C., Peterson, F.C., De la Cruz, N.B., Haugner, J.C., 3rd,
Basnet, H., Sakmar, T.P. and Volkman, B.F. (2008) Structural Basis of
CXCR4 Sulfotyrosine Recognition by the Chemokine SDF-1/CXCL12. Sci
Signal, 1, ra4.

Veldkamp, C.T., Seibert, C., Peterson, F.C., Sakmar, T.P. and Volkman, B.F.
(2006) Recognition of a CXCR4 Sulfotyrosine by the Chemokine Stromal
Cell-derived Factor-1alpha (SDF-1alpha/CXCL12). J Mol Biol.

Vila-Coro, A.J., Rodriguez-Frade, J.M., Martin De Ana, A., Moreno-Ortiz, M.C.,
Martinez, A.C. and Mellado, M. (1999) The chemokine SDF-1alpha
triggers CXCR4 receptor dimerization and activates the JAK/STAT
pathway. Faseb J, 13, 1699-1710.

Violin, J.D., Ren, X.R. and Lefkowitz, R.J. (2006) G-protein-coupled receptor
kinase specificity for beta-arrestin recruitment to the beta2-adrenergic
receptor revealed by fluorescence resonance energy transfer. J Biol
Chem, 281, 20577-20588.

Vroon, A., Heijnen, C.J., Raatgever, R., Touw, I.P., Ploemacher, R.E., Premont,
R.T. and Kavelaars, A. (2004) GRK6 deficiency is associated with
enhanced CXCR4-mediated neutrophil chemotaxis in vitro and impaired
responsiveness to G-CSF in vivo. J Leukoc Biol, 75, 698-704.

Wang, J., Babcock, G.J., Choe, H., Farzan, M., Sodroski, J. and Gabuzda, D.
(2004) N-linked glycosylation in the CXCR4 N-terminus inhibits binding to
HIV-1 envelope glycoproteins. Virology, 324, 140-150.

Wang, J., Guan, E., Roderiquez, G., Calvert, V., Alvarez, R. and Norcross, M.A.
(2001) Role of tyrosine phosphorylation in ligand-independent
sequestration of CXCR4 in human primary monocytes-macrophages. J
Biol Chem, 276, 49236-49243.



203

Wang, J., Wang, J., Dai, J., Jung, Y., Wei, C.L., Wang, Y., Havens, A.M., Hogg,
P.J., Keller, E.T., Pienta, K.J., Nor, J.E., Wang, C.Y. and Taichman, R.S.
(2007) A glycolytic mechanism regulating an angiogenic switch in prostate
cancer. Cancer Res, 67, 149-159.

Wegner, S.A., Ehrenberg, P.K., Chang, G., Dayhoff, D.E., Sleeker, A.L. and
Michael, N.L. (1998) Genomic organization and functional characterization
of the chemokine receptor CXCR4, a major entry co-receptor for human
immunodeficiency virus type 1. J Biol Chem, 273, 4754-4760.

Wei, H., Ahn, S., Shenoy, S.K., Karnik, S.S., Hunyady, L., Luttrell, L.M. and
Lefkowitz, R.J. (2003) Independent beta-arrestin 2 and G protein-
mediated pathways for angiotensin II activation of extracellular signal-
regulated kinases 1 and 2. Proc Natl Acad Sci U S A, 100, 10782-10787.

Weiss, E.R., Ducceschi, M.H., Horner, T.J., Li, A., Craft, C.M. and Osawa, S.
(2001) Species-specific differences in expression of G-protein-coupled
receptor kinase (GRK) 7 and GRK1 in mammalian cone photoreceptor
cells: implications for cone cell phototransduction. J Neurosci, 21, 9175-
9184.

Weiss, E.R., Raman, D., Shirakawa, S., Ducceschi, M.H., Bertram, P.T., Wong,
F., Kraft, T.W. and Osawa, S. (1998) The cloning of GRK7, a candidate
cone opsin kinase, from cone- and rod-dominant mammalian retinas. Mol
Vis, 4, 27.

Wendt, M.K., Johanesen, P.A., Kang-Decker, N., Binion, D.G., Shah, V. and
Dwinell, M.B. (2006) Silencing of epithelial CXCL12 expression by DNA
hypermethylation promotes colonic carcinoma metastasis. Oncogene.

Willars, G.B. (2006) Mammalian RGS proteins: multifunctional regulators of
cellular signalling. Semin Cell Dev Biol, 17, 363-376.

Willets, J.M., Challiss, R.A., Kelly, E., and Nahorski, S.R. (2001) G protein-
coupled receptor kinase 3 and 6 use different pathways to desensitize the
endogenous M3 muscarinic acetylcholine receptor in human SH-SY5Y
cells. Mol Pharmacol, 60, 321-330.

Willets, J.M., Challiss, R.A., and Nahorski, S.R. (2002) Endogenous G protein-
coupled receptor kinase 6 regulated M3 muscarinic acetylcholine receptor



204

phosphorylation and desensitization in human SH-SY5Y neuroblastoma
cells. J Biol Chem, 277, 15523-15529.

Willets, J.M., Mistry, R., Nahorski, R.A., and Challiss, R.A. (2003) Specificity of G
protein-coupled receptor kinase 6-mediated phosphorylation and
regulation of single-cell M3 muscarinic acetylcholine receptor signaling.
Mol Pharmacol, 64, 1059-1068.

Wing, M.R., Houston, D., Kelley, G.G., Der, C.J., Siderovski, D.P. and Harden,
T.K. (2001) Activation of phospholipase C-epsilon by heterotrimeric G
protein betagamma-subunits. J Biol Chem, 276, 48257-48261.

