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Y27632, a Rho-activated kinase inhibitor, normalizes dysregulation in alpha1-

adrenergic receptor-induced contraction of Lyon hypertensive rat artery smooth 

muscle.  
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Abstract 

RhoA-activated kinase (ROK) is involved in disorders of smooth muscle contraction found in 

hypertension model animals and patients.  We examined whether the α1-adrenergic receptor 

agonist-induced ROK signal is perturbed in resistance small mesentery artery (SMA) of Lyon 

genetically hypertensive (LH) rats, using a ROK antagonist, Y27632. Smooth muscle strips of SMA 

and aorta were isolated from LH and Lyon normotensive (LN) rats.  After Ca2+-depletion and pre-

treatment with phenylephrine (PE), smooth muscle contraction was induced by serial additions of 

CaCl2. In LH SMA Ca2+ permeated cells to a lesser extent as compared to LN SMA, while CaCl2-

induced contraction of LH SMA was greater than that of LN SMA, indicating a higher ratio of force 

to Ca2+ in LH SMA contraction (Ca2+ sensitization). No hyper-contraction was observed in LH 

aorta tissues.  Treatment of LH SMA with Y27632 restored both Ca2+ permeability and Ca2+-force 

relationship to levels seen for LN SMA.  In response to PE stimulation, phosphorylation of CPI-17, 

a phosphorylation-dependent myosin phosphatase inhibitor protein, and MYPT1 at Thr853, the 

inhibitory phosphorylation site of the myosin phosphatase regulatory subunit, was increased in LN 

SMA, but remained unchanged in LH SMA.  These results suggest that the disorder in ROK-

dependent Ca2+ permeability and Ca2+-force relationship is responsible for LH SMA hyper-

contraction.  Unlike other hypertensive models, the ROK-induced hyper-contractility of LH SMA is 

independent of MYPT1 and CPI-17 phosphorylation, which suggests that ROK-mediated inhibition 

of myosin phosphatase does not affect SMA hyper-contractility in LH SMA cells.  

 

Key words: Lyon hypertensive rats; resistance mesentery artery; α1 adrenergic contraction; Ca2+ signaling; Ca2+ 

sensitivity; Ca2+ influx, RhoA; ROK; CPI-17; MYPT1; Protein phosphatase. 

 



Freitas, et al., Original Article, Fund. Clin. Pharm. 
Submitted on 7/2/08, decision on 9/11/08, revised on 9/30/08 

 3 

Introduction 

The Lyon hypertensive rat strain (LH) is a model for genetic hypertension, which displays several 

phenotypes associated with elevated blood pressure, including increased mortality and body weight, and 

spontaneous hyperlipidemia [1]. A large number of studies in both animal models and humans indicate a 

link between endothelium dysfunction and hypertension [2-4]. By contrast, endothelial functions of 

resistance small arteries of LH are intact, compared with the control normotensive Lyon strain (LN) [5]. 

Enhanced constriction of small caliber resistance arteries and arterioles causes an increase in peripheral 

vascular resistance of LH rats, which is an important component of human essential hypertension and 

other animal models of hypertension [5]. Several abnormalities of Ca2+ handling have been found in LH, 

such as increased cellular Ca2+ levels in platelets and erythrocytes [6] and an enhanced responsiveness of 

renal circulation to dihydropyridine L-type Ca2+ channel openers and blockers [7]. However, little is 

known about the possible dysregulation of smooth muscle contraction in LH arteries.  

Smooth muscle contraction is regulated via the reciprocal activities of myosin light chain kinase 

and phosphatase.  Agonist stimulation inhibits myosin phosphatase activity, resulting in an enhanced Ca2+ 

sensitivity of the contraction, called Ca2+ sensitization [8, 9].  Augmented agonist-induced Ca2+ 

sensitization of smooth muscle contraction has been found in stroke-prone spontaneously hypertensive 

rats [10]. Accumulating evidence suggests that up-regulation of the RhoA/ Rho-activated coiled-coil 

kinase (ROK) pathway is responsible for the augmented Ca2+ sensitization in several hypertensive animal 

models [10-19] and human patients [20, 21]. For example, the smooth muscle contraction and blood 

pressure of hypertensive models and patients are more sensitive to Y27632, a ROK inhibitor, compared 

