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Abstract 

 

The objective of this work is to develop subconjunctivally implantable, biodegradable 

hydrogels for sustained release of intact insulin to the retina to prevent and treat retinal 

neurovascular degeneration such as diabetic retinopathy. The hydrogels are synthesized 

by UV photopolymerization of N-isopropylacrylamide (NIPAAm) monomer and a 

dextran macromer containing multiple hydrolytically degradable oligolactate-(2-

hydroxyetheyl methacrylate) units (Dex-lactateHEMA) in 25:75 (v:v) ethanol:water 

mixture solvent. Insulin is loaded into the hydrogels during the synthesis process with 

loading efficiency up to 98%. The hydrogels can release biologically active insulin in 

vitro for at least one week and the release kinetics can be modulated by varying the ratio 

between NIPAAm and Dex-lactateHEMA and altering the physical size of the hydrogels. 

The hydrogels are not toxic to R28 retinal neuron cells in culture medium with 100% cell 

viability. The hydrogels can be implanted under the conjunctiva without causing adverse 

effects to the retina based on hematoxylin and eosin stain, immunostaining for microglial 

cell activation, and electroretinography. These subconjunctivally implantable hydrogels 

have potential for long-term periocular delivery of insulin or other drugs to treat diabetic 

retinopathy and other retinal diseases. 
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Introduction 

  

 Diabetic retinopathy (DR) is a chronic disease and one of the most frequent 

complications of diabetes, affecting 60-75% of persons with diabetes [1]. Retinal 

neuronal loss and increased vascular permeability occur in early stages of diabetes [2] 

and precede clinically evident vascular changes. Intensive systemic insulin therapy 

reduces retinal neural apoptosis in diabetic rats [2, 3], and intensive metabolic control 

with systemic insulin therapy reduces the risk of the development and progression of DR 

in diabetic human subjects (Diabetes Control and Complications Trial, 1994). Insulin 

rescues retinal neurons from cell death in a phosphatidyl inostiol 3-kinase dependent 

fashion [2] and intraocular injection of insulin restores the basal retinal insulin receptor 

activity in diabetic rats [3]. Taken together, these results suggest that insulin may have 

direct pro-survival actions in the retina.  However, the degree of systemic insulin therapy 

is limited by the risk of hypoglycemia, including seizures and coma [4], and therefore, 

long term local delivery of insulin to the retina is needed.  

 Therapeutic drugs can be delivered to the retina via systemic or topical, 

subconjunctival, or intravitreal routes [5-8].  However, the task of adequately delivering 

drugs to the retina is challenging due to limited access to the retina and the blood ocular 

barriers. Oral or intravenous administration may deliver drugs to the retina but also 

carries the risk of systemic toxicity. Topical administration may be effective for the 

ocular anterior segment but is inefficient for retinal delivery due to the barriers of corneal 

epithelium, aqueous humor, blood-aqueous barrier and vitreous humor. Additionally, 

proteins and peptides may not be absorbed through the corneal epithelium.  Intravitreal 
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administration is an effective means of delivering therapeutic levels of drug quickly with 

minimal systemic side effects, but it is an invasive procedure with complications such as 

cataract formation, vitreous hemorrhage, and endophthalmitis [9]. Subconjunctival 

administration has potential to be a minimally invasive method with the combined merits 

of both the topical and intravitreal administrations for effective sustained drug delivery to 

the retina [10-12].  

 Hydrogels have been used for controlled release of a variety of therapeutic agents 

including proteins and peptides during the past two decades [13]. A hydrogel implant 

offers advantages of good biocompatibility and mimics biological tissues [14]. Organic 

solvents can denature protein drugs, and thus it is desirable to load proteins into delivery 

systems including hydrogels in aqueous environment. There are a few hydrogel systems 

reported in the literature that achieve aqueous loading of insulin and release insulin for a 

few weeks. These systems are either sol-gel type of physical gels [15] that take a long 

time to form, which may cause fast burst release and result in tissue irritation and 

systemic toxicity; or chemically crosslinked gels with surfactants [16] that are very 

difficult to remove completely and also cause toxicity. In addition, the insulin loading 

efficiency in these reported hydrogels are not clear and the gel sizes are rather large (2.5 

mL in ref. [15] and 157 µL different units here in ref. [16]). In our previous work, we 

have developed thermo-responsive and biodegradable chemically crosslinked poly(N-

isopropyl acrylamide-co-dextran-lactate-2-hydroyethyl methacrylate) [also referred to as 

