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ABSTRACT 

OBJECTIVES: We investigated whether adrenal β−arrestin 1 (βarr1)-mediated aldosterone 

production plays any role in post-MI HF progression.  

BACKGROUND: Heart failure (HF) represents one of the most significant health problems 

worldwide and new and innovative treatments are needed. Aldosterone contributes significantly 

to HF progression after myocardial infarction (MI) by accelerating adverse cardiac remodeling 

and ventricular dysfunction. It is produced by the adrenal cortex after angiotensin II (AngII) 

activation of AngII type 1 receptors (AT1Rs), G protein-coupled receptors (GPCRs) that also 

signal independently of G proteins. G protein-independent signaling is mediated by β−arrestin 

(βarr) -1 and -2. We recently reported that adrenal βarr1 promotes AT1R-dependent aldosterone 

production leading to elevated circulating aldosterone levels in vivo.  

METHODS:  Adrenal-targeted, adenoviral-mediated gene delivery in vivo in two-week post-MI 

rats, a time point around which circulating aldosterone significantly increases to accelerate HF 

progression, was performed to either increase the expression of adrenal βarr1 or inhibit its 

function via expression of a βarr1 C-terminal-derived peptide fragment.  

RESULTS: We found that adrenal βarr1 overexpression promotes aldosterone elevation post-

MI, resulting in accelerated cardiac adverse remodeling and deterioration of ventricular function. 

Importantly, these detrimental effects of aldosterone are prevented when adrenal βarr1 is 

inhibited in vivo, which markedly decreases circulating aldosterone post-MI. Finally, the 

prototypic AT1R antagonist losartan appears unable to lower this adrenal βarr1-driven 

aldosterone elevation.  
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CONCLUSIONS:  Adrenal βarr1 inhibition, either directly or with AT1R “biased” antagonists 

that prevent receptor-βarr1 coupling, might be of therapeutic value for curbing HF-exacerbating 

hyperaldosteronism. 
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INTRODUCTION 

           Despite recent advances in prevention and management of heart disease, death due to 

chronic heart failure (HF) continues to rise and new treatments are needed (1,2). Aldosterone is 

one of a number of hormones with detrimental effects to the myocardium, whose circulating 

levels are elevated in chronic HF (3). It can contribute significantly to HF progression after 

myocardial infarction (MI) and to the morbidity and mortality of the disease (3-5). Its main 

actions on the post-MI heart include (but are not limited to) cardiac hypertrophy, fibrosis, and 

increased inflammation and oxidative stress, all of which result in adverse cardiac remodeling 

and progressive loss of cardiac function and performance (5,6). Accordingly, plasma aldosterone 

levels are a marker of HF severity (7,8) and aldosterone antagonists, such as spironolactone and 

eplerenone, have well-documented beneficial effects in HF constituting a significant segment of 

the chronic HF pharmacotherapeutic regimen (9,10). 

 Aldosterone is a mineralocorticoid produced and secreted by the cells of the zona 

glomerulosa of the adrenal cortex in response to either elevated serum potassium levels or to 

angiotensin II (AngII) acting through its type 1 receptors (AT1Rs), endogenously expressed in 

the adrenocortical zona glomerulosa (AZG) cells (11). AT1Rs belong to the superfamily of G 

protein coupled receptors (GPCRs), and, upon agonist activation, couple to the Gq/11 family of G 

proteins (12). Over the past few years, a number of GPCRs, including the AT1Rs, have been 

shown to also signal through G protein-independent pathways.  The protein scaffolding actions 

of β-arrestin-1 and -2 (βarr1 and -2, also known as arrestins -2 and -3, respectively), universal 

receptor adapter/scaffolding proteins originally discovered as terminators of GPCR signaling, 

play a central role in mediating this G protein-independent signal transduction (13,14).  
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 We recently reported that adrenal βarr1 promotes AngII-dependent aldosterone 

production in vitro in human AZG cells, independently of G-proteins (15). Additionally, adrenal-

specific βarr1 overexpression in vivo resulted in a marked elevation of circulating aldosterone 

levels in otherwise normal animals (15). In the present study, we sought to investigate whether 

adrenal βarr1 plays any role in regulation of circulating aldosterone levels in post-MI HF 

progression, as well. For this purpose, we used our previously developed methodology for 

adrenal-targeted gene transfer in vivo (16,17), in two-week post-MI rats, of either wild type 

