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Abstract 

 

The Nuclear Factor-kappaB (NF-κB) family of transcription factors is intimately 

involved in the regulation of the inflammatory responses that play a fundamental role in 

the damage of articular tissues. Thus, many studies have examined the important 

contributions of components of the NF-κB signaling pathways to the pathogenesis of 

various rheumatic diseases, and their pharmacologic modulation. Currently available 

therapeutic agents including non-steroidal antiinflammatory drugs, corticosteroids, 

nutraceuticals and disease-modifying anti-rheumatic drugs, as well as novel specific 

small molecule inhibitors have been employed.  In addition, promising strategies such as 

improved antisense DNA therapy and RNA interference have shown encouraging results. 

However, further research will be needed before NF-κB-aimed strategies become an 

effective therapy for inflammatory arthritis.  
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Introduction  

In the last few years, novel molecular approaches have provided invaluable insights 

into the multitude of complex anabolic and catabolic signals that act upon diverse cells 

from articular tissues. Many of these important processes play a key role in the 

pathogenesis of inflammation and tissue destruction, crucial components of numerous 

articular diseases (1,2). The precise interplay of these signaling pathways is essential for 

the activation of the cellular gene expression machinery. A large number of transcription 

factor families have been implicated as critical regulators of gene expression in the 

setting of the inflammatory process (3). This review focuses on the nuclear factor κB 

(NF-κB) signaling pathways, emphasizing their role in inflammation and damage to 

articular tissues, their modulation with therapeutic agents currently in use, and potential 

future strategies. 

 

NF-κκκκB 

The NF-κB proteins are a family of ubiquitously expressed transcription factors 

that play an essential role in most immune and inflammatory responses. These 

transcription factors also have an important role in the protection of cells from apoptosis 

and in the process of intercellular signaling during normal vertebrate development. NF-

κB was first described as a B cell-specific transcription factor but has been subsequently 

shown to exist in all mammalian cell types. 

In mammals, the NF-κB family consists of five members: RelA (p65), RelB, c-

Rel, NF-κB1 (p50 and its precursor p105), and NF-κB2 (p52 and its precursor p100). 

They share a 300-amino acid domain that is designated the Rel homology domain (RHD) 
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which mediates their dimerization, interaction with the inhibitory κB (IκB) proteins, 

DNA binding and nuclear translocation. RelA (p65), RelB, and c-Rel contain a C-

terminal transcriptional activation domain (TAD) that positively regulates gene 

expression.  In contrast, p50 and p52 lack TADs, therefore, they may repress 

transcription unless bound to other NF-κB family member containing a TAD or to other 

proteins capable of recruiting coactivators (4-8). Although the NF-κB family members 

form a variety of homodimers and heterodimers,, the most prevalent activated form is the 

heterodimer RelA (p65) and p50.  Each dimmer activates its own characteristic set of 

genes and different dimers can bind to the same or distinct sites in NF-κB-dependent 

gene promoters regulating the transcription of their corresponding response genes in a 

cell-type and stimulus-type manner (9-10). 

 

NF-κκκκB function and regulation  

 NF-κB is present in the cytoplasm of all mammalian cells in an inactive form 

associated with the IκB proteins, which include IκBα, IκBβ, IκBε,IκBγ, Bcl-3,  and the 

precursor proteins p100 and p105 (4-6). The IκB proteins typically contain C-terminal 

ankyrin repeats that are crucial for their interaction with the NF-κB proteins, and an N-

terminal leucin-rich nuclear export-sequence, that is important for the shuttling of IκBs 

between the cytoplasm and nucleus. The shuttling of IκBs is an important mechanism to 

retain the IκB-NF-κB complex in the cytoplasm of unstimulated cells. The IκB proteins 

can also act as NF-κB cofactors that ultimately either inhibit or enhance NF-κB binding 

to DNA. Thus, IκBs have both cytoplasmic and nuclear roles in regulating NF-κB 

pathways (4,6,8,11). 
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 The phosphorylation of IκBs is performed by the specific serine/threonine kinase 

IκB kinase (IKK). The IKK complex consists of at least three subunits, including the 

kinases IKKα and IKKβ (also called IKK-1 and IKK-2, respectively) and the associated 

regulatory subunit IKK-γ/NEMO (NF-κB essential modulator). IKKβ is the dominant 

kinase in the canonical patwhay of NF-κB activation, whereas IKKα appears to also play 

a significant role. Thus, a new IKKα function has been recently described; the regulation 

of histone function which in turn causes the activation of the NF-κB cannonical pathway. 

Conversely, IKKα has a unique role in the activation of the non canonical pathway. IKK-

γ/NEMO has no known kinase activity, however, is crucial for IKK complex activation 

(8,12-15). 