P(NIPAAm-co-Dex-lactateHEMA)] hydrogels [17] that can load bovine serum albumin 

(BSA) in PBS (pH 7.4) during the synthesis process and sustain BSA release for two 

weeks [17].  
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In this study, we modulate the components of the P(NIPAAm-co-Dex-

lactateHEMA)] hydrogels and fabricate small hydrogels (2 mm diameter, 1.6 mm 

thickness, 5 µL volume) for the purpose of implanting the hydrogels in the 

subconjunctival space of rat eyes to continuously release insulin to the retina. This 

approach has the potential to augment effects of systemic insulin and ensure adequate 

concentrations of insulin within the retina, without risking hypoglycemia for the 

treatment of diabetic retinopathy. We have studied the effects of the hydrogel 

composition and dimension on the release kinetics of insulin from the hydrogels; the 

stability and biological activity of the released insulin; and the in vitro toxicity and in 

vivo biosafety of the hydrogels after subconjunctival implantation in rat eyes.  

 

1. Materials and methods 

 

1.1. Materials 

  

 Dextran (Mw = 15,000-20,000 g·mol
-1

) was purchased from Polysciences, Inc. 

Warrington, PA. The following materials were obtained from Sigma-Aldrich, Inc., St. 

Louis, MO: NIPAAm, 2-hydroxyl methacrylate (HEMA), 4-(N,N-diethylamino) pyridine 

(DMAP), N,N’-carbonyl-diimidazole (CDI), L-lactide, stannous octoate (SnOct2), 

tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), fluorescein isothiocyanate (FITC), 

and bovine insulin (28 IU/mg). Bovine serum albumin (BSA, Mw = 67,000 g·mol
-1

) was 

obtained from Fisher Scientific, Hanover Park, IL. All the chemicals were used as 

received. Deionized distilled water was used in all the experiments.  
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1.2. Fluorescent labeling of Insulin 

  

 Bovine insulin was dissolved in distilled water (5 mg/mL) at pH 3 and then 

sodium carbonate was added to adjust the pH to 9. Solution of FITC in DMSO (1mg/mL) 

was added drop-wise to the insulin solution and then the reaction was carried out at 4
 
°C 

overnight. The resulting solution was centrifuged at 12000 rpm using ultracentrifuge 

tubes with 2 kDa molecular weight cut off (Viva Science). The ultracentrifuge tubes 

allowed filtration of the un-conjugated FITC but retention of the FITC-conjugated insulin 

inside the tubes. The inside FITC-insulin-containing concentrated solution was re-

suspended in distilled water and centrifuged again, and the process was repeated twice. 

Florescence of the filtrates was measured on a SPECTRAmax GEMINI EM fluorescence 

plate reader (Molecular Devices Corporation, CA). There was no significant amount of 

unconjugated FITC (< 0.007% of total FITC-insulin) detected in the last filtrate implying 

that the concentrated FITC-insulin solution was free of unconjugated FITC. The 

concentrated FITC-insulin solution was recovered from the tubes and lyophilized. 

 

1.3. Synthesis of degradable Poly(NIPAAm-co-Dex-lactateHEMA) hydrogels 

 

Dex-lactateHEMA macromer was synthesized using the procedure described 

previously [17], and its structure is shown in scheme 1.  The lactide chain length (DP) of 

the lactate unit and number of lactide chains on dextran (DS) in the macromer were 

estimated by 
1
H NMR. The DP affects hydrolytic degradation of the ester bond in the 
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lactide chain while the DS controls the degree of cross-linking (swelling) in the hydrogel.    

Poly(NIPAAm-co-DEX-lactateHEMA) hydrogels were synthesized by UV-

initiated free radical polymerization method. A prepolymer solution was prepared by 

dissolving NIPAAm/Dex-lactateHEMA at different weight ratios: 8/1, 6/3, and 4/5 

(w/w), and 0.1 wt% Irgacure 2959 in a solvent containing 25/75 (V/V) ethanol/distilled 

water (as ethanol is biocompatible, we used 25 v% ethanol to increase the solubility of 

the Dex-lactateHEMA macromer). 2 µL of solvent was used for each milligram of the 

combined weight of NIPPAm and DEX-lactateHEMA macromer.  

A Teflon mold with well defined wells (2 or 4.5 mm in diameter and 1.6 mm in 

height) was fabricated. The wells were filled completely with the prepolymer solution, 

covered with a glass cover and irradiated with UV light (~ 500 mW/cm
2
, EXFO Lite UV 

source) for 3 min. The resulting hydrogels were taken out of the wells and washed with 

distilled water twice for 10 minutes each.  The washed hydrogels were frozen with liquid 

nitrogen and dried in a freeze-dryer overnight. The hydrogels without insulin will be 

referred to as “blank hydrogels” in the subsequent sections. 