βarr1 to induce adrenal βarr1 overexpression or of a βarr1 protein fragment comprising the βarr1 

C-terminus, which inhibits βarr1 signaling activity. The two-week post-MI time point was 

chosen, since around this time-point circulating aldosterone levels increase dramatically to 

accelerate post-MI HF progression in rats (18,19).  
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METHODS  

In vivo adrenal gene delivery in post-MI rats. All animal procedures and experiments 

were performed in accordance with the guidelines of the IACUC committees of Thomas 

Jefferson and Nova Southeastern Universities. MI was performed using a cryo-infarct 

method we have previously described (16). Adrenal-specific in vivo gene delivery was 

done essentially as described (17), via direct delivery of adenovirus in the adrenal gland.  

Drug treatments were performed with 50 mg/kg/day of losartan potassium (in drinking 

water) and 100 (or 5) mg/kg/day eplerenone (both drugs from Sigma-Aldrich, USA).    

 

Construction and purification of adenoviruses. Recombinant adenoviruses that encode 

full length wild type βarr1 (Adβarr1) or a rat βarr1 C-terminal fragment (aa. 369-418, 

Adβarr1ct, see Supplemental Fig. 1A), were constructed as described previously (15,16). 

Briefly, transgenes were cloned into shuttle vector pAdTrack-CMV, which harbors a 

CMV-driven green fluorescent protein (GFP),
 
to form the viral constructs by using

 

standard cloning protocols. As control adenovirus, empty vector which expressed only 

GFP (AdGFP) was used. The resultant adenoviruses were purified, as described 

previously, using two sequential rounds of CsCl density gradient ultracentrifugation 

(15,16).   

 

Plasma aldosterone measurements. Rat plasma aldosterone levels were determined by 

EIA (Aldosterone EIA kit, ALPCO Diagnostics, Salem, NH, USA), as described (15,20).  
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Echocardiographic and hemodynamic measurements. Two-dimensional guided M-

mode and Doppler echocardiography using a 14-MHz transducer (Vevo 770 Echograph, 

VisualSonic Inc., Toronto, Canada), and closed chest cardiac catheterization were 

performed in rats, as described previously (16,21). Three independent echocardiographic 

measurements were taken in both modes.   

 

Western blotting. Western blots to assess protein levels of StAR (sc-25806), cardiac 

levels of PAI-1 (sc-8979), TGF-β1 (sc-1460), βarr1 transgenes (A1CT antibody, a 

generous gift from Dr. R.J. Lefkowitz, Duke University Medical Center, Durham, NC, 

USA), and GAPDH (MAB374; Chemicon, Temecula, CA, USA) were done using 

protein extracts from rat adrenal glands or hearts, as described previously (15,16). 

Visualization of western blot signals was performed with Alexa Fluor 680– (Molecular 

Probes) or IRDye 800CW–coupled (Rockland Inc.) secondary antibodies on a LI-COR 

infrared imager (Odyssey). 

 

Real-time PCR. Total heart RNA isolation, reverse transcription and real-time RT-PCR 

were carried out as previously described (16,21). The following primer pairs were used:  

5`-GTCCACGAGGTGACAAAGGT-3` and 5`-CATCTTTTCCAGGAGGTCCA-3` for 

Col3α1, 5`-CACCCCTTCTGCGTTGTATT-3` and 5`-

TTGACCCTAACCAAGGATGC-3` for Col1α1, 5`-

TGCCTGCACCTTTGTGATATCG-3` and 5`-CATGGCAGGACAATCGAACC-3` for 

BNP (NPR-B), 5`-CATCCTGGACAACCTGC-3` and 5`-TAGGTCCGAACCTTGCC-3` 

for ANP (NPR-A), and, finally, 5′-TCAAGAACGAAAGTCGGAGG-3′ and 5′-
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GGACATCTAAGGGCATCAC-3′ for 18S rRNA. Real time RT-PCR was performed 

using SYBR
®
 Green Supermix (Bio-Rad).  Normalization was done with 18S rRNA 

levels. No bands were seen in the absence of reverse transcriptase. 