 A broad range of stimuli including the cytokines TNF-α and IL-1β, chemokines, 

bacterial and viral products, and free radicals activate the NF-κB dimers by triggering the 

canonical signaling pathway that leads to the IKKβ phosphorylation-induced degradation 

of IκBs (IκBα, IκBβ and IκBγ), followed by its ubiquitination by the E3 ubiquitin ligase 

complex (SCF
βTrCP

), and its consequent degradation by the 26S proteasome. The 

mechanism through which cytokines activate the IKK complex is not fully known. At 

least two hypotheses have been postulated: one proposes that the activation of TAK1 

(TGF-β-activated kinase-1) or MAP kinase kinase ERK1 (MEKK1) enhaces IKK 

activity, whereas the second suggests that the linkage of IKK to the receptors localized in 

the cell membrane originates its autophosphorylation and further activation. Upon 

stimulation, interaction of NEMO with receptor-interacting protein (RIP) family 

members and TNF Receptor Associated Factor (TRAF) proteins in an ubiquitin-

dependent manner would occur in either case. Although phosphorylation of IKKβ is a 
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key event in the canonical pathway, the ubiquitination and subsequent degradation of the 

multiple factors involved on its regulation are also crucial mechanisms required for NF-

κB activation (8,11,13). 

 The degradation of IκB exposes a nuclear localization signal on the NF-κB 

proteins, which then become able to translocate into the nucleus and stimulate the 

transcription of specific target genes. It has been described that NF-κB regulates more of 

than 150 genes, including those involved in immunity and inflammation, anti-apoptosis, 

cell proliferation and the negative feedback of the NF-κB signal (11). A partial list of 

genes relevant to the inflammatory response whose expression is stimulated by NF-κB 

activation is shown in Table 1.  

 In turn, IKKα activates the NF-κB non-canonical pathway by phosphorylating 

precursor p100, followed by its polyubiquitination by SCF
βTrCP

 and further proteasomal-

processing to mature p52. TRAF family members and NF-κB-inducing kinase (NIK) also 

play an essential role in the non-canonical pathway.  Indeed, NIK phosphorylates 

IKKα. This process is generally slower than the canonical pathway and leads to a delayed 

activation of p52-containing complexes, such as p52/RelB. The activation of the non-

canonical pathway is restricted to certain TNF receptor (TNFR) superfamily members 

such as lymphotoxin β receptor (LTβR), B-cell activating factor (BAFF), CD40 ligand, 

CD27, CD30 or Receptor Activator of Nuclear Factor-κB (RANK). These molecules are 

involved in lymphoid organ formation, in B cell development, survival and homeostasis, 

and in osteoclastogenesis. Furthermore, the non canonical pathway is also activated by 

the oncogenic viruses EBV and HTLV1 (8,10,16).  



   

   

 8 

 A sequential activation of both canonical and non-canonical NF-κB pathways 

generated by few inducers has been described. Thus, an initial activation of the canonical 

pathway is followed by the activation of the non-canonical NF-κB pathway. Therefore, 

the orchestrated expression of their specific and/or common NF-κB target genes, in a 

cell-type and stimulus-type specific fashion, contributes to the pleiotropic biological 

functions of this ubiquitous transcription factor (16).  

  

Role of the NF-κκκκB in inflammatory arthritis 

 Although NF-κB plays an essential beneficial role in normal physiology, 

inapropiate regulation of NF-κB activity has been implicated in the pathogenesis of 

several inflammatory diseases including rheumatic diseases such as rheumatoid arthritis 

(RA), osteoarthritis (OA), spondyloarthropaties (SpA), systemic lupus erithematosus 

(SLE), crystal induced-arthropaties, etc. (17) (Table 2).   

 It has been shown that NF-κB is involved in the differentiation and activation of 

immune cells including macrophages; dendrytic cells (DCs), granulocytes, as well as 

osteoclasts and chondrocytes (18). Thus, differentiation of monocyte precursors to 

macrophages requires NF-κB-dependent transcription of anti-apoptotic genes. Mature 

macrophage expression of the canonical NF-κB pathway is very important for 

establishing innate and adaptive immunity through its microbial activation via Toll-like 

receptors (TLRs), antigen-processing/presentation and lymphocytes co-stimulation (19). 

The development of DCs is mainly enhanced by RelB and its presence is required for 

antigen processing and presentation in these cells, however, impairment of the canonical 

NF-κB pathway also inhibited DCs maturation.and survival (20,21). During granulocyte 
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differentiation, the canonical NF-κB pathway is activated in the setting of orchestrated 

chemokines/cytokines interaction (22). Mature normal granulocytes express NF-κB-

dependent anti-apoptotic genes and lack p52 and RelB (18,23). Intact, both canonical and 

non-canonical NF-κB signaling pathways are also crucial for T and B cell differentiation 

and homeostasis (18,24). The development of lymphoid tissues, particularly lymph nodes 

and Peyer’s patches, is influenced by both canonical and non-canonical NF-κB pathways, 

however the non-canonical pathway related to LTβR is particularly relevant in these 

processes (25,26). The beneficial and harmful roles of NF-κB are diagrammatically 

shown in Figure 1.   

