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Abstract 

Although pivotal in regulating bronchomotor tone in asthma, airway smooth muscle 

(ASM) also modulates airway inflammation in asthma. ASM myocytes secrete or express a wide 

array of immunomodulatory mediators in response to extracellular stimuli, and in chronic severe 

asthma, increases in ASM mass may also render the airway irreversibly obstructed. Although the 

mechanisms by which ASM secretes cytokines and chemokines are shared with those regulating 

immune cells, there exist unique ASM signaling pathways that may provide novel therapeutic 

targets. This review provides an overview of our current understanding of the proliferative as 

well as synthetic properties of ASM. 
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1.  Introduction 

Asthma occurs in about 1 in 20 Americans; in children, recent estimates suggest an 

incidence as high as 10%. Although asthma typically induces reversible airway obstruction, in 

some patients airflow obstruction can become fixed. The bronchoconstriction evoked by smooth 

muscle shortening promotes airway obstruction and constitutes the hallmark of asthma. Although 

airway smooth muscle (ASM) functions as the primary effector cell that regulates bronchomotor 

tone, ASM may undergo hypertrophy and/or hyperplasia and modulate inflammatory responses 

by secreting chemokines and cytokines. This review addresses current studies focusing on 

molecular and cellular mechanisms by which ASM cells modulate inflammatory cell function 

and responses in asthma. 

The variety of cell types that reside in or infiltrate through the inflamed submucosa 

potentially undergo cell-cell interactions. Eosinophils, macrophages and, particularly, 

lymphocytes may initiate or perpetuate the asthma diathesis by secreting pro-inflammatory 

mediators or by expressing cell adhesion molecules (CAMs) that may act directly or indirectly 

on ASM. Although many cell-cell interactions likely contribute to airway hyperresponsiveness in 

asthma, evidence supports that T cells, mast cells and ASM can directly interact via CAMs.  In 

response to cytokines such as IL-1β, TNFα and IFNγ, ASM cells express a host of cell adhesion 

molecules that promote interactions among ASM and inflammatory cells.  The capacity for ASM 

cells to respond and secrete a myriad of cytokines and growth factors potentially impugns ASM 

as an immunomodulatory cell as detailed in Table 1.  Further advances in understanding the 

immunoregulatory potential of ASM revealed that cytokines also up-regulate the expression of 

Toll-like receptors (TLRs) in ASM cells as described in Figure 1.  These receptors serve as 

pattern-recognition molecules that modulate innate and adaptive immune and inflammatory 

responses to microbial infection, tissue injury or inflammation as described in Tables 1 and 2. In 

this section, we will review the recent advances describing immunomodulatory functions of 

ASM cells. 

2.  Adhesion Molecules 

The expression and activation of a cascade of cell adhesion molecules (CAMs) that 

include selectins, integrins, and CD31, as well as the local production of chemoattractants, evoke 

leukocyte adhesion and transmigration into lymph nodes and sites of inflammation involving 

non-lymphoid tissues. The subsequent interactions of the infiltrating leukocytes with other cell 
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types in the bronchial submucosa or with the ECM that may sustain the inflammatory response 

remain unclear. Infiltrating inflammatory cells bind to airway structural cells through specific 

CAMs and, as a consequence, perpetuate airway inflammation [1].  In addition to mediating cell 

contact, some of the CAMs may also function as co-stimulatory molecules contributing to the 

activation of structural cells [2]. 

Recent studies in ASM tissues in vitro and in vivo suggest that specific CAMs mediate 

cell-cell interactions. In situ hybridization and immunohistochemical analyses of lung tissue have 

revealed that ASM expresses a wide variety of CAMs in vivo [3, 4].  Specifically, after LPS 

stimulation of rat lungs, enhanced ICAM-1 expression both at the protein and mRNA levels was 

reported in ASM [3].  Using in vivo human bronchial tissue transplanted onto the flank of SCID 

mice, Lazaar and colleagues [4] demonstrated a marked increase in ICAM-1 and VCAM-1 

expression after the injection of TNFα, a cytokine that is produced in considerable quantities in 

asthmatic airways [5].  Further in vitro studies confirmed the expression of ICAM-1 and VCAM-

1 on cultured ASM that was inducible by a wide range of inflammatory mediators such as TNFα, 