 FITC-insulin loaded hydrogels were made by dissolving 15 wt% FITC-insulin 

and 10 wt% BSA in the prepolymer solution.  10-20µL of 1N hydrochloric acid was 

added for complete solubilization of FITC-insulin.  The rest of the synthesis process was 

the same as detailed above for the blank hydrogels. Insulin-loaded hydrogels were made 

in a similar fashion except for using bovine insulin instead of FITC-insulin.   

 

1.4. In vitro insulin release from hydrogels 
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 The FITC-Insulin loaded hydrogels were transferred into glass vials containing 1 

mL PBS at pH 7.4.  The glass vials were placed in a 37° C water bath with mild shaking. 

50 µL aliquots were withdrawn at predetermined time intervals from the release medium 

with addition of an equal volume of PBS solution into the release medium. The aliquot 

samples were collected in a 96-well plate. Fluorescence intensity of the samples was 

measured on a SPECTRAmax GEMINI fluorescence plate reader and the amount of 

released FITC-Insulin was estimated using a calibration curve.  

 Empirical power law (equation 1) was used to analyze the release kinetics: 

     Mt/M∞ = kt
n
     (1) 

where k and n are constants that are related to diffusion coefficient and transport 

mechanism, respectively. Mt and M∞ are the mass fractions released at time t and infinity, 

respectively. A value of 0.5 for n corresponds to diffusion controlled release while values 

higher than 0.5 are regarded as anomalous diffusion.  A zero order release is obtained if n 

equals to 1.   

 

1.5. Cells and media 

 

R28 retinal neuron cells were seeded in T25-flasks at a density of 8,000~12,000  

cells·cm
-2

, and cultured in Dulbecco's Modified Eagle Medium (DMEM) containing 10% 

fetal bovine serum (FBS), vitamin, essential amino acids, and penicillin/streptomycin at 

37 °C with 95% humidity and 5% CO2. The medium was changed every other day. The 

cells were harvested with trypsin (0.05% trypsin with 0.4 mM EDTA) when they were 

80% confluent on the fourth day. 
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1.6. In vitro cytotoxicity of hydrogels to R28 retinal cells 

 

 Cytotoxicity of the hydrogels to R28 cells was examined by a 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay.  R28 

cells were seeded at a density of 50,000 cells·cm
-2

 in a 48-well plate containing 500 µL 

medium at 37 °C for 48 h. Blank hydrogels were then incubated with R28 cells for 24 h. 

Wells containing cells  alone were used as control.  25 µL of MTT solution (5 mg 

MTT/mL DMEM) was added to each well and incubated for 4 h. The medium was 

removed completely from the wells and 500 µL of 20% sodium dodecyl solution in 

dimethyl formamide/water was added to each well and incubated at 37 °C overnight.  The 

absorbance of the reduced form of the MTT was measured at 570 nm on a µQuant plate 

reader (Biotech Instruments, Inc.) with background subtraction. Cell viability was 

calculated by dividing the absorbance of wells containing the hydrogels by the 

absorbance of control wells. Four replicate wells were used for each sample and control. 

Cytotoxicity of the hydrogels was also tested by incubating the hydrogels at 37° C in the 

R28 culture 50 µL medium for one week and then transferring the solution to a R28-

seeded 48 well plate to perform the above described MTT test.  

 

1.7. Stability of released insulin 

 

 Insulin loaded hydrogels were incubated in 1 mL PBS at 37 °C. 10 µL sample 

solutions were removed after 1 and 7 days of incubation. Tris Glycine native sample 
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buffer was added to the samples and the resulting solutions were run on a 12% Bis-tris 

gel under non-reducing conditions at 200 V for 35 min using 2-(N-morpholino) 

ethanesulfonic acid (MES) running buffer (Invitrogen Corp., Carlsbad, California). The 

12% Bis-tris gel was then fixed in 100 mL of 10% methanol/7% acetic acid for 15 min 

followed by overnight incubation in 50 mL Sypro Ruby (Molecular Probes, Eugene, OR) 

and finally rinsed in 100 mL of 10% methanol/7% acetic acid for 30 min. The protein 

staining on the gel was read at emission 488 nm and excitation 610 nm on a Fluorimager 

595 with ImageQuant 5.0 software (Molecular Dynamics, Sunnyvale, CA). 

 

1.8. Biological activity of released insulin 

 

 Insulin-loaded (6:3) hydrogels were incubated in serum free DMEM containing 5 

mM glucose at 37 °C for 24 h. Based on FITC-insulin release kinetics, fresh serum free 

medium was added to the incubated medium to achieve a final insulin concentration of 10 

nM. R-28 cells were grown in DMEM containing 5 mM glucose supplemented with 10% 

FBS and differentiated to neuron-like morphology on laminin-coated 60 mm dishes with 

addition of cell-permeable cAMP for 48 h. The cells were deprived of serum for 2 h and 

then treated with either free insulin or serum free DMEM incubated with insulin-loaded 

hydrogels at 10 nM for 5 min. The cells without insulin treatment served as controls. 