 

NF-κB in rheumatoid arthritis.  There is a very important NF-κB activation in 

synovial tissue from patients with RA.  Indeed, NF-κB activation is significantly higher 

in RA than in OA, although p50 and p65 NF-κB are abundant in both rheumatoid and 

osteoarthritic synovium (27).  RA and SpA synovial tissues show that the numbers of 

cells expressing NF-κB1 at the cartilage-pannus junction is significantly higher than in 

other areas; a similar finding was observed in the number of cells expressing RelA in RA 

synovium, but no in SpA synovium. Furthermore, the numbers of NF-κB1+ and RelA+ 

cells in OA synovium were similar to those observed at the non-cartilage-pannus junction 

sites in all inflammatory tissues studied (28). In patients with RA and OA, 

immunoreactive IKK is abundant in primary fibroblast-like synoviocytes (FLS) and both 

IKKα and IKKβ are constitutively expressed at the mRNA level. Following TNF-α and 

IL-1 stimulation of RA FLS, IKKβ activation is a key event for NF-κB mediated 

induction of IL-6, IL-8, ICAM-1 and collagenase gene expression (29).  
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Animal models of inflammatory arthritis also support the concept that NF-κB plays 

a very active role in the development and progression of arthritis in vivo. NF-κB 

activation prior to the onset of clinical manifestations of arthritis has been found in both, 

murine type II collagen-induced arthritis (CIA) and rat adjuvant induced arthritis (AIA). 

In the first model, NF-κB expression correlated better than AP-1 expression with 

collagenase-3 (MMP-13) and stromelysin (MMP-3) levels, however, both transcription 

factors were activated before onset of clinical arthritis and metalloproteinase gene 

expression (30). Also, a shift to nuclear NF-κB localization was shown in chondrocytes 

during cartilage destruction in the early stage of arthritis in DBA/1 mice immunized with 

type II collagen (31).  In the second model, expression of activated NF-κB p65 was found 

in the synovial lining layer and surrounding the blood vessels in the inflamed synovium, 

being stronger in the injected hindpaw than that in the noninjected one (32). In addition, 

intraarticular gene transfer of IKKβ caused arthritis in normal rats, characterized by 

severe paw swelling, inflammatory histologic changes, increased IKK activity and 

enhanced NF-κB DNA binding activity. Thus, these experiments confirm that 

IKKβ activation is a crucial event in the initiation of synovitis (33).      

 NF-κB family members play also a pivotal role in osteclastogenesis and 

inflammation-induced bone loss observed in RA. The OPG/RANK/RANKL triad is 

particularly relevant to bone homeostasis. Thus, osteoclasts express RANK and 

osteoblasts express RANKL and its soluble decoy receptor osteoprotegerin (OPG) that 

blocks RANK binding to its ligand RANKL (34). Furthermore, mice deficient for RANK 

or RANKL show lack of precursor cells differentiation to osteoclast, leading to 

osteopetrosis (35,36). The p50/p52 doble knock-out mice has shown similar osteopetrotic 
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phenotype (37). In addition, recent experiments in mice have demostrated that IKKβ 

activation is indispensable in the signal transduction from RANK to NF-κB. Absolute 

ausence of IKKβ activity, and not of IKKα activity, leads to lack of osteoclastogenesis 

and bone unresponsiveness of IKKβ-deficient mice to inflammation (38). Therefore, the 

canonical NF-β pathway is crucial for osteoclastogenesis in vivo and its specific 

inhibition represents a logical alternative strategy to the current therapies. In contrast, the 

role of the non-canonical NF-β pathway is less evident in vivo; nevertheless, it has been 

recently shown to be crucial for the antigen-mediated periarticular bone erosion that 

accompanies inflammatory arthritis in several murine models (39,40). 

 

 NF-κB in juvenile rheumatoid arthritis. Since juvenile rheumatoid arthritis 

(JRA) shares many pathogenetic mechanisms with other autoimmune diseases, the 

activation of NF-κB is also thought to play a relevant role in its molecular 

physiopathology. Thus, NF-κB p65 nuclear expression and activation have been detected 

in the synovial tissue and fluid cells from polyarticular JRA and RA patients (41). Also, 

increased mRNA and protein expression of RANK and RANKL have been found in 

synovial dendritic cells of the joints from children with oligoarticular and polyarticular 

JRA. RANK/RANKL interactions may contribute to the survival of inflammatory 

articular cells, as well as to erosions and osteoporosis in JRA (42). 