with those of normotensive controls. ROK mediates G-protein-coupled receptor activation resulting in the 

inhibition of myosin phosphatase. In particular, the sustained phase of agonist-induced smooth muscle 

contraction is dependent on ROK activation and the phosphorylation of myosin phosphatase regulatory 
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subunit, MYPT1, and an inhibitor protein, CPI-17 [22, 23]. Thr696 of MYPT1 is known to be an 

inhibitory phosphorylation site [9], but the phosphorylation level is unchanged upon agonist stimulation 

of arteries [24].  On the other hand, phosphorylation of MYPT1 at Thr853 and CPI-17 at Thr38 is 

enhanced in response to G-protein activation and is inhibited by ROK inhibitors [24, 25].  CPI-17 is also 

phosphorylated by PKC that is responsible for Ca2+-dependent Ca2+ sensitization at transient phase [23, 

26].   

In addition to its role in Ca2+ sensitization, ROK is also involved in activating a norepinephrine-

induced Ca2+ entry mechanism that is distinct from Ca2+ influx via voltage- or store-operated channels in 

rat arteries [27]. Furthermore, Ca2+ influx induces the activation of the Rho/ROK pathway in response to 

agonist stimulation, suggesting a bi-directional regulation between Ca2+ and ROK [28].  In the present 

study we used small mesentery arteries (SMA) to test the hypothesis that ROK signaling causes 

dysregulation in the smooth muscle contraction of LH rat tissues. SMAs are involved in controlling blood 

flow by responding to α1-adrenergic receptor stimulation, which plays a critical role in blood pressure 

regulation [29]. Ca2+-depleted SMA strips were stimulated by re-addition of extra-cellular Ca2+ that 

causes Ca2+ influx through voltage-gated, receptor-operated Ca2+ channels and Na/Ca exchangers [30].  

We discovered a decrease in Ca2+ influx and an increase in Ca2+-force relationship following 

phenylephrine (PE) stimulation in LH SMA, but not in aorta.  The defect in LH SMA was improved by 

addition of Y27632, whereas the ROK signal is disconnected from the inhibition of myosin phosphatase.  
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Materials and Methods 

Animals and blood pressure measurement:  Male LH and LN rats (16 – 18 weeks old) were obtained from 

the laboratory of one of us (Pr. Sassard, Lyon, France), and the animal protocol was authorized by the 

French government (Department of Agriculture, No. 01918) for the use of laboratory animals given by. 

All rats were anesthetized with sodium pentobarbital (60 mg/kg, intraperitoneal) prior to any procedure. 

Mean arterial blood pressure was determined by direct measurement through a carotid catheter and a 

transducer (SensoNor® SP844, Horten, Norway). 

 

Arterial preparation and mounting:  The thoracic aorta and SMA (branch II or III, diameter 150-200 µm) 

were each removed from the same rat. The tissues were prepared as described previously [30].  Briefly, 

segments of aorta (2-3 mm in width) or SMA (1.6-2.0 mm in width) were mounted on myographs in 

physiological salt solution (PSS) of the following composition (in mM): NaCl 119, KCl 4.7, MgSO4 1.17, 

KH2PO4 0.4, NaHCO3 12.5, CaCl2 2.5 and glucose 5.5. The PSS was continuously kept at 37°C and 

gassed with 95% O2 and 5% CO2. The vessels were stretched under a passive wall tension of either 2g for 

aorta or 200mg for SMA [31]. The endothelial layer was removed immediately after dissection, either by 

gentle rubbing (for aorta) or by perfusion with 0.5% of 3-[(3-cholamidopropyl) dimethylammonio]-1 

propane sulphonate (CHAPS, Sigma-Aldrich) in PSS, followed by repeated washing with PSS (for SMA). 

The absence of relaxation response to acetylcholine (ACh, 1 µM, Sigma-Aldrich) in PE (1 and 10 µM for 

aorta and SMA, respectively) pre-contracted vessels was taken as evidence that the vessel segments were 

denuded of functional endothelium. 