IL-1β or IFNγ [4, 6].  Although the function of CAMs on ASM remains incompletely defined, 

surface expression of CAMs on ASM could play a pivotal role in regulating ASM cell 

interactions with a variety of inflammatory cells relevant for asthma pathogenesis [4, 7-9].  Other 

studies suggest that activated T cells avidly adhere to cultured ASM, an interaction that is 

mediated through ICAM-1, VCAM-1 and CD44 [4].  The latter interaction enhances T cell 

binding, increases bronchoconstrictor responses to acetylcholine and impairs relaxation 

responses to isoproterenol [7].  More recently, investigators demonstrated that CD4+ T cells 

interact with ASM in vivo.  Adoptive transfer of CD4+ T cells from sensitized rats markedly 

increased ASM mass and inhibited apoptosis of airway myocytes in naïve recipients after 

repeated allergen challenge.  Additionally, genetically modified CD4+ T cells expressing 

enhanced GFP were localized by confocal microscopy to be juxtaposed to the ASM.  These 

findings are clinically relevant and imply that CD4+ T cells may directly modulate ASM 

function through cell-cell interactions in vivo [10].  Furthermore, other inflammatory cells 

including eosinophils [8] and recently neutrophils [9] have been demonstrated to adhere to ASM 

in vitro.  The attachment of such cells to ASM decreased in the presence of anti-ICAM-1 and 

VCAM-1 antibodies.  Further, studies exploring mast cell-ASM interactions in vivo in subjects 

with asthma also demonstrated that cell-cell attachment could modulate and alter ASM cell 
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function [11].  In addition, cell-cell interactions can occur apart from CAM expression.  For 

instance, mast cell-ASM interactions occur via membrane bound stem cell factor on ASM [12, 

13].  The identification of the critical regulatory sites that modulate CAM expression on airway 

myocytes and disruption of cell-cell adherence would provide new therapeutic approaches to 

alter airway remodeling in patients with chronic airflow obstruction. 

2.1.  Cytokine and chemokine expression 

Cytokines and chemokines play a central role in regulating inflammatory and immune 

responses in chronic lung diseases such as asthma and COPD. In vivo studies using selective 

inhibitors as well as neutralizing antibodies against various cytokines and chemokines 

demonstrate their prominence in antigen-induced airway inflammation (leukocyte infiltration) 

and hyperresponsiveness in animal models [14-16]. Studies in sensitized knock-out or transgenic 

mice also illustrate the importance of cytokines in inducing abnormal airway changes [17].  

ASM may provide a potential target for cytokines secreted by immunocytes. In human ASM 

cells, cytokines alter pro-inflammatory gene expression in an autocrine or paracrine manner [18]. 

Evidence convincingly demonstrates that ASM cells secrete a number of cytokines and 

chemoattractants as detailed in Table 1. 

IL-6, a pleiotropic cytokine, may induce smooth muscle cell hyperplasia [19] and 

modulate B and T cell proliferation and immunoglobulin secretion. The effect of IL-6 as an ASM 

mitogen is controversial and may be species-dependent [20]. Mast cell proliferation, however, is 

induced by IL-6 when the mast cells are adherent to ASM [12]. IL-6 secretion by ASM cells is 

inducible by multiple stimuli, including IL-1β, TNFα, TGFβ and sphingosine-1-phosphate [21-

25]. Interestingly, transgenic expression of IL-6 in the murine lung evokes a peribronchiolar 

inflammatory infiltrate but promotes airway hyporesponsiveness. This intriguing dual role for 

IL-6 in controlling local inflammation and in regulating airway reactivity [26, 27] is consistent 

with the known ability of IL-6 to inhibit TNF and IL-1β secretion. ASM cells may also play a 

role in promoting both the recruitment and survival of eosinophils by secretion of GM-CSF and 

IL-5 [28-30], although the secretion of IL-5 by ASM remains somewhat controversial. Finally, 

additional cytokines that are secreted by human ASM cells include IL-1β, IFNβ and other IL-6 

family cytokines, such as leukemia inhibitory factor and IL-11, which are secreted following 

exposure of ASM cells to viral particles [23, 24, 31-33]. 