 

 NF-κB in spondyloarthropathies. Few studies have directly addressed the role of 

NF-κB activation in SpA. Initially, NF-κB activation was found to be exclusively 

mediated by p50/p50 homodimers in synovial T cells from patients with reactive arthritis 

(ReA) and ankylosing spondylitis (AS), in contrast with the predominance of p50/65 
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heterodimers in rheumatoid synovial T cells (43). Recently, another study found that p65 

DNA-binding was decreased during the course of infliximab therapy whereas p50 DNA-

binding remained elevated in lymphocytes from AS patients (44). The differential 

activation of NF-κB subunits p50 and p65 might provide insights into the NF-κB role in 

the pathogenesis of Spa and in the effects of anti-TNF-α therapy in AS.  

 In addition, the involvement of NF-κB activation in psoriatic arthritis (PsA) has 

recently been studied with growing interest. Indeed, cells expressing active NF-κB p65 

were primarily localized to lining layer and perivascular macrophages in PsA synovial 

membrane. Expression of NF-κB p65 was equal in lining layer from both PsA and RA 

patients, but lower in PsA than RA sublining. However, the histologic findings did not 

correlate with clinical parameters of disease (45). In a further study, phosphorylated IκBα 

expression and histological severity scores significantly decreased following six months 

of etanercept treatment in PsA synovium (46).  

 

 NF-κB in crystal induced arthropathies. NF-κB activation has been described 

in the response of articular cells to monosodium urate (MSU), calcium pyrophosphate 

dihydrate (CPPD) and basic calcium phosphate (BCP) crystals. Indeed, transcriptional 

activation of important inflammatory mediators such as IL-8, chemokines and iNOs by 

NF-κB and AP-1, as well as ERK 1/2 signaling are essential for the mononuclear 

phagocyte response to CPPD and MSU crystals (47-49). NF-κB and AP-1 have also been 

shown to mediate the effects of the BCP crystals in human fibroblasts (50). 

 

 NF-κB in septic arthritis. NF-κB activity has been studied in some studies of 

septic arthritis. Surprisingly, the clinical course of septic arthritis was not ameliorated in a 
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murine model of S. aureus-induced arthritis systemically treated with antisense 

oligonucleotides (ODN) to p65 NF-κB, alone or in combination with antibiotics. 

However, the bacterial burden in the kidneys and IL-6 levels were significantly increased. 

These findings suggested that p65 antisense therapy approach may not be suitable for 

treatment of septic arthritis because it leads to increased bacterial burden overpassing the 

potential anti-inflammatory benefit of these compounds (51). In contrast, several studies 

suggest a beneficial effect of NF-κB inhibition in other septic conditions. Indeed, 

parthenolide (PAR), an NF-κB inhibitor found in medicinal herbs, blocked LPS-induced 

osteolysis in the mouse calvarium model. NF-κB-dependent osteoclastogenesis and 

osteoclastic bone resorption were inhibited by PAR. Enhanced apoptosis of osteoclasts 

and their precursor cells was observed as well in a dose-dependent manner in this 

bacteria-induced bone destruction model (52).  

 

 NF-κB in systemic lupus erythematosus: NF-κB activation in SLE has been 

shown in in vitro and in vivo studies. SLE T cells have shown decreased expression of 

p65-Rel A heterodimer expression associated with a low level of IL-2 promoter activity 

and altered c-Rel expression and nuclear import (53-55). Moreover, SLE T cells 

increased IL-2 promoter activity to normal levels following transfection with cDNA 

encoding the NF-κB p65 subunit (54). A recent study has been carried out in a mouse 

model that overproduces BAFF, developing a SLE-like disease. BAFF enhanced long-

term B cell survival primarily through the non-canonical NF-κB pathway, while it 

promoted immunoglobulin class switching and generation of pathogenic antibodies 

through the classical pathway. These findings demonstrate that both NF-κB signaling 

pathways are important for development of lupus-like disease associated with BAFF 
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overproduction (56). Remarkably, another study has shown that administration of DCB-

3503, a NF-κB inhibitor, for 10 weeks nearly abrogated inflammatory skin disease with 

little effect on histologic kidney disease in MRL/Fas(lpr) mice (57). 

 

 NF-κB in osteoarthritis. NF-κB signaling pathways mediate critical events in the 

inflammatory response by chondrocytes, leading to progressive extracellular matrix 

damage and cartilage destruction (17,58). Numerous studies have examined the effects of 

NF-κB on chondrocyte functions. The NF-κB and the MEK1/2 kinase pathways were 

found to mediate inhibition of type II collagen and link protein gene expression by TNF-

α as well as upregulation of MMP-1, MMP-3 and MMP-13 RNA/protein expression 

induced by TNF-α or IL-1β in articular chondrocytes (59-61). NF-κB has also been 

shown to mediate fibronectin fragment induced-chondrocyte activation and increased 

expression of IL-6, IL-8, MCP-1, growth-related oncogenes and MMP-13 by human 

articular chondrocytes (62,63). Furthermore, NF-κB production was increased with donor 

age in IL-1β stimulated human articular chondrocytes (63). Finally, a study performed in 

bovine chondrocytes showed that DNA binding of NF-κB and AP-1 was significantly 

higher in hypoxic and reoxygenated chondrocytes treated with IL-1β than in normoxic 

chondrocytes (64). 