 

Masson-Trichrome staining. Masson-trichrome staining was performed as described 

(22). 

 

Statistical analyses. Data are generally expressed as mean ± SEM.  Unpaired 2-tailed 

Student’s t test and one- or two-way ANOVA with Bonferroni test were generally 

performed for statistical comparisons, unless otherwise indicated. For most 3-group 

statistical comparisons Dunnett’s test using SAS version 8.2 software was used, as well. 

For all tests, a p value of <0.05 was generally considered to be significant. 

 

RESULTS 

Adrenal ββββarr1 and post-MI aldosterone levels. In the present study, we set out to 

investigate the potential role played by adrenal βarr1 in modulation of in vivo post-MI 

HF aldosterone levels.  To this end, we overexpressed, specifically in the adrenal glands 

of two-week post-MI rats, wild-type βarr1 or a βarr1 C-terminal fragment (βarr1ct), 

which is unable to bind receptor substrates, thus acting as an inhibitor of βarr1 

scaffolding/signaling activity (Supplemental Fig. 1A). To confirm the inhibitory effects 

of βarr1ct on βarr1 activity in vitro, we performed an extensive molecular 

characterization of its effects on AngII-induced signaling to aldosterone production in the 

human AZG cell line H295R (Supplemental Fig. 1B). βarr1ct was indeed found to 
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abrogate βarr1- and G protein-mediated signaling from AT1R to ERK activation and 

Steroidogenic Acute Regulatory (StAR) protein up-regulation, both of which signaling 

events are absolutely necessary for AngII-driven aldosterone production and secretion 

from these adrenocortical cells (15, see Supplemental Fig. 1B). Thus, after confirming 

that βarr1ct acts as an inhibitor of adrenal βarr1-mediated aldosterone production in vitro, 

we overexpressed either the full length βarr1 (to increase adrenal βarr1 levels/activity) or 

the βarr1ct (to inhibit adrenal βarr1 activity in vivo) specifically in the adrenals of the 

post-MI rats. Experimental animals were randomized to three different groups: one group 

receiving adrenal gene transfer of AdGFP (control group), one receiving full length wild 

type βarr1 (Adβarr1), and one receiving the βarr1ct (Adβarr1ct). One day before adrenal 

gene transfer, all groups were analyzed by echocardiography to confirm presence of 

similar levels of LV dysfunction and HF prior to gene delivery.  All groups
 
were then 

studied over the course of the following 7 days (i.e. up to 3 weeks post-MI). 

            In vivo expression of the respective transgenes in the adrenal glands of the 

animals at 7 days post-gene delivery was confirmed by Western blotting (Supplemental 

Fig. 2). Of note, the adrenal-targeted gene transfer methodology employed results in no 

ectopic transgene expression (17 & data not shown). As expected, plasma circulating 

aldosterone levels at 7 days post-gene delivery were found markedly elevated in control 

AdGFP-treated post-MI rats (470+20 pg/ml, ~2-fold of the aldosterone levels of normal 

AdGFP-treated rats) (15), compared to normal (i.e. sham-operated) AdGFP-treated rats, 

indicating marked MI-induced aldosterone elevation. Importantly, adrenal βarr1 

overexpression resulted in an even more pronounced aldosterone elevation post-MI, on 

top of that normally present due to the occurrence of MI (845+150 pg/ml in Adβarr1-
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treated vs. 470+20 pg/ml in control AdGFP-treated post-MI rats, n=6, p<0.05) (Fig. 1). In 

contrast, levels in Adβarr1ct-treated rats (350+30 pg/ml, n=6, p<0.05 vs. AdGFP) were 

significantly lower than in control AdGFP-treated post-MI rats (Fig. 1). Aldosterone 

levels in post-MI AdGFP rats were similar to saline-treated post-MI rats (data not 

shown), indicating no non-specific effects of the adenoviruses used on plasma 

aldosterone values.  