Autocrine IFNβ secretion regulates ASM inflammatory gene expression 
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In ASM cells, TNFα activates JAK1 and Tyk2, and STAT1- and STAT2-dependent gene 

expression via the autocrine action of IFNβ [34].  Autocrine IFNβ differentially regulates TNFα-

induced inflammatory gene expression by suppressing IL-6 expression and promoting RANTES 

secretion.  Although functional cross talk between IFNγ and TNFα occurs in other cell types 

(mostly hemopoietic cells), this study was the first to demonstrate secretion of IFNβ by TNFα in 

airway structural cells.  Collectively, the autocrine secretion of IFNβ is a novel signaling 

component by which TNFα regulates ASM function in human ASM cells. 

NF-κB activation modulates IFN signaling in ASM cells 

IFNs interact with other inflammatory mediators such as TNFα and promote the 

synergistic release of inflammatory mediators from ASM cells [35].  In some instances, IFNs 

may antagonize TNFα inflammatory responses by inhibiting the NF-κB pathway.  IFNγ inhibits 

TNFα-induced NF-κB-dependent genes including IL-6 and eotaxin in ASM cells [36], and IFNγ 

suppressed TNFα–inducible gene expression that includes:  vascular endothelial growth factor 

[37], IL-17 receptor [38]), and TLR3 expression [39]. Multiple mechanisms underlying IFN 

inhibitory effect on NF-κB pathways have been proposed including inhibition of NF-κB DNA 

binding, prevention of IκB degradation, or regulation of TNF-α receptor 1 via STAT interaction 

[35]. The use of trichostatin A, a specific histone deacetylase inhibitor, reverses IFNγ inhibitory 

effects on TNFα–inducible genes and NF-κB-dependent gene expression in ASM cells [36]. 

These findings suggest that IFNγ negatively regulates expression of TNFα−induced pro-

inflammatory genes by impairing NF-κB function via transcriptional repression through 

increased histone deacetylase activity. A better understanding of the inhibitory mechanisms 

exerted by IFNγ on TNFα–inducible inflammatory genes may offer new insight into the design 

of alternative approaches for the treatment of airway inflammation in asthma. 

The combination of TNFα and IFNγ can also enhance secretion of some pro-

inflammatory mediators.  For example, these cytokines, when used together, synergistically 

induce ASM production of chemokines that have been implicated in mast cell migration to ASM 

[40]. These include CXCL10 (IP10) production via NF-κB [41] and fractalkine [42]. Thus, the 

interaction of interferon with pathways dependent on NF-κB is complex and further research is 

necessary. 

Chemokine expression in ASM cells 
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Chemokines play a central role in the recruitment and trafficking of inflammatory cells 

along diffusion gradients.  After the initiation of injury or inflammation, chemokines provide a 

diffusion gradient for cell trafficking [18].  Chemokines can be categorized by their molecular 

structure and by the degree of selectivity for distinct inflammatory cell populations [43].  For 

example, eotaxin, RANTES (Regulated on Activation, Normal T cells Expressed and Secreted) 

and IL-5 primarily recruit eosinophils, although eotaxin and RANTES affect other cell types; 

CXCL8 markedly recruits neutrophils; monocyte chemotactic proteins (MCPs) recruit 

monocytes; thymus- and activation-regulated chemokine (TARC) recruits lymphocytes; and 

stem cell factor recruits mast cells.  Many of the aforementioned chemokines, which act to 

recruit and activate leukocytes, are found in bronchoalveolar lavage fluid and lung tissue of 

subjects with asthma.  Using murine models of allergen-induced airway hyperresponsiveness, 

neutralizing MCP-5, eotaxin, RANTES and MCP-1 dramatically reduced airway 

hyperresponsiveness as well as leukocyte migration [14].  Intranasal delivery of a recombinant 

poxvirus-derived viral CC-chemokine inhibitor protein also improves pulmonary function and 

decreases inflammation of the airway and lung parenchyma [44].  In a chronic allergen exposure 

murine model, the administration of CCR3 antagonist reduced eosinophil numbers in the airway 

wall tissue that was accompanied by a decrease in airway remodeling parameters [16].  Together 

these studies demonstrate that in vivo chemokines promote and perpetuate airway inflammation 

during allergen exposure. 