 

Contraction experiments:  Intracellular Ca2+ in tissues was depleted by a 15-min treatment under a 

nominally Ca2+-free PSS containing 0.5 mM ethylene glycol bis(β-aminoethyl ether) - N,N,N’,N’-
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tetraacetic acid (EGTA), followed by exposure of arteries to PE (10 and 30 µM for aortic rings and SMA 

segments, respectively) in Ca2+-free PSS. After approximately 1 min (or return of tension to baseline in 

some vessels), arteries no longer responded to PE or KCl stimulation without extra-cellular Ca2+ in the 

bath. Contraction was then induced by cumulative additions of CaCl2 (10 µM – 10 mM) to the bath, and 

the force level at plateau was recorded in the continuous presence of PE or KCl. Y27632 (10 µM) and 

GF109203x (3 µM) were added to the bath 15 min prior to transfer in Ca2+-free PSS and were 

continuously present during the whole experiment. Y27632 and GF109203x were obtained from 

Calbiochem and  Tocris, respectively. The vehicle of GF109203X, DMSO, at concentration of 0.3 % had 

no effect on contractile response in the experimental conditions. The other compounds were freely 

dissolved in distilled water.  The extent of SMA contraction was normalized in force (mN) developed per 

unit length (mm) of arterial segments, as previously described by Mulvany and Halpern [31].  

 

Measurement of intracellular calcium concentration ([Ca2+]i) in SMA:  [Ca2+]i and force were 

simultaneously recorded as described previously [30]. Briefly, SMA segments were mounted on a 

myograph as described above. The myograph was coupled to a dual excitation wavelength fluorometer 

(SPEX-AR/CM), and changes in [Ca2+]i were determined by measuring the fluorescence of trapped fura-

2. The vessel segments were loaded with fura-2/ AM, (5 µM) by incubation for > 2 h in PSS containing 

the Pluronic F127 (0.02%) and bovine serum albumin (2%). After washing, they were then left for 15 min 

in a nominally Ca2+-free PSS containing 0.5 mM EGTA. The vessels were then exposed to PE (30µM) for 

approximately 1 min. Next, Ca2+-induced contraction was induced by addition of CaCl2 to these PE-

exposed vessels, using the same protocol as in contraction experiments. Due to difficulties in interpreting 

in situ Fura-2 calibration and subsequent conversion of [Ca2+]i absolute values in blood vessels [32], 

[Ca2+]i was determined as the fluorescence ratio of fura-2 excited at 340 and 380 nm (recorded at 510 
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nm). Contraction was simultaneously recorded. The experiments were performed either in the absence or 

presence of Y27632 (10 µM) added to the bath. At the end of each experiment, the maximum and 

minimum values of the fluorescence ratio were obtained in the presence of ionomycin (20 µM) and CaCl2 

(5 mM), and EGTA (20 mM), respectively, to confirm that there were no significant differences in 

specimens. 

 

Tissue preparation and Western blotting:  TCA-fixed phospho-SDS samples were prepared by essentially 

following the procedure by Kitazawa et al [33].  Briefly, SMA segments were treated for 10 min with 0.3 

mM CaCl2, in the absence and presence of PE, as described above, plus calyculin A (0.1 µM), which 

effectively prevented dephosphorylation during sample preparation [34]. After the treatment, segments 

were frozen in liquid N2, slowly thawed in TCA-acetone, and then homogenized in SDS lysis buffer (50 

mM Tris-HCl, pH 8.0, supplemented with 1.2 mM sodium ortho-vanadate, 1% SDS, 1 mM EDTA, 1 µM 

microcystin LR, 0.4 mM Pefabloc™). The samples were homogenized by sonication, and cleared by 

centrifugation for 10 min at 20,000 xg. After determination of protein concentrations by BCA method 

(Pierce), SDS lysates were mixed with Laemmli buffer with 2-mercaptoethanol and boiled for 5 min in a  

100 °C heat block.  