 It is also known that NF-κB signal pathways are employed by mechanical signals 

for transcriptional regulation of proinflammatory genes that are involved in catabolic 

events in chondrocytes. Mechanical strains of low magnitude prevent nuclear 

translocation of NF-κB, resulting in inhibition of proinflammatory gene expression. In 

contrast, mechanical strains of high magnitude induce this translocation, and thus cause 
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proinflammatory gene induction.  Furthermore, mechanical overload induces similar 

intracellular events to those generated by proinflammatory cytokines in arthritis (65,66).  

 Besides its anti-inflammatory effects, it has been suggested that NF-κB may also 

play a role in chondrocyte apoptosis. Under certain conditions NF-κB exerts prosurvival 

effects in articular cartilage. Thus, in human chondrocytes NF-κB activation partially 

mediates the anti-apoptotic effects of IL-1β against death receptor CD-95 (FAS/APO-1) 

(67).  In contrast, other studies have described NF-κB involvement in apoptotic events in 

articular chondrocytes. For example, it has been shown that NF-κB activation mediates 

the apoptotic effect of NO in articular chondrocytes (17,68,69). 

 

Inhibition of NF-κκκκB by pharmacologic agents 

 An increasing number of NF-κB inhibitors, including several clinically important 

anti-inflammatory drugs, have been reported (70) as illustrated in Figure 2. 

Glucocorticoids are potent inhibitors of the NF-κB pathway through several mechanisms 

(71).  Glucocorticoids induce the transcription of the IκBα gene through the glucorticoid 

receptor (GR), causing an increased cytosolic retention of NF-κB (72,73).  Glucorticoids 

may also inhibit the NF-κB DNA binding activity through direct interaction between GR 

and components of the NF-κB binding sites in various gene promoters (74). The activated 

GR can also interact with NF-κB by direct protein-protein binding, preventing the 

activation of the NF-κB pathway in certain types of cells (75). Lastly, competition can 

occur between GR and NF-κB, limiting amounts of the coactivators CREB-binding 

protein (CBP), CBP-associated factor (p/CAF) and steroid receptor coactivator-1(SRC-1) 
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(76). Non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, salycilate, 

ibuprofen, indomethacin, diclofenac, and sulindac inhibit IKKβ activity, preventing IκBα 

phosphorylation, consequently blocking the activation of the NF-κB pathway (77,78). It 

has also been shown that sulfasalazine suppresses IκB phosphorylation, probably owing 

to the effects of its anti-inflammatory metabolite, 5-aminosalicylic acid (79). 

 The immunosuppresive agents cyclosporin A and tacrolimus (FK-506) also 

inhibit the NF-κB pathway. Cyclosporin A inhibits the protease activity of the 20S 

proteasome complex preventing IκBα degradation in murine macrophages, Jurkat 

lymphoma cells, and in mouse and human T lymphocytes (80). FK506 blocks 

translocation of c-Rel from the cytoplasm to the nucleus in both B and T cells, and Jurkat 

cells, leading to a decreased expression of IL-2 and its receptor (81). Several other agents 

have also been described to inhibit NF-κB including vitamin C, vitamin E, curcumin, 

flavonoids, lactacystin, thalidomide, leflunomide, pyrrolidine dithiocarbamate, 

glucosamine, diacehrein and resveratrol (17). 

 In addition, since the nonclassical anti-inflammatory activity of estrogen has 

been attributed to interference with NF-κB signaling by multiple mechanisms, agents that 

target estrogen receptors (ER) and show selective inhibition of NF-κB activity have been 

synthesized recently. Thus, WAY-169916, a small molecule ER ligand that inhibits NF-

κB transcriptional activity but is devoid of conventional estrogenic activity, has 

demonstrated benefitial effects in two models of inflammatory disease: the HLA-B27 

transgenic rat model of inflammatory bowel disease (IBD) and the Lewis rat AIA model. 

In both models, a near complete reversal in hindpaw scores was observed as well as 

marked improvement in the histological scores. In the Lewis rat AIA model, WAY-
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169916 also markedly suppressed induction of serum acute phase proteins. Furthermore, 

WAY-169916 also suppressed TNF-α-mediated inflammatory gene expression in FLS 

from RA patients. Therefore, this class of compounds might have a potential utility in the 

treatment of inflammatory arthritis (82,83).   