Although a variety of cells are impugned to secrete chemokines, new evidence suggests 

that ASM may be a prominent source of chemokines in the submucosa.  Immunohistochemical 

and in situ hybridization studies revealed that MCP-1, RANTES and fractalkine (FKN) are 

expressed in ASM of bronchial biopsies in subjects with asthma [40, 45, 46].  CXCL10, a potent 

chemokine for activated T cells, NK cells and mast cells that bind to CXCR3, is also expressed 

in ASM in subjects with asthma or COPD [41, 47].  Expression of CXCL10 in ASM cells and 

CXCR3 (the CXCL10 receptor) in mast cells was seen in ASM in vivo [47].  In murine models 

of allergen-induced airway hyperresponsiveness, eotaxin, an eosinophil specific chemokine 

mediator, is markedly expressed in ASM tissue [48]. The expression of chemokine receptors also 

exists in ASM as demonstrated in subjects with asthma who express strong immunoreactivity for 

CCR3 (eotaxin receptor) [49], a receptor that has been previously linked to the pathogenesis of 

asthma [50]. To further understand the mechanisms by which chemokines are expressed, in vitro 
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studies showed that in response to specific inflammatory mediators,  cultured ASM cells also 

express and secrete a variety of chemokines such as eotaxin, RANTES, CXCL8, MCP-1, -2 and 

-3, and TARC [51].  Although the precise physiological relevance of chemokine receptor 

expression in ASM remains unclear, there is no doubt that the chemokine levels increase in 

bronchoalveolar lavage fluid in subjects with asthma, and, in part, the increased levels may be 

mediated by ASM.  The identification of the infiltration of mast cells into ASM bundles may 

also suggest that mast cells diffuse via gradients of chemokines to the submucosa [11].  

Activated ASM supernatant from subjects with asthma exhibits chemotactic activity for purified 

lung mast cells and subsequently elicits their migration toward ASM.  The precise mechanisms 

by which this occurs remain unclear but can serve as a new therapeutic target in decreasing 

airway infiltration of immunocytes and inflammatory cells in asthma.  Blocking CXCL10 

decreased mast cell migration into the ASM bundles [11], and in parallel studies, El-Shazly and 

colleagues [40] demonstrated that FKN also facilitated smooth muscle-induced mast cell 

chemotaxis. Thus, it is likely that a variety of chemoattractants are involved in vivo. 

Several studies have identified molecules that stimulate chemokine secretion by ASM as 

summarized in Figure 1. For example, the antimicrobial protein human cathelicidin antimicrobial 

peptide LL-37, produced by mast cells and neutrophils, stimulates IL-8 secretion by ASM cells. 

The LL-37 effect was dependent on activation of ERK1/2, p38, and the Src signaling pathways 

[52]. Other studies investigated the role of ECM on ASM cells in modulating chemokine release 

[52, 53]. Compared with cells obtained from normal volunteers, ASM cells from subjects with 

asthma express an increased amount of eotaxin, and enhanced autocrine fibronectin secretion 

requires engagement of α5β1 integrin [52]. Others showed that fibronectin and type I collagen 

enhanced IL-1β–dependent ASM secretion of eotaxin and RANTES release via a β1 integrin-

dependent mechanism [53]. These data suggest that the ECM environment surrounding the ASM 

cell amplifies chemokine release and enhances cellular infiltration during inflammation and 

remodeling. For instance, vasoactive intestinal peptide,  a 28 amino acid peptide hormone, has 

been shown to modulate FKN, a CXC3 chemokine, function in ASM cells [40]. In several cell 

types, FKN is expressed as a soluble or membrane-bound moiety [54] that induces both 

migration and adhesion of leukocytes. Vasoactive intestinal peptide modulates subcellular 

distribution of FKN, which in turn could favor the adhesion of ASM cells to FKN expressing 

mast cells [54]. Collectively, these studies support the potential role of ASM cells not only as 
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regulators of airway inflammation but also as modulators of airway leukocyte infiltration and 

retention. 

2.2.  Toll-like receptors 

Mammalian Toll-like receptors (TLRs) are cell surface molecules that evoke 

inflammatory responses in recognition of bacterial and viral components as described in Figure 

1. Airway infections due to viruses exacerbate asthma and prompted investigators to study 

whether activation of TLRs in the airways promotes airway inflammatory responses. 

Accordingly, several TLR and TLR ligands have been associated with the asthma diathesis [55]. 

A specific interest has focused on TLR function in ASM cells since microbial products such as 

lipopolysaccharide, a major component of the external membrane of gram-negative bacteria, 

modulate ASM hyperresponsiveness to contractile agonists in some species [42, 56]. 