Total proteins (20 µg) were loaded on 10 % (for MYPT1) or 15 % (for CPI-17) polyacrylamide 

gels. Proteins were transferred to polyvinylidene difluoride membranes using a semidry transfer unit. The 

membranes were blocked in Tris-buffered saline (TBS) solution containing 0.1 % Tween-20, and 3 % 

Bovine Serum Albumin for 1 h at RT and then incubated overnight at 4°C, with the following primary 

antibodies from Millipore/Upstate: anti-CPI-17 (1:1,000 dilution), anti-P-CPI-17 (1:500), anti-MYPT1 

(1:1,000), anti-P-Thr38-CPI-17 (1:1,000), and anti-P-Thr696-MYPT1 (1:1,000), anti-P-Thr853-MYPT1 

(Millipore/Upstate, 1:500). After incubation with a secondary antibody (Jackson ImmunoResearch), the 
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membranes were subjected to enhanced chemiluminescence development (Supersignal™, Pierce) and 

exposed to X-ray film. Band intensity was measured by Densitometer (Molecular Probes). 

Immunoblotting was first done with anti-phospho-specific antibodies, and the membrane was reprobed 

with the anti-pan antibodies, after stripping for 1 h with 0.1 M Gly-HCl, pH 1.9.  The intensity of the 

phospho-protein signal was normalized with that of pan protein signal.  Each blot was subjected to 

reprobing only once. Since high phosphatase activity was present in the SMA samples, 0.1 µM calyculin 

A was added to the bath to maintain the phosphorylation levels.  PE stimulation increased the 

phosphorylation of CPI-17 and MYPT1 at Thr853 and the phosphorylation declined by kinase inhibitor 

under this condition (Figure 4).   

 

Expression of results and statistical analysis:  Mean values ± SEM were obtained from n experiments; n 

represents the number of rats. Student's t-test assuming equal distribution was used for statistical analysis, 

and p < 0.05 was considered to be significant. 
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 Results 

Body weight and systolic pressure:  The average body weight (412±2.6 g (n=17)) and the systolic blood 

pressure (159±4.3 mmHg (n=17)) of LH rats under anesthesia were significantly higher (p<0.01) than 

those of LN rats (321±8.0 g and 125±4.4 mmHg, respectively, n=11). 

 

Contraction of small mesentery artery:  Ca2+-depleted SMA tissue was used for the contraction assay.  As 

shown previously [30], addition of 30 µM phenylephrine (PE) to Ca2+-free medium induced a transient 

force along with a slight Ca2+ transient, which returned to the basal level within a few min (data not 

shown).  Then, CaCl2 was added to the PE containing bath to induce Ca2+ influx-dependent contraction 

(Figure 1A). As a control, KCl (100 mM) was used to evoke depolarization (Figure 1B), instead of PE. 

Permeable Ca2+ influx is sufficient to induce the Ca2+ dependent contraction of SMA [27, 30]. In the 

presence of PE, the maximal contraction of LH SMA was reached by the addition of CaCl2 at 2.5 mM, 

and the contraction produced was significantly greater than that of LN SMA (Figure 1A). However, there 

was no significant difference in KCl-evoked contraction of LN and LH SMA (Figure 1B). Thus, the up-

regulation in Ca2+ influx-dependent contraction of LH SMA was associated with the activation of α-

adrenergic receptor with PE stimulation.  In the presence of PE, the contraction is slightly reduced at the 

highest [CaCl2].  This reduction is unlikely to be due to an inhibition of Ca2+ permeability, based on the 

results of intracellular Ca2+ concentration measurement (Figure 3A). 

Figure 2 shows an involvement of PKC and ROK in Ca2+/PE-induced contraction.  Both PKC and 

ROK are known to transduce α-adrenergic receptor signals into smooth muscle contraction. Pre-treatment 

with Y27632, a ROK inhibitor, reduced the contraction of LN SMA at high [Ca2+] (>2.5 mM) (Figure 

2A).  The inhibitory effect of Y27632 was more prominent for the augmented contraction of LH SMA 

(Figure 2B).  The maximum contractions of LN and LH in the presence of Y27632 were of similar 
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magnitude (LN: 1.19 ± 0.38 mN/mm, LH: 1.56 ± 0.25 mN/mm).  By contrast, the PKC inhibitor 

(GF109203X) had little effect on the contraction of SMA from LN or LH (Figure 2C and D). Thus, the 

kinase sensitive to Y27632, probably ROK, is responsible for PE-induced hyper-contractility in LH SMA.  

 

Ca2+ permeability and Ca2+ sensitivity of LH SMA contraction:  We measured the fluorescence ratio of 

Fura2 at 340/280 nm to estimate the intracellular Ca2+ concentration, [Ca2+]i, in LN and LH SMA. Fura-2 

loading did not affect the contraction of LN and LH SMA or the potency of Y27632 (data not shown).  

