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Abstract

Purpose of review: Chemical properties of the widely-used older generation 
antiepileptic drugs (AEDs) suggest that they might be responsible for a number 
of medical co-morbidities.

Recent findings: AEDs which induce the cytochrome P450 system adversely 
affect bone, lipid, and gonadal steroid metabolism. Specifically, phenytoin (PHT) 
causes loss of bone mass in women, and both PHT and carbamazepine (CBZ) 
produce increases in serum lipids and C-reactive protein, as well as decreases 
in bioactive testosterone in men. Patients treated with inducing AEDs are at 
increased risk of fracture. Some contradictory data raise the question of whether 
bone mass is truly related to enzyme induction, and analogously, of whether 
reductions in testosterone truly account for male sexual dysfunction. Data 
showing elevations of surrogate cardiovascular and cerebrovascular risk 
endpoints with epilepsy patients, mostly inducing AED-treated, are consistent 
and concerning, however. Another older AED, valproate, is associated with the 
occurrence of polycystic ovary syndrome when used in young adulthood or 
adolescence.

Summary: Older generation AEDs are associated with a panoply of metabolic 
abnormalities. While more research is needed to see whether individual drugs 
are directly tied to specific clinical outcomes (e.g. risk of infarction), extant data 
are sufficiently concerning to suggest that these drugs may produce significant 
adverse health consequences. Newer generation AEDs may be preferable.



Keywords: antiepileptic drugs, lipids, bone, polycystic ovary syndrome, enzyme 
induction



Introduction

It is uncommon for a patient to ask of her antihypertensive, antiplatelet 
agent, or proton pump inhibitor, “What will this medication do to me over the long 
term?” Yet patients with epilepsy ask this question routinely regarding their 
antiepileptic therapy, and it seems they have good reason: among the many 
classes of drugs prescribed for chronic use, antiepileptic drugs (AEDs) appear to 
have a unique proclivity for affecting metabolism in unanticipated ways. Much of 
this stems from the property, shared by many AEDs, of altering the effects of 
enzymes of the cytochrome P450 (CYP450) system. Research over the last two 
decades has revealed that the CYP450 system plays a prominent role in many 
metabolic pathways, not just drug metabolism as had initially been believed (and 
as many physicians still believe). The involvement of the CYP450 system in the 
metabolism of hormones, vitamins, cholesterol, and other substances forms the 
scientific underpinning for the empiric observation that many AEDs — especially 
those which induce the CYP450 system — produce alterations in these 
pathways, accompanied by additional effects of potential clinical significance.

An understanding of these effects is critical to the optimal care of patients 
who are treated with these agents, which  include not only those with seizures, 
but also those with essential tremor, migraine, neuralgic pain syndromes, and 
psychiatric conditions. All of these disorders require long-term — often lifelong 
— treatment, making the potential slow accretion of metabolic effects a genuine 
risk. This review is an attempt to provide a capsule summary of the current state 
of knowledge regarding the metabolic effects of AEDs, highlighting the most 
recent evidence for clinically-relevant effects and concluding with 
recommedations for patient care and future research.

Bone and Vitamin D metabolism

Observations regarding the effects of AEDs on bone mass first surfaced in 



the medical literature four decades ago. The prevailing hypothesis underlying 
this concern, and the evidence for and against it, were nicely reviewed in a 
recent manuscript (1). Briefly, the notion is that CYP450-inducing AEDs 
upregulate the enzymes responsible for the metabolism of vitamin D, leading it 
to be processed into inactive metabolites. Compensation for this necessitates 
increased conversation of the major storage form, 5-hydroxyvitamin D (25-OHD), 
to the active forms. Upregulating this reaction requires increased levels of 
parathyroid hormone (PTH) as a necessary cofactor. A side consequence of this 
increase in PTH is an increase in bone turnover, and this “churn” through bone 
eventually leads to significant loss of bone mass.

A substantial body of evidence indicates that the inducing AEDs are 
associated with reduced levels of 25-OHD, with the largest amount of evidence 
impugning carbamazepine (CBZ) (2-9)(10, 11) (Table 1). Other studies suggest 
increases in bone turnover markers in patients treated with the inducers CBZ or 
phenytoin (PHT), whereas bone turnover appears normal in patients taking the 
non-inducing drug lamotrigine (LTG) (6, 10). A well-done community-based 
investigation demonstrated rather convincingly that PHT is associated with 
accelerated bone loss in elderly women (12), and there is also evidence from 
case-control studies of increased fracture risk in patients taking inducing AEDs 
(13, 14). Yet not all of the available evidence is consistent with this hypothesis. 
Studies of patients taking CBZ have yielded mixed results regarding its effects 
on bone density (4, 15, 16). In addition, the enzyme-inhibiting drug valproate 
(VPA) has been implicated as a potential cause of reduced bone density(15, 16) 
and fracture risk (13, 14).