The interaction of ASM cells with immune cells such as monocytes and mast cells 

dramatically amplifies TLR-mediated local inflammatory responses. In studies involving co-

cultures of peripheral blood monocyte/ASM cells, enhanced TLR2- and TLR4-mediated IL-6, 

CCL2, and CXCL8 secretion has been reported [57]. Monocytes also play a role in the initiation 

of inflammatory responses, and interaction with stromal cells could amplify such effects.  

Additionally, treatment of ASM cells with poly(I:C), a synthetic analog of inosine that resembles 

dsRNA of viruses, stimulates the recruitment of mast cell lines to ASM cells [57]. Oliver et al. 

showed that rhinovirus infection enhanced IL-8 release from asthmatic ASM, suggesting that 

post viral infection, activation of mast cells together with TLR-driven pathways in ASM 

contribute towards ASM exacerbations [58]. These observations suggest that ASM cells could 

modulate inflammatory responses during viral and microbial infections. 

2.3.  Mechanisms inhibiting ASM synthetic function 

Effects of intracellular cAMP-elevating agents on cytokine-induced synthetic responses 

In asthma, β-agonist bronchodilators increase intracellular cAMP ([cAMP]i) and 

stimulate cAMP-dependent protein kinase in ASM. In a similar manner, prostaglandin E2 

(PGE2), which is produced in large quantities at sites of inflammation, increases [cAMP]i in 

human ASM cells and is a potent and effective bronchodilator [59]. [cAMP]i-mobilizing agents 

in ASM cells also modulate cytokine-induced synthetic function [60]. In TNFα-stimulated ASM 

cells, expression of both eotaxin and RANTES is effectively inhibited by isoproterenol, PGE2, 

dibutyl [cAMP]i, or the phosphodiesterase inhibitors rolipram and cilomast [21, 61, 62]. TNFα-
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induced interleukin (IL)-8 secretion is inhibited by the combination of [cAMP]i-mobilizing 

agents [63]. Similarly, S-1-P, which activates a Gs protein-coupled receptor and increases 

[cAMP]i, abrogates TNFα-induced RANTES secretion in ASM cells [22]. In contrast to the 

effects of [cAMP]i on chemokine secretion, pharmacologic agents that increase [cAMP]i 

stimulate secretion of IL-6 in human ASM cells [21] and modulate basal IL-6 promoter activity 

[64]. More recently, investigators show that increases in cAMP abrogate secretion of GM-CSF 

by ASM cells, and that cyclo-oxygenase inhibitors that reduce PGE2 enhance cytokine-induced 

secretion of GM-CSF [65, 66].  Accordingly, phosphodiesterase type IV inhibitors, which reduce 

GM-CSF secretion in vitro, also reduce antigen-induced airway hyperresponsiveness [66, 67]. 

Activation of [cAMP]i-dependent pathways inhibits, in part, TNFα-mediated induction of both 

ICAM-1 and VCAM-1 expression, as well as inhibiting adhesion of activated T cells to ASM 

cells. The basal expression of ICAM-1 and VCAM-1, as well as the binding of activated T cells 

to unstimulated ASM, was resistant to increases in [cAMP]i [6].  Thus, cytokine-induced 

expression of cellular adhesion molecules and T-cell adhesion to ASM cells are modulated by 

changes in [cAMP]i. Taken together, current evidence suggests that some but not all pro-

inflammatory functions in ASM cells are inhibited by [cAMP]i-mobilizing agents. 

Glucocorticoids modulate cytokine-induced synthetic responses 

Although glucocorticoids (GCs) are effective anti-inflammatory agents in asthma, the 

precise mechanisms by which GCs improve lung function in asthma remain unclear. Most anti-

inflammatory effects of GCs are mediated via the glucocorticoid receptor alpha isoform (GRα), 

which suppresses expression of inflammatory genes through mechanisms known as 

transactivation or transrepression [68].  Alternative splicing mechanisms induce transcription of 

another glucocorticoid receptor isoform, namely GRβ [69].  Cytokine-induced secretion of 

RANTES [21, 70, 71], monocyte chemoattractant protein [71], eotaxin [62], GM-CSF [30] and 