             Consistent with the above findings, βarr1 overexpression led to significant up-

regulation of adrenal StAR protein, the most critical enzyme in adrenocortical 

biosynthesis of aldosterone (as well as of the other adrenal steroids) (15), compared to 

control AdGFP-treated post-MI rats, indicating enhanced aldosterone synthesis in vivo, 

whereas overexpression of βarr1ct reduced adrenal StAR levels below the levels of the 

control rats (Supplemental Fig. 2). Taken together, these results indicate that adrenal 

βarr1 promotes post-MI-associated hyperaldosteronism, and inhibition of its activity 

reduces aldosterone production and plasma circulating aldosterone levels post-MI in 

vivo. 

In vivo cardiac function and dimensions at 7 days post-gene delivery. Next, we 

examined the impact of this adrenal βarr1-mediated hyperaldosteronism on the post-MI 

myocardium. Indeed, we found that ejection fraction (EF) was markedly reduced in 

Adβarr1-treated post-MI rats at 7 days post-gene delivery, compared to control AdGFP-

treated post-MI rats (41.4+1.2 % vs. 48.7+1.1 %, respectively, n=7, p<0.05) (Fig. 2A).  

EF in both groups was similar before gene delivery, and EF of AdGFP-treated rats at 7 

days post-gene delivery was slightly but significantly reduced compared to pre-gene 
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delivery, as expected, given that cardiac function deteriorates over time after MI, 

although at 3 weeks post-MI (when post-gene delivery measurements were taken) there is 

limited dysfunction with this model (Fig. 2A). Indeed, previous studies by us have shown 

that this model in the rat does not lead to significant cardiac dysfunction before ~10 

weeks post-MI (21). Furthermore, LV end diastolic diameter (LVEDD), a marker of 

cardiac dimensions, was significantly increased in Adβarr1-treated rats at 3 weeks post-

MI compared to control AdGFP post-MI rats, in which heart enlargement was less 

pronounced at 3 weeks post-MI (Fig. 2B). This indicates that adrenal βarr1 

overexpression significantly accelerates the progression of cardiac hypertrophy by 

promoting aldosterone elevation post-MI. Of note, EF and LVEDD of saline-treated 3-

week post-MI rats were similar to those of control AdGFP-treated post-MI rats at 7 days 

post-gene delivery, indicating no non-specific effects of the adenoviral gene delivery on 

cardiac function (data not shown).  

          Importantly, these adrenal βarr1-induced cardiac alterations are aldosterone-

mediated, i.e. due to the elevated aldosterone levels caused by adrenal βarr1 

overexpression in vivo, since EF reduction and LVEDD increase are prevented (i.e. are 

similar to control AdGFP-treated rats) by treatment of post-MI Adβarr1 rats with the 

aldosterone antagonist eplerenone (Figs. 2C&D), although this drug, as expected, has no 

effect on the plasma aldosterone increase caused by the Adβarr1 treatment of the adrenals 

of these post-MI animals (Supplemental Fig. 3). Of note, eplerenone prevented the effects 

of adrenal βarr1 overexpression at two completely different doses (a high one, 100 

mg/kg/d, Figs. 2C&D, and a low one, 5 mg/kg/d, data not shown). Thus, the cardiac 
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effects observed upon adrenal βarr1 overexpression are indeed mediated by circulating 

aldosterone. 

          Finally, hemodynamic analysis revealed that Adβarr1-treated post-MI rats 

exhibited significantly reduced basal and maximal dose of isoproterenol-induced cardiac 

contraction and relaxation indices, compared to control AdGFP-treated rats (Figs. 2E&F).  

At this early post-MI time-point, when cardiac dysfunction has not yet manifested as HF, 

echocardiographic and hemodynamic parameters of Adβarr1ct-treated post-MI rats did 

not display statistically significant differences from those of control AdGFP-treated post-

MI rats, as one might expect, although there was some trend towards functional 

improvement in the Adβarr1ct group (see Table 1 for complete in vivo cardiac functional 

parameters in all three post-MI groups at one week after gene delivery).  These results 

show that the adrenal βarr1-mediated hyperaldosteronism indeed results in significantly 

accelerated deterioration of function of the post-MI rat heart. 