 

 Novel therapeutic strategies aimed at the specific inhibition of key elements in the 

NF-κB pathway activation are being developed, causing great expectation regarding their 

potential effects as arthritis treatments (84-87). For example, proteasome function 

inhibitors, decoy oligonucleotides, and peptides that inhibit nuclear localization of NF-κB 

have been utilized to inhibit NF-κB signaling in animal models (88,89). Daily oral 

treatment with PS-341 (bortezomib), a proteasome inhibitor recently approved by the 

FDA for the treatment of multiple myeloma, decreases significantly NF-κB activity in 

rats with streptococcal cell wall-induced polyarthritis. This decrease is associated with 

lower serum levels of IL-1, IL-6 and NO metabolites (90). Decoy oligodeoxynucleotides 

(ODN), short double stranded DNA containing the consensus binding sequence of NF-κB 

were introduced by intraarticular injection into the hind joints of CIA rats. In these 

experiments, NF-κB decoy ODN decreased the severity of hind-paw swelling, suppressed 

IL-1 and TNF-α in the arthritic synovium, and abrogated joint destruction as evidenced 

by histologic and radiographic studies (91). In a similar approach, the same investigators 

injected NF-κB decoy ODN into the knee joints of anterior cruciate ligament transaction 

(ACLT) OA model rats.  Histopathological findings from knee joints injected with the 

naked NF-κB decoy ODN showed a statistically significant amelioration as assessed by 

the Mankin 95 criteria, compared with either a scrambled decoy ODN or physiological 
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buffer administration. Also, naked NF-κB decoy ODN significantly inhibited the levels 

of IL-1β or TNF-α in the synovium and the cartilage, compared with the scrambled 

decoy ODN (92). Small peptides called protein transduction domains (PDTs) and cell 

penetrating peptides (CPPs) able to transport much larger molecules such as 

oligonucleotides, peptides, full-length proteins, bacteriophages, etc. across cellular 

membranes of almost all tissues have also been employed, modifying cellular function in 

the absence of ectopic gene expression (93). One example is BMS-205820, another novel 

selective NF-κB inhibitor. It contains a synthetic PTD carrying two nuclear localization 

sequences (NLS) capable of blocking NF-κB nuclear localization. This inhibition 

resulted in a decrease of cell surface protein expression, cytokine production, and T cell 

proliferation, and showed efficacy in a mouse septic shock model as well as in an IBD 

mouse model (94).  

 IKKβ has become a particularly appealing target for therapeutic intervention in 

RA and OA because of its crucial role in NF-κB pathway activation. Administration of 

IKKβ resulted in a potent increase of cytokine production in numerous cell types 

including synoviocytes and chondrocytes. Thus, in AIA rats, intraarticular gene therapy 

delivering a dominant-negative IKKβ (ΙΚΚβ dn)−adenovirus construct inhibits NF-κB 

translocation; consequently, cytokine-induced IL-6, IL-8 and ICAM-1 expressions are 

suppressed (28). In the same experimental model, recombinant adeno-associated virus 5 

(rAAV5) carrying IKKβ injected intraarticularly, significantly reduced paw swelling, IL-

6 and TNF-α levels in early arthritis. No significant effect was found on cartilage and 

bone destruction, however.  Remarkably, this genetic construct also reduced IL-6 

production following TNF-α stimulation in whole human RA synovial tissue biopsies ex 
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vivo, representing a promising step in the development of gene therapy for human 

arthritis (95).  

Gene constructs that overexpress IκB or express an engineered protein without 

the sites for phosphorylation (IkB super repressor) have also been used. However, there 

have been technical difficulties for their appropriate intracellular delivery, therefore, viral 

or non-viral vectors are necessary to carry them into the cell. A chimeric molecule that 

contains the super-repressor IκBα (srIκB) fused to the human immunodeficiency virus 

Tat protein PTD (Tat-srIκBα) has been examined in a rat model of pleuresy. This 

chimeric molecule showed a good effect, causing reduced cellular infiltration as well as 

increased apoptosis of leukocytes in the sites of inflammation and decreased levels of the 

proinflammatory cytokines TNF-α and IL-1β in the exudates (96). Recently, a peptide 

corresponding to the NEMO-binding domain (NBD) of IKKβ linked to Drosophila 

Antennapedia protein (Antp) has been shown to inhibit NF-κB signaling in animal 

models and rheumatoid tissue cultures. Intra-articular injection of the NBD peptide in the 

rat AIA model, reduced severity of arthritis, radiological damage, synovial cellularity and 

TNF-α and IL-1-β expression. NBD is able to block the interaction of IKKα and IKKβ 

with the regulatory subunit IKKγ (NEMO). Because of its highly defined site of action, 

NBD inhibits only activated but not basal levels of NF-κB and is unlikely to affect other 

essential kinases, in contrast to other small-molecule NF-κB inhibitors (97). Also, 

adenovirus transferring IκBα into late stage OA synovial cells were shown to regulate the 

spontaneous expression of an array of proinflammatory cytokines, chemokines and 

MMPs. Thus, the gene therapy delivered to synovial cells could be a potential option for 

OA treatment (98,99).   
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Also, new studies with small molecule inhibitors have further strengthened the 

role of IKKβ. One of these small molecules, sc-514 inhibits IκB 

phosphorylation/degradation and p65 NF-κB phosphorylation/transactivation induced by 

IL-1 in RA synovial fibroblasts in a dose-dependent manner (100). Another IKKβ 

inhibitor, BMS-345541, was administered to treat murine CIA in both prophylactic and 

therapeutic dosing regimens. Prophylactic BMS-345541 showed a dose-dependent 

efficacy reducing the incidence of arthritis, clinical disease severity and IL-1β mRNA 

levels and blocking inflammation and joint destruction evaluated histologically. 