IL-6 [25] is abrogated by corticosteroids. In conjunction with [cAMP]i-mobilizing agents, 

steroids additively inhibit chemokine and cytokine secretion [64]. It also appears that 

corticosteroids inhibit specific cytokines, altering unique transcription factor expression.  For 

instance, dexamethasone inhibits TNFα-induced RANTES secretion by affecting the activator 

protein-1 (AP-1) site. In contrast, dexamethasone has little effect on TNFα- or IL-1β-induced 

NF-κB activation in human ASM cells [72]. Furthermore, cytokine-induced ICAM-1 expression 

in ASM cells, which is completely dependent on NF-κB activation, was unaffected by 
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dexamethasone, with IL-6 secretion only modestly inhibited [64]. In contrast, IL-1β-induced 

cyclo-oxygenase 2 expression was completely abrogated [72-74]. The anti-inflammatory 

potential of steroids in asthma is not solely due to their effects at NF-κB sites but is also due to 

their regulatory effects at other transcription factors such as AP-1. In addition, steroids can 

regulate GM-CSF expression by reducing mRNA stability [75]. 

ASM glucocorticoid sensitivity 

The treatment of ASM cells with a combination of IFNs and TNFα impairs steroid 

inhibition of gene expression such as CD38, RANTES and ICAM-1 by a mechanism involving 

the up-regulation of GRβ isoform [76]. Although the mechanism of synergy remains unknown, 

steroids augment IFNγ/TNFα-induced FKN and TLR2 expression in ASM [39, 42]. Despite that 

the pathological role of the GRβ isoform is not well understood, existing reports demonstrate a 

correlation between steroid resistance in individuals with asthma and the expression levels of 

GRβ [77].  More importantly, increased GRβ expression in the airways has been detected in 

patients who died of asthma [78].  Based on the ability of GRβ to act as a dominant-negative 

inhibitor of steroid action in other cell types [79], the role of GRβ in steroid insensitivity in 

inflammatory diseases has been suggested [80]. GRβ overexpression in ASM cells also prevents 

GC-induced transactivation and inhibits cytokine-induced pro-inflammatory gene expression 

[76]. 

In a GRβ-independent manner, short-term treatment of ASM cells with IFNs and TNFα 

partially inhibits steroid transactivation through the cellular accumulation of IRF-1 [81].  IRF-1 

is an early response gene involved in diverse transcriptional regulatory processes [82], and an 

association exists between IRF-1 polymorphisms and childhood atopic asthma [83].  Early 

steroid dysfunction seen after short incubation with IFNs and TNFα was rescued by enhancing 

IRF-1 cellular levels using constitutively active IRF-1 that inhibited glucocorticoid response 

element (GRE)-dependent gene transcription [81].  Reducing IRF-1 cellular levels using siRNA 

approaches in TNF/IFN-treated ASM cells also restored GC transactivation. These findings 

demonstrate that IRF-1 may serve as a GRβ-independent mechanism modulating cytokine-

induced steroid insensitivity. Since expression of IRF-1 is increased after viral infections [84] 

and since IRF-1 suppresses steroid signaling in ASM cells [81], IRF-1 may mediate reduced 

steroid responsiveness seen in patients with asthma experiencing viral infections [85]. 

3.  Conclusions 
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In summary, ASM contributes to the pathogenesis of asthma at multiple levels beyond its 

contractile functions. ASM, exposed to a variety of mediators and cytokines, can undergo 

phenotypic changes and secrete chemokines and cytokines, which may participate in or even 

perpetuate the mucosal inflammatory changes via the activation and recruitment of inflammatory 

cells. These new findings may provide unique therapeutic targets to decrease cell 

migration/infiltration and disrupt cell-cell adherence, and may ultimately reverse either airway 

remodeling or ongoing airway inflammation. Further elucidation of the cellular and molecular 

mechanisms that regulate non-contractile functions of ASM will offer new therapeutic targets in 

the treatment of asthma, chronic bronchitis and emphysema. 
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Table 1:  Immunomodulatory proteins expressed by human ASM cells 

Cytokines Chemokines CAM Growth Factors Others 

IL-1β 

IL-5 

IL-6 

IL-17 

IFNβ 

VEGF 

GM-CSF 

TGFβ 

LIF 

IP10 

IL-8 

RANTES 

Eotaxin 

TARC 

Fractalkine 

MCP-1,-2,-3 

 

ICAM-1 

VCAM-1 

CD44 

LFA-1 

IGF-1 

PDGF 

SCF 

CD40 

HLA-DR 

FcγRII 

 