Under Ca2+-free conditions, the fluorescence ratio in LN strips (1.07 ± 0.20) was slightly lower than that 

detected for LH strips (1.36 ± 0.14). In LN SMA (Figure 3A, closed circle), the addition of CaCl2 

increased the fluorescence ratio, indicating a concentration-dependent elevation in [Ca2+]i, in parallel to an 

increase in the contraction (Figure 1). As shown in Figure 3B, the relationship between [Ca2+]i and the 

extent of contraction was nearly linear in LN SMA.  In contrast, [Ca2+]i in LH SMA (Figure 3A, closed 

square) was significantly lower than that in LN SMA. Consequently, the [Ca2+]i -force curve was steeper 

and shifted upward, indicating a Ca2+ sensitization of LH SMA smooth muscle contraction (Figure 3B). 

This augmented Ca2+ sensitivity seems to be responsible for the hyper-contractility of LH SMA.  

In the LH arteries, Y27632 did not significantly affect the basal fluorescence ratio (0.124 ± 0.020). 

However, as shown in Figure 3A, Y27632 markedly improved Ca2+ influx of LH SMA, causing an 

increase in [Ca2+]i to the same level as in LN SMA that restored the [Ca2+]i -force relationship of LH to 

that of LN (Figure 3B).  These results suggest that ROK-mediated signals disrupt both Ca2+ influx and the 

Ca2+-sensitivity of LH SMA contraction.  

 

Regulation of myosin phosphatase:  It has been well-documented that Ca2+ sensitization occurs via the 

inhibition of myosin phosphatase in arteries from normotensive rats. For example, in response to α-
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adrenergic receptor activation, the inhibition of myosin phosphatase is mediated through phosphorylation 

of an inhibitor protein, CPI-17, at Thr38 and the MYPT1 regulatory subunit of myosin phosphatase, at 

Thr696 and Thr853 [23]. We examined the phosphorylation of CPI-17 (Figure 4, panel A) and MYPT1 

(panel B) in SMA from LN and LH rats, in the absence (marked as Ctl) and the presence of CaCl2 with 

PE (marked as PE).  The phosphatase inhibitor calyculin A was added to the bath at low concentration 

(0.1 µM) to prevent dephosphorylation during the sample preparation. The ratio of CPI-17 expression to 

myosin phosphatase (CPI-17/MYPT1) was slightly but significantly higher in LH SMA (1.39 ± 0.21), 

compared with LN (1.00 ± 0.05) (n=5, p < 0.05).  As shown in Figure 4A, the addition of PE significantly 

increased the phosphorylation of CPI-17 at Thr38 in LN SMA, in agreement with previous data obtained 

from other artery types [23].  However, compared to LN SMA, phosphorylation levels were lower in LH 

SMA, and surprisingly, no increase in the phosphorylation of CPI-17 was observed in PE-treated LH 

SMA. Y27632 treatment did not reduce, but rather increased the phosphorylation of CPI-17 (Figure 4A).  

The PKC inhibitor GF109203x moderately but significantly reduced the phosphorylation of CPI-17 in LH 

SMA (Figure 4A).  Phosphorylation of MYPT1 at Thr696 was unchanged by PE-treatment of both LN 

and LH SMA (Figure 4B), but the phosphorylation was significantly increased after treatment with 

Y27632 and GF109203x.   The phosphorylation of MYPT1 at Thr853 was increased in LN SMA by PE 

treatment (Figure 4B).  The larger error bar size is due to relatively low signal on the immunoblot (data 

not shown).  As seen for CPI-17, PE stimulation did not enhance the phosphorylation of MYPT1 at 

Thr853 in LH SMA (Figure 4B). Y27632, but not GF109203x, reduced the phosphorylation of MYPT1 at 

Thr853 in LH SMA, although this difference was not statistically significant, due to the low 

phosphorylation level (Figure 4B).  These results suggest that the ROK-mediated Ca2+ sensitization of LH 