Therapeutic BMS-345541 reduced clinical and histological end points in animals with 

preestablished disease, showing a dose-dependent effect. Furthermore, use of high doses 

resulted in clinical remission of the disease (101).  ML120B, a novel IKKβ inhibitor, 

inhibited paw swelling in a dose-dependent manner and offered significant protection 

against cartilage and bone erosion in the AIA rat model. Using novel in vivo imaging 

techniques, the association between the inhibition of NF-κB activity and the dampening 

of chronic inflammatory processes was documented in arthritic joints (102,103). 

 Dehydroxymethylepoxyquinomicin (DHMEQ), a novel small selective inhibitor 

of NF-κB translocation, decreased the severity of clinical arthritis and improved 

radiographic and histopathologic scores in murine CIA, as well as suppressed 

proinflammatory cytokines expression and cell proliferation in RA FLSs.  Interestingly, 

in further experiments performed in the animal model, DHMEQ significantly suppressed 

osteoaclastogenesis and NFATc1 expression along the inner surfaces of bone lacunae and 

the eroded bone surface in arthritic joints.  Serum levels of RANKL, OPG and M-CSF 

were not affected by the treatment. However, DHMEQ neither suppressed spontaneous 
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expression of RANKL nor M-CSF in culture of RA FLSs. Thus, DHMEQ may suppress 

RA associated-osteoclastogenesis, through NFATc1 downregulation (104,105). In an 

interesting cellular therapy approach, attempting to influence the antigen-specific 

immune response rather than to produce a broad antiinflammatory effect, dendritic cells 

(DCs) treated with the NF-κB inhibitor BAY 11-7082 were injected intraarticularly into 

methylated bovine serum albumin (mBSA) induced-arthritic joints of C57BL/6 mice. 

DCs exposed to mBSA and further treated with BAY 11-7082 suppressed inflammation 

and erosion, showing potential as antigen-specific therapy for autoimmune inflammatory 

arthritis (106). 

 Other new promising therapeutic strategies to target specific proteins of the NF-

κB pathway include improved antisense therapy and RNA interference. Locked Nucleic 

Acid-Antisense (LNA), morpholino oligonucleotides, and particularly, RNA interference 

have been developed in recent years (107-110).  RNA interference, a general post-

transcriptional gene silencing mechanism, is initiated by a double stranded RNA which 

after being introduced into cells is cleaved into 21 or 22nt dsRNA fragments. These 

fragments called small interfering RNA (siRNA) induce the formation of a 

ribonucleoprotein complex (RNAi silencing complex) that mediates sequence-specific 

cleavage of the targeted transcript mRNA by the antisense RNA strand, thus promoting 

mRNA degradation of a specific mRNA (109,110). Indeed, siRNA targeting of NF-κB 

p65 subunit has shown promising results, decreasing significantly the expression of 

COX-2, iNOS and MMP-9 mRNA/protein levels in rat chondrocytes stimulated with IL-

1β and TNF-α (111). Furthermore, in a recent in vivo study, an adenoviral vector carrying 

a siRNA targeting NF-κB p65 subunit inhibited early changes in an OA rat model. IL-1β 
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and TNF-α synovial fluid levels, cartilage degradation and synovial inflammation were 

all reduced in the early stages of this experimental OA model (112). 

 

Conclusions 

The NF-κB family of transcription factors plays a crucial role in the distinctive 

inflammatory processes characteristic of certain rheumatic diseases leading to bone and 

cartilage destruction, and articular damage. Therefore, NF-κB inhibition is a rational 

objective in the treatment of rheumatic diseases. NSAIDs, glucorticoids, nutraceuticals, 

natural products and certain disease-modifying anti-rheumatic drugs (DMARDs) have 

been described to decrease NF-κB activation. Yet, novel therapeutic strategies targeting 

key elements in the NF-κB  pathway including IKK, 26S proteasome, p65 and p50 

subunits have been and continue to be developed, and small molecule inhibitors, chimeric 

molecules, improved antisense therapy and RNA interference are part of the new 

approaches to block the NF-κB pathways.  

 Thus, NF-κB transcription factors appear as a very attractive target for treatment 

of arthritis; however, some concerns about the systemic and indiscriminate blockade of 

its numerous beneficial effects, as well as technical problems for local delivery of a 

potential agent through gene therapy still remain. Further in vivo studies will increase our 

understanding of the true significance of NF-κB inhibition and provide the foundations 

for the development of effective therapy for various joint diseases.  