Western blotting was done for phosphotyrosine (PY) and beta subunit of insulin receptor 

(IR-ß) as described previously [3]. 

 

1.9. In vivo safety assessment of hydrogels 
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 Hydrogels were sterilized by UV irradiation for 20 min and implanted in the 

subconjunctival space in male Sprague-Dawley rats. All methods and care were in 

accordance with the Penn State Milton S. Hershey College of Medicine Institutional 

Animal Care and Use Committee guidelines and adhered to the ARVO Statement for the 

Use of Animals in Ophthalmic and Vision Research. The animals were anesthetized with 

an intramuscular injection of a ketamine:xylazine (2:1) mixture at 0.6ml/kg. Proparacaine 

hydrochloride 0.5% drops were instilled into the eye to provide additional local 

anesthesia. The conjunctiva was cleaned with a cotton-tipped applicator soaked in 

povidine iodine 5% and immediately rinsed with sterile filtered 1X PBS. The 

superotemporal bulbar conjunctiva was grasped with a plain forceps and a radial incision 

was made using a pair of fine corneo-scleral scissors starting about 1mm posterior to the 

limbus and extending about 2 to 3 mm posteriorly. Any bleeding at this point was 

controlled by gentle pressure with cotton tipped applicators and rinsing with sterile 

filtered 1X PBS. The edge of the conjunctival incision was grasped with a plain forceps 

and blunt dissection was done in the subconjunctival space. A sterile dry hydrogel was 

grasped with a forceps and inserted into the subconjunctival space through the incision. 

The incision was closed with interrupted 9-0 vicryl sutures and antibiotic drops were 

instilled into the eye. Animals were euthanized after 7 days and tissue processed for 

histology and immunohistochemistry as previously described [18]. 

 Full field electroretinograms (ERGs) were recorded simultaneously from both 

eyes of Sprague-Dawley (SD) rats (n=9) using a custom-built ganzfeld, a computer-based 

system (EPIC-XL, LKC Technologies, Inc, Gaithersburg, MD) and specially-made 
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contact lens electrodes (Hansen Ophthalmics, Iowa City, IA). Animals used for ERGs 

had implantation of insulin-loaded hydrogels (n=5) in one eye with the contralateral eye 

serving as a control with either blank hydrogel inserts (n=4) or by being untouched (n=1). 

Two other animals had a blank hydrogel insert in the study eye while the contralateral 

eye served as an untouched control. Age-matched, untouched, SD rats (n=6) and 

untouched eyes from the rats that received blank hydrogels (n=2) were used to define 

normal ranges. Details of our recording methodology in rats have been published [19]. In 

brief, animals were anesthetized with intramuscular injection of a mixture of ketamine 

HCl (75 mg/kg) and xylazine (5 mg/kg). Corneas were anesthetized with proparacaine 

HCl (0.5%) and pupils were dilated with tropicamide (1%) and phenylephrine (2.5%). 

Stimuli were delivered with medium energy (10 ms duration) and high energy (1 ms 

duration) flash stimulators with unattenuated white flash luminances of +0.8 and +3.6 log 

scot-cd.s.m
-2

, respectively. Neutral density (Wratten 96, Kodak, Rochester, NY) and 

colored (Wratten 47A) filters were used to attenuate and spectrally shape the stimuli. 

Dark-adapted (>12 hrs) ERGs were obtained with blue stimuli increasing from -4.2 to -

1.2 log scot-cd.s.m
-2

 (averaging 2-8 responses), followed after a 1 min wait by a single 

flash (non-averaged) response to a +0.6 log scot-cd.s.m
-2

 blue stimulus. After an 

additional 5 min wait, another single flash response was evoked with a +2.2 log scot-

cd.s.m
-2

 blue stimulus. A- and b-wave amplitudes were measured conventionally. 

Luminance-response functions were derived from b-wave series of study eyes (insulin-

loaded hydrogels, n=5; blank hydrogels, n=2) and compared with normal ranges defined 

in untouched eyes (n=8). The interocular difference (IOD; left eye minus right eye) of b-

wave amplitude evoked by a +0.6 log scot-cd.s.m
-2 

blue flash was used to evaluate 



15 

differences between study eyes and controls. For this analysis, IOD limits (mean ± 3SD) 

were defined in untouched rats (n = 4). Such an ERG IOD analysis has been previously 

used in mice [20], humans [21, 22], and non-human primates [23]. 