SMA contraction is independent of myosin phosphatase inhibition mediated by CPI-17 and MYPT1 

phosphorylation.  
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Comparison of SMA and aorta smooth muscle:  Figure 5 shows the Ca2+-induced force produced by aorta 

strips from LN and LH, and Figure 6 summarizes the contractile data of both SMA and aorta.  In contrast 

to SMA (Figure 1 and 2), CaCl2 induced to an equal extent the contraction of aortic rings from LN and 

LH (Figure 5A), suggesting that, unlike resistance artery, Ca2+ sensitivity is unchanged in LH aorta.  A 

major difference between aorta and SMA was seen in the sensitivity of aortic tissues to Y27632, where 

the contraction of both LN and LH aorta was almost abolished by Y27632 pre-treatment (Figure 5B, C, 

and 6).  The results suggest that ROK plays a dominant role in Ca2+-induced contraction in SMA.  As 

seen in SMA, GF109203x did not alter the contractile response of aortic rings from LN rats (Figure 5D).  

However, the contraction of LH aorta was significantly reduced by GF100203x treatment, suggesting a 

difference in the signal transduction of the Ca2+-induced force, which is mediated by PKC in aorta from 

LH, but not from LN (Figure 6). Thus, the signal transduction pathways responsible for controlling the 

Ca2+ sensitivity is specific to each type of vasculature (SMA vs aorta) under a certain environment (LN vs 

LH).  
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Discussion 

Here we measured the sustained contraction of smooth muscle strips of SMA and aorta from LN 

and LH, elicited by re-addition of extracellular Ca2+.  The results demonstrate the PE-induced hyper-

contractility of LH smooth muscle, which is specific to resistance SMA. Based on previous reports, the 

addition of extra-cellular Ca2+ in the presence of PE triggers Ca2+ influx through voltage-gated and 

receptor-operated channels as well as Na/Ca exchangers that results in a sustained contraction [27, 30].  

Therefore, the present study reflect the response to a tonic Ca2+ influx component rather than an initial 

phasic IP3-mediated Ca2+ release [35].  Previous studies show that maintenance of the sustained phase of 

the agonist-induced contraction depends on Ca2+-dependent activation of the RhoA/ROK pathway [28, 

36].  Indeed, RhoA/ROK is activated in response to depolarization [28].  On the other hand, in this study, 

the hyper-contractility of SMA was seen when the arteries were exposed to PE, but not upon 

depolarization with KCl.  Therefore, the hyper-contractility of LH SMA is caused by not only the Ca2+-

induced activation of ROK, but also by other signals activated in response to α-adrenergic receptor 

activation. The deficiency in Ca2+ sensitivity of LH SMA was normalized by the treatment with Y27632.  

Generally, kinase inhibitor compounds are known to target a subset of kinases [37].  However, because 

accumulating evidence strongly suggests that ROK is dominantly involved in the regulation of vascular 

contraction, Y27632 most likely targets ROK in LH SMA and normalizes contractile  dysfunction. 

 

Ca2+ permeability appears to be greater in LH SMA, compared to LN SMA. An L-type Ca2+ 

channel is unlikely involved in the reduction of Ca2+ influx, because L-type channels are up-regulated in 

LH [7] as well as in spontaneously hypertensive rat basilar artery [16]. Because the deficiency in the Ca2+ 

influx is normalized by the treatment with Y27632, this suggests an involvement of ROK.  The reduction 

of Ca2+ influx in both LN and LH SMA is more significant at higher CaCl2 concentration.  We presume 
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that the activation of ROK via Ca2+ signals causes the further inhibition in Ca2+ influx. Meanwhile, it 

remains unclear how ROK controls Ca2+ permeability.  Recently, Iftinca et al. reported that the activation 

of ROK induces a reduction of T-type Ca2+ channel activity [38]. Thus, T-type Ca2+ channel and/or other 

unknown channels coupled with α-adrenergic receptor could be involved in altering Ca2+ influx in LH 

SMA.  