FcγRIII 

 

NO 

 

PGE2 

TLRs 

 

Abbreviations: 

CD40, CD44:  cytoplasmic domain 40, 44; FcγRII, FcγRIII:  receptor for Fc region of IgG; GM-

CSF:  granulocyte macrophage-colony stimulating factor; HLA-DR:  human leukocyte antigen-

DR; ICAM-1:  intercellular adhesion molecule-1; IFN:  interferon; IGF:  insulin-like growth 

factor; IL:  interleukin; IP10:  interferon inducible protein 10; LFA:  lymphocyte fusion-

associated antigen; LIF:  leukemia inhibitory factor; MCP:  monocyte chemotactic protein; NO:  

nitric oxide; PDGF:  platelet-derived growth factor; PGE2:  prostaglandin E2; RANTES:  

regulated on activation, normal T cells expressed and secreted; SCF:  stem cell factor; TARC:  

thymus- and activation-regulated chemokine; TGF:  transforming growth factor; TLRs:  Toll-like 

receptors; VCAM-1:  vascular cell adhesion molecule-1; VEGF:  vascular endothelial growth 

factor 
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Table 2:  Novel molecules regulating the immunomodulatory functions of ASM 

Stimulus Receptor Effects 

PGN, Pam3CSK4 TLR2 ↑↑ IL-6, CXCL8, eotaxin secretion 

LPS, pLPS TLR4 ↑↑ IL-6, CXCL8, eotaxin secretion 

DsRNA, poly(I:C) TLR3 ↑↑ IL-6, CXCL8, CXCL10, eotaxin secretion 

IL-17 IL-17R ↑↑ CXCL8 and eotaxin secretion, ↑↑ 

neutrophil chemotaxis 

LL-37 Purinergic P2 ↑↑CXCL8 secretion 

VIP 

 

VIPR ↑↑ Mast cell chemotaxis, ↑↑ fractalkine 

function 

Fibronectin, type I collagen β1 integrin ↑↑ IL-1β-induced eotaxin and RANTES 

secretion 

 

Abreviations: 

CXCL8:  IL-8; CXCL10:  IP10; DsRNA:  double-stranded RNA; IL:  interleukin; IL-17R:  IL-

17 receptor; LL-37:  human cathelicidin antimicrobial peptide LL-37; LPS:  lipopolysaccharide; 

Pam3CSK4:  synthetic bacterial lipopeptide; PGN:  peptidoglycan; pLPS:  purified LPS; 

Poly(I:C):  polyriboinosinic polyribocytidylic acid; RANTES:  regulated on activation, normal T 

cells expressed and secreted; TLR:  Toll-like receptor; VIP:  vasoactive intestinal peptide; VIPR:  

vasoactive intestinal peptide receptor 
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Figure Legend 

Figure 1 

Environmental challenges induce asthma exacerbations that, in part, are mediated by 

alterations in ASM function.  Allergens as well as viruses and bacterial infections are common 

stimuli for asthma exacerbations.  Traditionally, these environmental challenges are thought to 

be mediated through airway inflammation and trafficking leukocytes.  Contemporary thought 

suggests that structural cells, namely, ASM, in part may modulate inflammatory responses by 

altering cell adhesion molecule expression or secreting chemokines and cytokines.  The 

paracrine and autocrine secretion of chemokines and cytokines may then also alter the 

responsiveness of ASM to contractile agonists and agents that promote bronchodilation.  

Repeated asthma exacerbations may induce chronic alterations in ASM manifested by myocyte 

hypertrophy and hyperplasia (modified from Tliba and Panettieri, Curr Allergy Asthma Rep 

2008; 8:262-8). 

Abbreviations: 

ASM:  airway smooth muscle; CXCL8, CXCL10, CCL2:  chemokines; DsRNA:  double-

stranded ribonucleic acid; ECM:  extracellular matrix; FKN:  fractalkine; ICAM-1:  intercellular 

adhesion molecule-1; IFNγ:  interferon gamma; IL-17:  interleukin-17; LL-37:  human 

cathelicidin antimicrobial peptide LL-37; LPS:  lipopolysaccharide endotoxin; TNFα:  tumor 

necrosis factor alpha; VCAM-1:  vascular cellular adhesion molecule-1; VIP:  vasoactive 

intestinal peptide 
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