 

2. Results and discussion 

 

2.1. Synthesis of degradable Poly(NIPAAm-co-Dex-lactateHEMA) hydrogels and FITC-

insulin loading 

 

 In our previous work, we synthesized thermo-responsive and biodegradable 

hydrogels poly(NIPAAm-co-Dex-lactateHEMA) through thermal polymerization using 

potassium peroxydisulfate (KPS) as an initiator and N,N,N’N’-

tetramethylethylenediamine (TEMED) as an accelerator [17]. In the present work, we 

synthesized similar hydrogels by UV polymerization using Irgacure 2959 solution as a 

photoinitiator to avoid the use of TEMED. The reason is that TEMED may be toxic in 

vivo, but Irgacure 2959 solution has been widely used for in situ polymerization in vivo, 

and does not cause eye irritation according to the Manufacturer’s Safety and Data Sheet. 

The other advantage of this formulation is that drug can be loaded into the hydrogels 

during the synthesis process with high loading efficiency. For example, in this particular 

work, 15 wt% initially loaded FITC-insulin is 98% incorporated in the hydrogels after the 

synthesis. The parameters that we used for UV-synthesizing the Poly(NIPAAm-co-Dex-

lactateHEMA) hydrogels are: DP (lactide chain length) and DS (number of lactide 

chains) of Dex-lactateHEMA macromer = 6 and 15, respectively; feeding weight ratios 
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NIPAAm/Dex-lactateHEMA=8/1, 6/3, and 4/5 (w/w); dimensions of the hydrogel disks: 

diameter = 2 and 4.5 mm and thickness =1.6 mm. The UV-synthesized hydrogels showed 

both thermoresponsive and degradable behavior similar to the previously reported 

hydrogels that were made using KPS and TEMED [17] (data not shown). The effects of 

the synthesis parameters on insulin release profiles from the hydrogels are studies in the 

following section.  

 

3.2. In vitro insulin release from the hydrogels  

 

First, we studied the effects of NIPAAm and Dex-lactateHEMA feeding weight 

ratios on FITC-insulin release profiles from the poly(NIPAAm-co-Dex-lactateHEMA) 

hydrogels (Fig. 1). The hydrogels with same DP=6 and DS=15 and dimension (2 mm in 

diameter and 1.6 mm in thickness) but different feeding weight ratios NIPAAm/Dex-

lactateHEMA=8/1, 6/3, and 4/5 (w/w) can all release FITC-insulin for more than one 

week in PBS (pH=7.4) at 37 °C. The release rates increase with decreasing the NIPAAm 

and Dex-lactateHEMA feeding weight ratio in the order of 8/1 < 6/3 < 4/5 (w/w). 

Correspondingly, by using the power equation 1, we further calculated that the diffusion 

coefficients (k constant) of the three gels are 37.3, 42.9 and 53.8, respectively, which also 

increase with decreasing the NIPAAm and Dex-lactateHEMA feeding weight ratio 

(Table 1). The reasons may be that the hydrogels become more hydrophilic and degrade 

faster with increasing the feed weight ratio of hydrophilic Dex-lactateHEMA 

macromer/decreasing the feed weight ratio of NIPAAm monomer (which turns into 

hydrophobic polyNIPAAm at 37 °C) despite the fact that higher content of Dex-
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lactateHEMA macromer may increase the crosslinking density of the hydrogels. The 

calculated n for the three gels are 0.27, 0.40 and 0.35 (Table 1) which are smaller than 0.5 

suggesting that the insulin release is controlled by diffusion and the hydrophobicity of all 

the three gel networks increases with time due to degradation and diffusion of the Dex-

lactateHEMA segment [17].   

Second, we examined the effect of the dimension of poly(NIPAAm-co-Dex-

lactateHEMA) hydrogels on the FITC-insulin release behavior (Fig. 1). Hydrogels with 

NIPAAm: Dex-lactateHEMA = 6/3 (w/w) feeding weight ratio and 1.6 mm thickness 

show less burst and slower release with larger diameter 4.5 mm than the ones with 

smaller diameter 2.0 mm. This result is also reflected by the calculated k constant using 

power equation 1, which is that the k value of the larger gels (20.4) is smaller than that of 

the smaller gels (40.9) as shown in Table 1. It is well known that if 0.5 < n < 1 in power 

equation 1, drug release is controlled by both diffusion and swelling. Table 1 shows that 

the calculated n value of the larger gels (0.6) is higher than that of the smaller gels (0.40) 

indicating that the influence of the hydrogel swelling/degradation on the insulin release 

becomes stronger when the diameter of the hydrogels increases from 2 to 4.5 mm.  