 

Abbreviations 
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inhibitor of apoptosis protein; COX-2: ciclooxigenase 2; CXCL1: chemokine (C-X-C 

motif) ligand 1; DNA: deoxyribonucleic acid; EBV:  Epstein-Barr virus; ENA-78: 

epithelial cell-derived neutrophil-activating protein 78; ERK 1/2: extracellular signal-

regulated kinase 1/2; GM-CSF: granulocyte macrophage colony stimulating factor; 

HTLV1: human T-lymphotropic virus 1; ICAM-1: intercellular adhesion molecule 1; 

IKK:  IκB kinase; IL-1β:β:β:β: interleukin-1 beta; IL-2: interleukin-2; IL-6: interleukin 6; IL-

8: interleukin 8; IL-12: interleukin-12; INF-γγγγ: interferon-gamma; iNOS: inducible nitric 

oxide sinthase; MAPK: mitogen activated protein kinase; MCP-1: methyl-accepting 

chemotaxis protein 1; M-CSF: macrophage colony stimulating factor; MEK 1/2: MAP 

kinase ERK 1/2; MHC-I: major histocompatibility complex 1; MIP-1αααα:::: macrophage 

inflammatory protein alpha; MMP: metalloproteinase; NAFTc1: nuclear factor of 

activated T cell 1; NO: nitric oxide; RANTES: Regulated upon activation, normal T-cell 

expressed and secreted; RNA: ribonucleic acid; TLR-2: toll-like receptor 2; TNF-αααα: 

tumor necrosis factor-alpha; TRAF: TNF-receptor-associated factor;  VCAM-1: vascular 

cell adhesion molecule 1. 
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• GENES THAT ENCODE MOLECULES INVOLVED IN IMMUNITY:  

     Cytokines:  TNF-αααα, IL-1β,,,, IL-2, IL-6, IL-8, IL-12, INF-γγγγ, GM-CSF 

     Adhesion molecules:  e-selectin, ICAM-1, VCAM-1 

     Chemokines:  CXCL1, ENA-78, eotaxin, IL-8, MIP-1αααα, MCP-1, RANTES 

     Receptors:  CD-3g, CD-40, CD-48, CD68, MHC-I, TLR-2 

     Inducible enzymes:  COX-2, iNOS 
         

• GENES THAT ENCODE MOLECULES INVOLVED IN CELL   
   PROLIFERATION, APOPTOSIS AND CELL CYCLE: 

     Anti-apoptosis:  AF-1/BF-1, c-IAP-1, c-IAP-2, c-FLIP, Bcl-2,  

      TRAF-1, TRAF-2 

     Apoptosis:  Bax, caspase 11, Fas, FasL 

     Proliferation:  c-myc, cyclin D1, ephrin A1, E2F3a 

 

.  GENES THAT ENCODE MOLECULES INVOLVED IN TISSUE  

   DAMAGE:  

         Extracellular matrix degradation: catephsyn B, cathepsyn K, MMP-

1,  
      MMP-3, MMP-13 

• GENES THAT ENCODE MOLECULES INVOLVED IN NEGATIVE   
   FEEDBACK OF NF-κκκκB:   

     IκκκκBα, IκκκκBβ, A20 
    

Partial list of NF-κκκκB-induced genes 

Table 1 
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• Rheumatoid arthritis    

• Juvenile rheumatoid arthritis             

• Osteoarthritis  

• Systemic lupus erythematosus 

• Spondyloarthropaties  

• Crystal induced arthropaties 

• Septic arthritis 

Rheumatic Disorders associated with NF-κκκκB activation 

Table 2 
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FIGURE LEGENDS 

 

Fig 1. Beneficial and harmful role of NF-κκκκB in inflammatory arthritis. 

 

Fig 2. NF-κκκκB signaling pathways. Many current therapeutic agents and future strategies 

block the canonical NF-κB pathway at different steps: 1) I-κκκκB phosphorylation: 

NSAIDs (aspirin, salicylate, ibuprofen, sulindac), 5-ASA, IKKβ inhibitors, NBD peptide. 

2) Protease activity of the 26 S proteasome complex: Bortezomib*, Cyclosporin A, sc-

514, lactacystin. 3) Reduction of levels of NF-κκκκB subunits p65, p50, c-Rel and others: 

siRNA. 4) Nuclear translocation of NF-κκκκB subunits p65, p50, c-Rel and others: FK-

506, BMS-205820, I-κB super repressor, Tat-srIκBα, DHMEQ*. 5) NF-κκκκB DNA 

binding: Glucocorticoids, NF-κB ODN, NF-κB morpholinos. *Some therapeutics agents 

also block the non-canonical pathway NF-κB pathway.  
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Fig 2 
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