 

Cardiac remodeling and functional biomarkers at 7 days post-gene delivery. We also 

performed molecular and structural evaluation of the post-MI rat hearts at 7 days post-

gene delivery. Consistent with the in vivo functional data, real time PCR in total mRNA 

isolated from these hearts showed a marked upregulation of collagen types 1α1 and 3α1, 

markers of cardiac fibrosis, and of ANP (Atrial Natriuretic Peptide) and BNP (B-type 

Natriuretic Peptide), markers of cardiac hypertrophy, in the post-MI hearts of Adβarr1-

treated rats, compared to control AdGFP-treated animals (Figs. 3A-D). Conversely, 

upregulation of all these markers was prevented in Adβarr1ct-treated rats (Figs. 3A-D), 

despite the fact this group did not show significant improvement in cardiac function, 
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which is not surprising given the early post-MI time-point these measurements were 

taken at. Thus, lowering of circulating aldosterone levels by adrenal βarr1 inhibition in 

vivo causes a marked reduction in the expression of adverse remodeling-related genes, 

which might help halt the post-MI cardiac decline at later time-points. Additionally, heart 

weight-to-body weight ratio measurements also confirmed the accelerated cardiac 

hypertrophy (i.e. enhanced at one week post-adrenal gene delivery, compared to control 

AdGFP-treated) displayed by Adβarr1-treated post-MI rats (Table 1, see also above, Fig. 

2B).   

 

Cardiac fibrosis at 7 days post-gene delivery. Masson-trichrome staining for cardiac 

fibrosis at 3 weeks post-MI (7 days post-gene delivery) showed markedly increased 

fibrosis in Adβarr1-adrenal treated rat hearts compared to control AdGFP-treated rat 

hearts, whereas fibrosis was almost completely absent in Adβarr1ct-adrenal treated rat 

hearts (Figs. 4A&5B).  As expected, no fibrosis was detectable in sham-operated rat 

hearts (Fig. 4A). In addition, eplerenone treatment markedly reduced fibrosis in Adβarr1-

adrenal treated rat hearts (Supplemental Fig. 4), thus providing another indication that the 

cardiac effects of βarr1 are aldosterone-dependent. 

         

Cardiac mediators of aldosterone at 7 days post-gene delivery. Immunoblotting in 

cardiac protein extracts revealed a marked upregulation of cardiac Plasminogen Activator 

Inhibitor (PAI)-1 and Transforming Growth Factor-β (TGF-β), two of the most important 

molecular mediators of aldosterone`s cardiac fibrotic and adverse remodeling actions (5), 

in the post-MI hearts of Adβarr1-treated rats compared to control AdGFP-treated rats 



 13  

(Figs. 4C&D).  In contrast, in the hearts of Adβarr1ct-treated rats, not only was 

upregulation of PAI-1 and TGF-β prevented, but the levels of these proteins were 

actually lowered below the levels of control AdGFP-treated rats (Figs. 4C&D).  Taken 

together, these results indicate that adrenal βarr1-mediated hyperaldosteronism 

accelerates cardiac adverse remodeling and progression to HF after MI, and that these 

effects can be reciprocally mitigated by adrenal βarr1 inhibition, which significantly 

reduces circulating aldosterone levels.  

 

Angiotensin antagonism and ββββarr1-mediated aldosterone levels post-MI. Finally, we 

examined whether adrenal βarr1 can affect the efficacy of AT1R antagonism at curbing 

AngII-induced aldosterone production.  For this purpose, we treated post-MI rats with the 

prototypic AT1R antagonist losartan (23,24) for the entire 7-day post-gene delivery 

period at a dose of 50 mg/kg/day. As expected, in control AdGFP-treated post-MI rats, 

losartan produced a small but significant plasma aldosterone reduction (from 470+20  in 

saline-treated to 402+10 pg/ml in losartan-treated rats, p<0.05, n=6) (Fig. 5).  In 

Adβarr1-treated post-MI rats however, losartan is virtually unable to lower aldosterone 

levels (845+150 in saline-treated vs. 880+88 pg/ml in losartan-treated rats, Not 

Significant at p<0.05, n=6) (Fig. 5). In the Adβarr1ct-treated group, no significant 

aldosterone reduction by losartan was observed, probably because plasma aldosterone 

levels were already reduced below the levels of AdGFP-treated rats by Adβarr1ct alone.  