 

3.3. In vitro cytotoxicity of hydrogels to R28 retinal cells 

 

 In vitro MTT cytotoxicity studies of the synthesized blank hydrogels (2.0 mm in 

diameter and 1.6 mm in thickness) made of 6/3 feeding weight ratio of NIPAAm/Dex-

lactateHEMA macromer demonstrate that no matter whether the hydrogels were 

incubated with R28 retinal cells directly for 24 h or they were degraded in the R28 



18 

culture medium for one week and then the cells were exposed with the degraded solution 

for 24 h, the viability of the treated cells is 100% of control values. These results suggest 

both the hydrogels and their degradation products are non-toxic to cultured R28 retinal 

cells for at least 1 and 7 days, respectively, and the hydrogels have potential for in vivo 

implantation.   

 

3.4. Stability and biological activity of released insulin 

 

 Proteins are liable to degradation under unfavorable conditions, and a sustained 

delivery device must preserve the biological nature of proteins and prevent excessive 

degradation. We tested the stability of the insulin loaded into the hydrogels by incubating 

insulin-loaded hydrogels in 1mL PBS (pH 7.4) for 1 and 7 days and then running the PBS 

solutions on a non-denaturing gel as detailed in Materials and methods. Figure 2 

illustrates a Sypro Ruby stained gel of the synthesized blank hydrogels (2.0 mm diameter 

and 1.6 mm thickness) made of 6/3 feeding weight ratio of NIPAAm/Dex-lactateHEMA 

macromer. The top band is from BSA that was used during encapsulation of insulin into 

the hydrogels. The bottom band represents insulin since it is the only other protein in the 

samples beside BSA. It is noted here that the molecular weight of the insulin band is 

slightly different from that of theoretical insulin because proteins that are not coated with 

SDS, in general, do not run according to their size during electrophoresis. There are no 

smear bands on the stained gel, so neither BSA nor insulin released from the hydrogels 

degraded during one week. Faint bands in the middle of the stained gel may represent 

dimeric or tetrameric forms of insulin.  
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 To further test if the intact insulin released from the hydrogels also shows 

biological activity, we used Western blotting to measure the phosphotyrosine (PY) and 

beta subunit of insulin receptor (IRß) of R28 cells after incubated with the released 

insulin and free insulin at 10 nM for 5 min. Biologically active insulin binds to the α 

subunit of the insulin receptor and causes dimerization of the transmembrane β subunits. 

This in turn, leads to autophosphorylation of the tyrosine residues on the intracellular 

chain of β subunits. Autophosphorylation of the IRβ triggers a series of phosphorylation 

events in the insulin signaling cascade which eventually lead to the biological effects of 

insulin.  Figure 3 shows that insulin (10 nM) treatment for 5 min causes phosphorylation 

of the tyrosine residues of IR β, and 5 min incubation of serum-deprived R28 cells with 

medium containing insulin released from hydrogels induces phosphorylation of tyrosine 

residues of IRβ  to the same extent as 10 nM insulin. These data indicate that the 

hydrogels do not impair the biological effectiveness of the loaded insulin and hence may 

be used as a means of sustained insulin delivery to ocular tissues. 

 

3.5. In vivo safety assessment of hydrogels 

 

 Hydrogels were implanted subconjunctivally in Sprague-Dawley rats as described 

in Materials and Methods. Figure 4 illustrates the relative size of the hydrogels and the rat 

eye (4a), and the rat eyes immediately (4b) and 7 days (4c) after subconjunctival 

implantation of the hydrogels.  None of the rats showed any changes in feeding or 

behavior post implantation. After 7 days’ implantation, the implanted eyes appear similar 

to the non-implanted eyes. To further evaluate if the implanted hydrogels caused any 
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morphological change and inflammation in the rat eyes, we performed H&E staining and 

immunostaining for Iba-1 in control, blank hydrogel implanted, and insulin-loaded 

hydrogel implanted eyes. The results show that hydrogel implanted eyes are not 

associated with a polymorphonuclear cell infiltrate or any morphological changes (Fig. 

5), or increased Iba-1 expression, indicating absence of microglial cell activation 

indicative of inflammation (Fig. 6). 

 To assess the effect of the subconjunctivally implanted insulin delivery hydrogels 

on retinal physiology, full field bilateral simultaneous ERGs were analyzed in control, 

blank hydrogel implanted, and insulin-loaded hydrogel implanted eyes. Dark adapted 

ERGs in response to increasing intensities of light in two representative animals 

demonstrate that responses in implanted eyes, either with insulin-loaded hydrogels or 

blank hydrogels, are almost identical to those from the contralateral control (Fig. 7a). B-

wave luminance-response functions from the five eyes implanted with insulin-loaded 

hydrogels show that four of five fall within normal limits (Fig. 7b) and the fifth eye has 

reduced b-wave amplitudes toward the higher intensity range of the function. Eyes 

carrying blank hydrogels are also within normal limits (data not shown). To assess better 

any possible effects of the insulin-loaded hydrogel implants on retinal electrophysiology, 

we examined responses elicited with medium energy stimuli (+0.6 log scot-cd.s.m
-2