Into this breach have stepped a number of recent studies, which 
unfortunately serve to muddy the waters even further. Pack and colleagues (11) 
followed women on AED monotherapy with PHT, CBZ, LTG or VPA for a year. 
They found significant loss of bone at the femoral neck in PHT-treated patients; 
they also found that reductions in 25-OHD were associated with increases in 
bone turnover markers, all of which is consistent with the aforementioned 
prevailing hypothesis. Yet CBZ-treated patients, in whom one would expect 
similar results, showed no such changes, nor did those on VPA or LTG. This 



study suggests that the effects of individual enzyme-inducing AEDs on bone 
may differ.

Another noteworthy study in this arena was a large, community-based study 
of elderly men in whom bone density was measured twice, an average of 4.6 
years apart (17). After adjustment for a large number of potential confounders, 
those taking inducing AEDs had a rate of bone loss no different from controls, 
whereas those taking non-inducing AEDs had an accelerated rate of bone loss; 
in fact, this was larger in patients who were being treated at both time points 
than in patients who were being treated only at one time point, consistent with a 
dose-response relationship. This surprising result flies in the face of all previous 
expectations, and while the study appears quite methodologically sound, this 
author has reservations about its conclusions. One possible source of error 
concerns the study population: of the patients taking non-inducing AEDs, the 
vast majority (over 80%) were being treated with gabapentin, a drug which is 
ovewhelmingly prescribed for pain rather than epilepsy in current practice. One 
wonders if the disease states for which these patients were taking gabapentin 
might have influenced their bone health relative to controls. Even if one sets 
aside this caveat, the results should be considered applicable to gabapentin 
specifically rather than to all non-inducing AEDs.

Another case control study of fracture incidence was recently published, 
demonstrating that hip fractures were significantly associated with a history of 
AED use, and that all of this risk accrued with the use of inducing rather than 
non-inducing AEDs (18). This reconfirms the results of other case-control studies 
(13, 14).

Data on specific newer AEDs is largely lacking, aside from previously-
mentioned studies which included LTG (10, 11) and one study suggesting that 
patients treated with oxcarbazepine (OXC) had lower 25-OHD levels and 
increased bone turnover (6). The latter was replicated in another recent 
publication, which found that 18 months of OXC treatment in children resulted in 
higher bone turnover and lower 25-OHD, but no significant change in bone 
density(19).

Finally, to round out the confusion, one study found that bone density was 



reduced in patients treated with either inducing or non-inducing AEDs but was 
worse in the former(20). Duration of AED therapy, with any kind of AED, was 
also associated with greater bone loss. This study is limited by its cross-
sectional design.

Lipids and other vascular risk markers

A number of serologic markers which are relevant to cardiovascular risk 
have been found to be affected by the CYP450-inducing AEDs. These include 
cholesterol and specific atherogenic lipid fractions (21-23), lipoprotein(a) (23), and 
homocysteine (24). These alterations suggest that enzyme-inducing AEDs might 
produce elevations in cardiovascular risk, a notion reinforced by the 
epidemiologic data, most of which demonstrates that patients with epilepsy 
suffer from greater vascular mortality and morbidity than the general population 
(25-27)(28, 29) (Table 2). In fact, carotid intima-media thickness, which has proven 
itself a robust surrogate marker for both cardiovascular and cerebrovascular 
disease, has been shown to be elevated among epilepsy patients, particularly in 
those taking inducing AEDs (30, 31), supporting the notion that atherosclerosis in 
increased in this population. Most of these studies are cross-sectional in nature, 
which limits their ability to inform causative inferences.

One recent investigation directly examined the effects of switching from 
inducing to non-inducing AEDs on vascular risk markers (32). In this study, 34 
patients on CBZ or PHT in monotherapy were crossed over to monotherapy with 
either LTG or levetiracetam (LEV). Serologic studies, including lipid profiles, 
lipoprotein(a) {Lp(a)}, homocysteine (HCY) and C-reactive protein (CRP) were 
performed before the switch and then once again 6 weeks after discontinuation 
of the old drug. Sixteen normal subjects who were not treated with an AED 
underwent the same serologic studies on two occasions to serve as a control 
group. After drug switch, the epilepsy patients showed a mean decline of 25 mg/
dL in total cholesterol, mostly in its atherogenic fractions, as well as a decline of 
nearly a third in CRP. In addition, patients withdrawn from CBZ experienced a 



sharp reduction in Lp(a), while those withdrawn from PHT had  subsequent 
reductions in HCY. Whether patients were switched to LTG or LEV had no 
bearing on the outcome measures, suggesting that CYP450 de-induction was 
responsible for the observed changes, and that the vascular risk markers in 
question were likely increased by CBZ and PHT to begin with.