 

The PE-induced Ca2+ sensitization dominates the reduction in Ca2+ influx, resulting in the hyper-

contractility of LH SMA. ROK activity is known to depend on the inhibition of myosin phosphatase via 

phosphorylation of CPI-17 and MYPT1 [8, 39]. Sequential phosphorylation of CPI-17 at Thr38 by Ca2+-

dependent PKC at early phase and then by ROK at sustained phase occurs in response to α-agonist 

stimulation of normotensive rabbit femoral artery [23].  In this study, the results were obtained during the 

sustained phase of contraction, and it is clear that CPI-17 is not the target of ROK in LH SMA. Myosin 

phosphatase is also inhibited through phosphorylation of MYPT1 at Thr696 and Thr853 [40]. As reported 

previously [23, 24], PE stimulation of the normotensive SMA increases the phosphorylation of MYPT1 at 

Thr853. However, the phosphorylation of MYPT1 at Thr853 in LH SMA is insensitive to PE stimulation, 

and as such, is unlikely to be involved in the increase of Ca2+ sensitivity of LH SMA. In contrast to the 

previous report of the agonist-induced phosphorylation of MYPT1 at Thr696 in hypertensive rat arteries 

[17], the phosphorylation of MYPT1 Thr696 is unchanged in either LN or LH, which is in agreement with 

the other report of the spontaneous phosphorylation at this site [24].  Thus, unlike other smooth muscle 

tissues from normotensive animals, it is obvious that the activation of ROK in LH SMA is linked to 

neither CPI-17 nor MYPT1 phosphorylation.  Purified ROK can phosphorylate a subset of substrates, 

including myosin light chain and cytoskeletal proteins, as well as CPI-17 and MYPT1 [41].  The substrate 

specificity of cellular ROK is controlled by multiple factors, such as localization of active RhoA/ROK 



Freitas, et al., Original Article, Fund. Clin. Pharm. 
Submitted on 7/2/08, decision on 9/11/08, revised on 9/30/08 

 15 

[42], and the direct binding of RhoA and MYPT1 [43]. We speculate that some factors determining the 

substrate specificity of cellular ROK are perturbed in LH SMA, which deny ROK to access to CPI-17 and 

MYPT1 and increase the contraction through the direct phosphorylation of myosin or actin binding 

proteins in LH SMA. Genetic mapping identified an involvement of chromosomes 2, 13, and 17 in blood 

pressure control of Lyon rat strain [44, 45]. Proteomic analysis is needed to elucidate alterations of a 

subset of gene products that disrupts ROK signaling in the regulation of Ca2+ influx and Ca2+ sensitivity 

in LH SMA. 

 

There are striking differences in the Ca2+-induced contraction of SMA and aortic rings obtained 

from the same rats.  Most importantly, PE-induced hyper-contractility did not occur in LH aorta smooth 

muscle, suggesting vascular type-specific alterations in ROK signaling. Another difference between SMA 

and aorta is in the Y27632 sensitivity of the sustained contraction. Ca2+-induced contraction of aorta 

smooth muscle is sensitive to ROK inhibition.  Consistent with this result, Ghisdal et al. (2003) reported 

that Y27632 nearly abolished norepinephrine-induced contraction of aorta as a result of inhibition of both 

ROK-dependent Ca2+ sensitization and Ca2+ influx [27]. In addition to the effect on the contraction, it is 

reported that the relaxation induced by ROK inhibitors depends on the vascular tissue type, strains and 

experimental protocol, such that the relaxant effect of Y27632 was greater in large arteries than in SMA 

[11-13, 27, 28].  In contrast, PKC is partially involved in the Ca2+-induced sustained contraction of LH 

aorta, whereas a PKC inhibitor had no effect on the SMA contraction. Thus, the contribution of ROK and 

PKC to the regulation of the contraction is specific to each vascular type and probably responds to certain 

environmental factors. This should offer a note of caution when selecting smooth muscle tissues for 

studies on the regulation of contraction in hypertensive animals, and also to developing treatments for 

hypertension that target ROK.  Furthermore, there is significant diversity in the signal transduction of 
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hypertensive SMA between animal models, such that up-regulation of ROK activity enhances 

phosphorylation of MYPT1 at Thr696 causing hyper-contraction in angiotensin II-induced hypertensive 

rats [10, 19]. Thus, even though the involvement of ROK activity is a common theme in hypertensive rat 

models, the mechanisms underlying hyper-contractility of SMA are likely unique to each model, and 

probably between patients.  