Winstel, R., Freund, S., Krasel, C., Hoppe, E. and Lohse, M.J. (1996) Protein
kinase cross-talk: membrane targeting of the beta-adrenergic receptor
kinase by protein kinase C. Proc Natl Acad Sci U S A, 93, 2105-2109.

Wisler, J.W., DeWire, S.M., Whalen, E.J., Violin, J.D., Drake, M.T., Ahn, S.,
Shenoy, S.K. and Lefkowitz, R.J. (2007) A unique mechanism of beta-
blocker action: carvedilol stimulates beta-arrestin signaling. Proc Natl
Acad Sci U S A, 104, 16657-16662.

Woerner, B.M., Warrington, N.M., Kung, A.L., Perry, A. and Rubin, J.B. (2005)
Widespread CXCR4 activation in astrocytomas revealed by phospho-
CXCR4-specific antibodies. Cancer Res, 65, 11392-11399.

Wright, N., Hidalgo, A., Rodriguez-Frade, J.M., Soriano, S.F., Mellado, M.,
Parmo-Cabanas, M., Briskin, M.J. and Teixido, J. (2002) The chemokine
stromal cell-derived factor-1 alpha modulates alpha 4 beta 7 integrin-
mediated lymphocyte adhesion to mucosal addressin cell adhesion
molecule-1 and fibronectin. J Immunol, 168, 5268-5277.

Wu, G., Bogatkevich, G.S., Mukhin, Y.V., Benovic, J.L., Hildebrandt, J.D., and
Lanier, S.M. (2000) Identification of Gbetagamma binding sites in the third
intracellular loop of the M(3)-muscarinic receptor and their role in receptor
regulation. J Biol Chem, 275, 9026-9034.

Wysoczynski, M., Reca, R., Ratajczak, J., Kucia, M., Shirvaikar, N.,
Honczarenko, M., Mills, M., Wanzeck, J., Janowska-Wieczorek, A. and
Ratajczak, M.Z. (2005) Incorporation of CXCR4 into membrane lipid rafts
primes homing-related responses of hematopoietic stem/progenitor cells
to an SDF-1 gradient. Blood, 105, 40-48.



205

Yamaki, K., Takahashi, Y., Sakuragi, S. and Matsubara, K. (1987) Molecular
cloning of the S-antigen cDNA from bovine retina. Biochem Biophys Res
Commun, 142, 904-910.

Yasukawa, M., Hasegawa, A., Sakai, I., Ohminami, H., Arai, J., Kaneko, S.,
Yakushijin, Y., Maeyama, K., Nakashima, H., Arakaki, R. and Fujita, S.
(1999) Down-regulation of CXCR4 by human herpesvirus 6 (HHV-6) and
HHV-7. J Immunol, 162, 5417-5422.

Yu, L., Cecil, J., Peng, S.B., Schrementi, J., Kovacevic, S., Paul, D., Su, E.W.
and Wang, J. (2006) Identification and expression of novel isoforms of
human stromal cell-derived factor 1. Gene, 374, 174-179.

Zagzag, D., Krishnamachary, B., Yee, H., Okuyama, H., Chiriboga, L., Ali, M.A.,
Melamed, J. and Semenza, G.L. (2005) Stromal cell-derived factor-1alpha
and CXCR4 expression in hemangioblastoma and clear cell-renal cell
carcinoma: von Hippel-Lindau loss-of-function induces expression of a
ligand and its receptor. Cancer Res, 65, 6178-6188.

Zhang, C., Williams, E.H., Guo, Y., Lum, L., and Beachy, P.A. (2004) Extensive
phosphorylation of Smoothened in Hedgehog pathway activation. Proc
Natl Acad Sci U S A, 101, 17900-17907.

Zhang, X.F., Wang, J.F., Matczak, E., Proper, J.A. and Groopman, J.E. (2001)
Janus kinase 2 is involved in stromal cell-derived factor-1alpha-induced
tyrosine phosphorylation of focal adhesion proteins and migration of
hematopoietic progenitor cells. Blood, 97, 3342-3348.

Zhou, H. and Tai, H.H. (1999) Characterization of recombinant human CXCR4 in
insect cells: role of extracellular domains and N-glycosylation in ligand
binding. Arch Biochem Biophys, 369, 267-276.

Zhou, N., Luo, Z., Luo, J., Liu, D., Hall, J.W., Pomerantz, R.J. and Huang, Z.
(2001) Structural and functional characterization of human CXCR4 as a
chemokine receptor and HIV-1 co-receptor by mutagenesis and molecular
modeling studies. J Biol Chem, 276, 42826-42833.

Zhou, Y., Larsen, P.H., Hao, C. and Yong, V.W. (2002) CXCR4 is a major
chemokine receptor on glioma cells and mediates their survival. J Biol
Chem, 277, 49481-49487.



206

Zlotnik, A. (2006a) Chemokines and cancer. Int J Cancer.

Zlotnik, A. (2006b) Involvement of chemokine receptors in organ-specific
metastasis. Contrib Microbiol, 13, 191-199.

Zlotnik, A. and Yoshie, O. (2000) Chemokines: a new classification system and
their role in immunity. Immunity, 12, 121-127.

Zou, Y.R., Kottmann, A.H., Kuroda, M., Taniuchi, I. and Littman, D.R. (1998)
Function of the chemokine receptor CXCR4 in haematopoiesis and in
cerebellar development. Nature, 393, 595-599.


	Thomas Jefferson University
	Jefferson Digital Commons
	2008

	Characterizing the Dynamics and Functional Role of Site-Specific Phosphorylation of G Protein-Coupled Receptors
	John M. Busillo
	Recommended Citation