Further evidence for increased vascular risk in this population was provided 
by Tan et al(33), who obtained a series of serologic studies along with carotid 
intimal-medial thickness measurements in 195 patients with epilepsy and in 
controls. They found that epilepsy patients had higher levels of total cholesterol, 
CRP, and HCY, as well as increased carotid intimal-medial thickness, 
corroborating a likely increased risk of cardiac and cerebral ischemic disease. 
Multivariate analysis revealed that duration of AED therapy was significantly 
correlated with carotid thickness. This study is noteworthy because of its large 
size and its use of a strong and well-validated surrogate measure of vascular 
disease. An important weakness is that the results were not presented in a way 
that allows for the specific elucidation of the effects of enzyme inducers, as it 
appears that a group of patients taking inducers alone were compared with a 
polytherapy group, many of whom were likely on inducers as well.

Consistent with the two aforementioned studies, Tomoum et al(34) studied 
22 children with epilepsy and found that total cholesterol, various lipid fractions, 
and apolipoprotein AI were elevated in CBZ-treated patients and reduced in VPA-
treated patients relative to controls, reinforcing the notion that CYP450 activity is 
causative of these changes. Carotid intimal-medial thickness was measured as 
well, but the sample was small and this was not analyzed appropriately.

Reproductive hormones

Both enzyme inducers and VPA have been implicated in effects on 
reproductive hormones. Controversy has been present since the first 
demonstration that VPA is frequently associated with a constellation of 
symptoms resembling polycystic ovary syndrome (PCOS)(35). Verification of 
this cross-sectional study would be ideally done by prospectively examining 



either the results of drug switch or the effects of randomized drug assignment. A 
study of the former type was published not long after the original report, 
documenting that patients with PCOS who were taking VPA had resolution of all 
symptoms following switch to LTG, conclusively demonstrating that the drug 
was causative of the symptoms in these patients(36). Now a study of the latter 
type has appeared, shedding further light on this assocation(37). A multinational 
team of investigators randomized a group of epilepsy patients, both newly-
diagnosed and refractory, to treatment with either VPA or LTG for a mean of 
almost a year. Both clinical and endocrinologic evidence of PCOS were 
significantly more frequent in the patients receiving VPA, but only in women age 
25 and younger. This may help to reconcile some of the conflicting evidence and 
opinion surrounding this issue, and also may provide some support for the use of 
VPA in women older than 25, at least when pregnancy is not planned(38).

Reproductive hormone function among men with epilepsy has also been a 
subject of active investigation, with one study demonstrating that men taking the 
enzyme-inducing drugs CBZ or PHT had significantly lower testosterone levels 
and lower sexual function scores than men with epilepsy who were taking LTG or 
who were untreated (39). In this cohort, testosterone levels and sexual function 
were significantly correlated, suggesting that CBZ and PHT induce testosterone 
metabolism, leading to clinically-relevant sexual impairment. While this story 
appears scientifically sound and sensible, conflicting evidence has recently been 
published (40). The latter investigators performed a similar study of both men 
with epilepsy and controls, but with the addition of validated measures of 
depression and anxiety. They confirmed the previous finding that men taking 
inducing AEDs had lower testosterone levels, but found that virtually all were still 
above the threshold needed for normal sexual function, and that testosterone 
levels did not correlate with sexual function scores. These scores were clearly 
lower in men with epilepsy, but were correlated with depression and anxiety 
rather than the hormonal measures. The reasons for the discrepancies between 
this study and previous studies remains unclear, and more work will clearly need 
to be done to further elucidate these findings.



Conclusions

Recent studies have added to the considerable evidence that AEDs, 
particularly the older-generation agents, may have diffuse and profound effects 
upon a variety of metabolic pathways. The several discussed here do not 
include others which are complex enough to engender full-fledged discussions of 
their own (e.g. drug interactions, teratogenicity). A common thread runs through 
much of this data: it is clear that enzyme-inducing AEDs produce substantial 
alterations of a host of serologic parameters, but demonstration of the clinical 
end effects of those changes remain to be elucidated. Thus, patients with 
epilepsy are at increased risk for fractures, and PHT and CBZ lower vitamin D 
levels, but only the former drug has been clearly shown to affect bone density, 
and it is not clear that reduction in vitamin D is responsible. In a similar vein, 
patients with epilepsy have significantly higher rates of cardiovascular and 
cerebrovascular disease, and there is mounting evidence that PHT and CBZ are 
clearly responsible for elevations of several strong and well-validated vascular 
surrogate markers, but epidemiologic data to compare the rate of vascular 
events attributable to specific drugs is lacking.