 

LH SMA hyper-contractility is associated with disorders in Ca2+ permeability and [Ca2+]i -force 

relationship.  Y27632 effectively normalized the contraction of the hypertensive SMA, without affecting 

the signals for myosin phosphatase regulation.  These observations appear counter to a large body of work 

demonstrating ROK-mediated inhibition of myosin phosphatase in normotensive smooth muscle. Our 

results encourage further studies on the mechanism of ROK-induced Ca2+ sensitization of vascular 

smooth muscle contraction under pathological conditions.   
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Figures legends 

 
Figure 1  

Sustained contraction evoked by addition of extra-cellular Ca2+.  Contraction of denuded SMA strips 

from LH (square) and LN (circle) rats were induced by the addition of CaCl2 at the indicated 

concentration to the bath.  Each plot indicates the maximum force value reached to plateau (mN) 

normalized by length of each strip (mm).  Assays were done in the presence of (A) 30 µM phenylephrine 

(PE) and (B) 100 mM KCl. The mean values ± SEM of 8 – 12 experiments are shown.  *p < 0.05, LN 

versus LH. 

 

Figure 2 

Effects of kinase inhibitors on Ca2+-induced sustained contraction of PE-exposed SMA.   Ca2+/PE-

induced contraction was measured using SMA from LN (A, C) and LH (B, D) rats in the absence or 

presence of Rho-kinase inhibitor Y27632 (10 µM) (A, B) or PKC inhibitor GF109203X (3 µM) (C, D). 

Inhibitors were added at 15 min before CaCl2 titration was initiated.  The data in the absence of inhibitors 

are the same as Figure 1A. The mean values ± SEM of 4-8 experiments are shown.  *p < 0.05, LN versus 

LH. 

 

Figure 3 

Intra-cellular Ca2+ concentration [Ca2+]i in SMA during Ca2+-induced contraction. Fluorescence 

ratio of Fura2 and the smooth muscle contraction were simultaneously measured using LN (circle) and 

LH (square) SMA. SMA was preloaded for 2 h with a permeable Ca2+ indicator fura-2/AM and then 

washed extensively.  Fluorescence intensities at 510 nm with excitation at 340nm and 380 nm were 

monitored during CaCl2 titration. (A) CaCl2-dependendent Ca2+ influx.  (B) Force-[Ca2+]i relationship.  
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Closed circle and square show the ratio of Fura2 fluorescence intensity in SMA from LN and LH, 

respectively.  Open square indicates the fluorescence ratio of LH SMA in the presence of 10 µM Y27632. 

The mean values ± SEM of 4-5 experiments are shown.  *p < 0.05, LN versus LH. 

 

Figure 4 

Phosphorylation of CPI-17 at Thr38 (A), MYPT1 (B) at Thr696 and at Thr853 in SMA from LN 

and LH rats. Phosphorylation of each protein was measured by immunoblotting method as described in 

Methods.  The band intensity of anti-phospho-CPI-17 Thr38 (A), MYPT1-Thr696, and -Thr853 (B) was 

normalized with that of anti-pan CPI-17 (A), and MYPT1 (B), respectively. Data from SMA without and 

after a 10-min exposure to 30 µM PE and 2.5 mM CaCl2 are indicated as Ctl and PE, respectively.  

Y27632 (+Y) and GF109203x (+GF) were added as described in Figure 2. All samples were loaded on 

single gel for densitometry.  The mean values ± SEM were obtained from 3 independent assays.    ∗p < 

0.01, ∗∗p < 0.05. 

 

Figure 5 

Ca2+-dependent contraction of aorta smooth muscle.  Ca2+-induced contraction and the effect of kinase 

inhibitor were assayed with aorta ring from LN and LH rats, as described in Figure 1 and 2. The data in 

the absence of inhibitors are the same in LN and LH samples. Mean values ± SEM of 4-5 experiments are 

shown.  *p < 0.05, LN versus LH. 

 

Figure 6 

Comparison of Ca2+-induced contraction of SMA and aorta from LH and LN.  Contraction was 

assayed as described in Figures 2 and 5.  The data for CaCl2 contraction at 2.5 mM (for SMA) and 10 mM 
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(for aorta) in the presence of PE are shown in the bar graph. The mean values ± SEM of 4-13 experiments 

are shown.  *p < 0.05, LN versus LH. 
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