) in 

eyes implanted with insulin-loaded hydrogels compared to their contralateral eyes 

inserted with blank hydrogels (Fig. 7c). By inspection, three of four animals show nearly 

identical responses in both eyes, and the fourth implanted eye (animal #3635) shows 

smaller ERGs compared to the contralateral eye with a blank hydrogel insert. To 

determine the significance of the observed differences, ERG b-wave amplitudes in 
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response to the medium energy flash were measured conventionally in all implanted eyes 

(either insulin-loaded or blank) and plotted against their contralateral controls (blank or 

untouched). With the exception of the reduction in amplitude noted above in one animal, 

interocular differences (IODs) between eyes with insulin-loaded implants or blank 

implants and their contralateral controls did not exceed the limits determined in 

untouched animals (Fig. 7d). In summary, there was no consistent evidence of retinal 

toxicity by full field ERGs in eyes carrying insulin-loaded or blank hydrogels.  

 

4. Conclusions   

 

 We have synthesized a series of water-based small dimensional hydrogel systems 

composed of NIPAAm monomer and Dex-lactateHEMA macromer using UV 

photopolymerization at room temperature. The hydrogels are both thermoresponsive and 

hydrolytically degradable and have diameters of 2 and 4.5 mm and thickness of 1.6 mm. 

All the hydrogels can successfully load insulin with up to 98% loading efficiency during 

the synthesis process. To the best of our knowledge, the designed hydrogels with 2 mm 

diameter are, to date, the smallest hydrogels formed in aqueous environment that can 

achieve one week of insulin release. The insulin release kinetics follow typical power law 

equation and apparently involve both diffusion and degradation mechanisms of the 

hydrogels.  The dominating role of one of these two mechanisms on the insulin release is 

affected by the degree of crosslinking and hydrophilic/hydrophobic nature of the 

hydrogels which is determined by the ratio between NIPAAm and Dex-lactateHEMA 

macromer as well as the dimension of the hydrogels. The synthesized hydrogels and their 
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7-day degradable components are not toxic to R28 retinal cells in vitro. Moreover, 

subconjunctival implantation of the hydrogels did not cause any morphological change, 

inflammation or other adverse effects in the rat eyes over at least a one week period of 

time, as evidenced by the results of H&E staining, immunostaining for Iba-1, and ERGs.  

Therefore, the developed non-toxic hydrogels have high potential to control the release of 

insulin and other therapeutics to the retina after subconjunctival implantation, which may 

lead to a new option for treating diabetic retinopathy and other retinal disorders. The 

current ongoing work includes optimization of the hydrogel composition to achieve 

longer insulin release, studies on the ocular distribution of degraded hydrogel 

components and released insulin, and evaluations of the biological efficiency of released 

insulin in treating diabetic retinopathy. 
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Figure Captions 

 

Scheme 1. Schematic of Dex-lactateHEMA macromer. One lactide ring introduces two 

lactate spacer units after ring opening polymerization. DP is one lactate unit. 

 

Fig. 1. Effects of NIPAAm and Dex-lactateHEMA feeding weight ratios and hydrogel 

dimensions on FITC-insulin release profiles from the poly(NIPAAm-co-Dex-

lactateHEMA) hydrogels. The plots show time-dependent fractional release profiles of 

FITC-insulin from the hydrogels with dimension 2 mm diameter and 1.6 mm thickness 

and different feeding weight ratios NIPAAm/Dex-lactateHEMA (DP 6 and DS 15) = 8/1 

(�), 6/3 (�), and 4/5 (▲) and  dimension 4.5 mm diameter and 1.6 mm thickness and 

feeding weight ratio NIPAAm: Dex-lactateHEMA (DP 6 and DS 15) = 6:3 () in PBS 

(pH 7.4) solvent at 37 °C. 15 wt% FITC-insulin and 10 wt% BSA were loaded into the 

hydrogels during the synthesis process. Solid lines are fitting curves based on Equation 1. 