Another common thread is that the effects of individual drugs may differ; 
thus, while CBZ and PHT appear to have similar effects on cholesterol, 
testosterone, and 25-OHD levels, their effects on Lp(a) and bone density are 
different. More research is clearly needed to explore the mechanisms underlying 
these effects.

In addition, further research is needed to fill in these gaps regarding the 
effects of specific drugs on particular health outcomes (e.g. myocardial 
infarction, fracture); such studies will be large and challenging epidemiologically 
and will require independent (not corporate) funding. Equally important will be 
determination of the other side of the clinical equation: the relative efficacy of 
the various drugs for seizure prevention. This is all the more relevant given the 
availability of a whole generation of AEDs, almost all chemically distinct, that 
likely avoid adverse metabolic effects. Funding for such research should 
hopefully be readily available in light of the U.S. governmentʼs newfound interest 
in comparative treatment efficacy. Study of this kind is desperately needed in 



the field of epilepsy, where we lack any data to answer one of our most basic 
practice questions: if a patient is seizure-free on a drug, what is the likelihood 
that she will remain seizure-free on a different drug?

The latter point is germane to the concluding opinion of this review. The 
author is already on record with his views regarding the practical import of the 
manifold metabolic effects elucidated herein (32, 41). At the very least, all 
patients taking an older-generation AED, whether for epilepsy or any other 
indication, should be aggressively screened for the appropriate clinical 
consequences; this would include cardiac risk serology for those taking 
inducers, signs and symptoms of PCOS for women taking VPA, and bone 
density testing (as well as vigilance against potential drug interactions) in both 
groups. If metabolic complications are found, they may be treated, but switching 
to another AED may well be better medical practice, as it might reduce costs, 
complications, and co-morbidities. In any case, the specter of these potential 
metabolic complications make it difficult to recommend the use of older AEDs 
as first-line therapy at the present time, pending better data regarding 
comparative efficacy.
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Table 1. Studies comparing 25-hydroxyvitamin D levels in carbamazepine-treated 
patients and in subjects not taking an enzyme-inducing drug

Study CBZ pts Control pts % Δ from ctrl

Pack 2008(11) 23.4 25.2* -7%

Kim 2007(4) 23.0 33.8* -32%

Mintzer 2006(6) 20.4 27.5 -26%

Pack 2005(10) 21.0 30.0* -33%

Verrotti 2002(8) 26.2 27.0 -3%

Verrotti 2000(9) 38.7 39.0 -1%

Lamberg-Allardt 
1990(5) 22.8 27.5 -17%

Gough 1986(2) 22.9 39.2 -42%

Hoikka 1984(3) 11.1 17.6 -37%

Tjellesen 1983(7) 22.9 26.2 -13%

Controls were untreated with any antiepileptic drugs except for the values marked with an asterisk*, which 
represent lamotrigine-treated control subjects. CBZ = carbamazepine. % ∆ from ctrl = percentage 
difference in 25-hydroxyvitamin D levels in the CBZ-treated group relative to the control group. All values 
in ng/mL.



TABLE 2. Vascular mortality and morbidity in patients with epilepsy, general population 
studies

Mortality Study Study size (follow-
up)

Standardized 
mortality ratio

95% confidence 
interval

Ding et al(25) 5,114 person-years Myocardial infarction: 
10.7* 5.6 - 95.3

Nilsson et al(26) 53,250 person-years Ischemic heart 
disease: 2.5*

Cerebrovascular 
disease: 5.3*

2.3 - 2.7

4.9 – 5.8
Cockerell et al(27) 7,528 person-years Ischemic heart 

disease: 1.2
Cerebrovascular 

disease: 3.7*

0.7 - 1.9

2.4 – 5.4
Annegers et al(28) “Approached 10,000 

person-years”
Ischemic heart 

disease: 1.2
IHD, patients age 

25 - 44: 5.7*
IHD, patients age 

45 - 64: 2.5* 

0.9 – 1.5

1.8 – 13.3

1.4 – 4.1

Morbidity study Total epilepsy 
population

Morbidity 
(prevalence) ratio

95% confidence 
interval

Gaitatzis et al(29) N=5843 Ischemic heart 
disease: 1.34*
Ischemic heart 

disease (age < 65): 
1.63*

Cerebrovascular 
disease: 6.96*

Cerebrovasc. Disease 
(age <65): 14.19*

1.19 – 1.5

1.34 – 1.98

6.38 – 7.6

12.04 – 16.73

Annegers et al(28) N=725 Ischemic heart 
disease: 1.63*
IHD, idiopathic 

epilepsy only: 1.49*

1.2 – 2.15

1.00 – 2.15

Data marked with an asterisk* are statistically significant (i.e. the lower limit of the 95% confidence 
interval is ≥ 1). IHD: ischemic heart disease.
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