 

Fig. 2. Stability of insulin released from the synthesized hydrogels for 1 and 7 days. In 

the Sypro-ruby stained gel, Lanes 1 through 4 are 1X PBS samples incubated with 

insulin-loaded hydrogels at 37 °C for 24 h while lanes 5 through 8 are 7 day incubation 

samples. Hydrogels were made of 6/3 feeding weight ratio of NIPAAm/Dex-

lactateHEMA macromer and have diameter and thickness in 2.0 and 1.6 mm, 

respectively. 
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Fig. 3. Biological activity of insulin released from the hydrogels using densitometric 

analysis of phosphotyrosine (PY) blot normalized to beta subunit of insulin receptor 

(IRß) of R28 cells after incubated with the released insulin and free insulin at 10 nM for 5 

min. Hydrogels were made of 6/3 feeding weight ratio of NIPAAm/Dex-lactateHEMA 

macromer and have diameter and thickness in 2.0 and 1.6 mm, respectively. n is 2, 3 and 

5 for control, 10nM insulin and hydrogel  treated groups, respectively. 

 

Fig. 4. Subconjunctival implantation of a hydrogel to the eye of a Sprague-Dawley rat. 

Hydrogels were made of 6/3 feeding weight ratio of NIPAAm/Dex-lactateHEMA 

macromer and have diameter and thickness in 2.0 and 1.6 mm, respectively. 

 

Fig. 5. H & E stained sections from control, blank hydrogel implanted and insulin-loaded 

hydrogel implanted eyes. Hydrogel implanted eyes were not associated with an increased 

polymorpho-nuclear infiltrate or any morphological change. Hydrogels were made of 6/3 

feeding weight ratio of NIPAAm/Dex-lactateHEMA macromer and have diameter and 

thickness in 2.0 and 1.6 mm, respectively. C – choroid, Pr –photoreceptor outer 

segments, ONL – outer nuclear layer, OPL – outer plexiform layer, INL – inner nuclear 

layer, IPL – inner plexiform layer, GCL – ganglion cell layer. Image magnification 200x. 

 

Fig. 6. Iba-1 immunostained sections from control, blank hydrogel implanted and insulin-

loaded hydrogel implanted eyes. There is no morphological change in the retina of 

hydrogel treated rat eyes. Microglia respond to inflammatory signals in the retina and 

Iba-1 is a microglial marker. Absence of altered immunostaining in hydrogel implanted 



28 

retina indicates the hydrogels do not induce an inflammatory response in the implanted 

eyes and are well tolerated.  Hydrogels were made of 6/3 feeding weight ratio of 

NIPAAm/Dex-lactateHEMA macromer and have diameter and thickness in 2.0 and 1.6 

mm, respectively. ONL–outer nuclear layer, OPL–outer plexiform layer, INL–inner 

nuclear layer, IPL–inner plexiform layer, GCL–ganglion cell layer. Image magnification 

400X. 

 

Fig. 7. Electroretinograms (ERGs) after subconjunctival implantation of insulin-loaded 

hydrogels in SD rats. (a) Dark adapted ERGs elicited by increasing intensities of light in 

implanted eyes (black traces: insulin-loaded or blank hydrogels) overlaid onto ERGs 

from contralateral untouched (thick gray traces) eyes. Traces start at stimulus onset; 

stimulus intensity is at the left of key traces; scale is at bottom right of waveforms; 

animal number top left of waveforms. ERGs from hydrogel-implanted eyes (insulin-

loaded or blank) are very similar to their contralateral untouched controls. (b) B-wave 

luminance-response functions from all eyes with insulin-loaded hydrogels (open 

symbols). Gray band defines normal limits (mean ± 3SD). Luminance-response functions 

in implanted eyes fall within the normal range in all but one animal. (c) ERGs in response 

to medium-energy light stimuli in four animals implanted with insulin-loaded hydrogels 

compared to their contralateral eye implanted with blank hydrogels. With the exception 

of one animal, responses in insulin-loaded implanted eyes are nearly identical to eyes 

with blank implants. (d) B-wave amplitude in implanted eyes (insulin-loaded or blank) 

plotted against contralateral controls (blank or untouched). Dashed line represents no 

inter-ocular difference in this parameter. Limits of significant inter-ocular difference 
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derived from untouched animals are shown a with solid gray line. All but one of the 

implanted eyes fall within IOD limits. Hydrogels were made of 6/3 feeding weight ratio 

of NIPAAm/Dex-lactateHEMA macromer and have diameter and thickness of 2.0 and 

1.6 mm, respectively. 
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Table 1. Fitting parameters in Equation 1 for the release kinetics of hydrogels in PBS 

(pH 7.4) at 37 °C. 

Hydrogel 

Samples 

NIPAAm/Dex-lactateHEMA 

feeding weight ratios 

Diameter 

mm 

Thickness 

mm 
k n R

2
 

Gel 1 8/1 2.0 1.6 37.3 0.27 0.990 

Gel 2 6/3 2.0 1.6 42.9 0.40 0.986 

Gel 3 4/5 2.0 1.6 53.8 0.35 0.978 

Gel 4 6/3 4.5 1.6 20.4 0.60 0.993 
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Scheme 1 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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