Consistent with this, losartan seems also incapable of reducing the cardiac fibrosis 

induced by adrenal βarr1-mediated hyperaldosteronism (Supplemental Fig. 4). However, 

levels in both the saline- and losartan-treated Adβarr1ct rats were significantly lower than 
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in vehicle-administered control AdGFP post-MI rats (Fig. 5). These results strongly 

suggest that losartan`s post-MI aldosterone lowering effects are antagonized by adrenal 

βarr1, therefore, adrenal βarr1 inhibition can potentiate the hypoaldosteronic actions of 

this drug in post-MI HF.  Effects of losartan in AdGFP-treated and saline-treated post-MI 

rats were similar (data not shown). 

 

DISCUSSION 

            We recently reported that adrenal βarr1 promotes AngII-dependent aldosterone 

production in vitro in human AZG cells, independently of G-proteins (15). Additionally, 

adrenal-specific βarr1 overexpression in vivo resulted in marked elevation of circulating 

aldosterone levels in otherwise normal animals (15). In the present study, we sought to 

investigate whether adrenal βarr1 plays any role in regulation of circulating aldosterone 

levels in post-MI HF progression. We found that adrenal βarr1 is indeed a crucial 

regulator of circulating aldosterone levels in vivo during post-MI HF progression, in that 

increased adrenal βarr1 levels/activity promotes aldosterone elevation post-MI, resulting 

in accelerated cardiac adverse remodeling and deterioration of function, whereas 

blockade of its activity in vivo lowers post-MI aldosterone levels, attenuating or even 

preventing these detrimental effects of aldosterone on the failing heart. 

            These findings strongly suggest that blockade of adrenal βarr1 action on AT1R 

might serve as a novel therapeutic strategy for lowering aldosterone levels post-MI and in 

HF.  This is particularly important, since aldosterone has been shown to exert some of its 

actions (its so-called “non-genomic” actions) independently of the mineralocorticoid 

receptor (MR), its molecular target that normally mediates its cellular actions (4,5). These 
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MR-independent actions are unaffected by the currently available MR antagonists, such 

as eplerenone and spironolactone, used in the treatment of HF (9,10). Therefore, curbing 

aldosterone production at its major source, i.e. the adrenal cortex, by inhibiting βarr1 

actions, could presumably be more effective therapeutically than inhibiting aldosterone`s 

actions at its receptor level.  

            In addition, since adrenal βarr1 appears necessary for upregulation of StAR, the 

enzyme that regulates synthesis of all adrenal steroids, its inhibition presumably leads to 

suppression of the production of the other adrenocortical steroids as well, i.e. of 

glucocorticoids and corticosterone (15). Of note, glucocorticoids have been reported to 

actually occupy the cardiac mineralocorticoid receptors under normal conditions instead 

of aldosterone (25). Therefore, adrenal βarr1 inhibition, by suppressing production of 

glucocorticoids and mineralocorticoids alike, has the unique potential of keeping cardiac 

MRs completely at bay. For this very same reason, adrenal βarr1 emerges as a much 

superior target for post-MI cardiac remodeling and heart failure treatment than MR 

inhibition (e.g. with eplerenone) or aldosterone synthase inhibition, given that the latter 

strategies cannot counter all the adverse effects of all adrenal steroids post-MI, as 

suppression of all adrenal steroid production via adrenal βarr1 inhibition is projected to 

do.  

 Another important ramification of the present study is that pathological situations 

that cause elevation of adrenal βarr1 activity towards receptors can lead to abnormally 

high AngII-induced aldosterone production and hyperaldosteronism.  Indeed, we recently 

reported that in chronic HF, adrenal GRK2, a protein kinase that induces receptor-βarr 

coupling, is dramatically upregulated resulting in chronically enhanced catecholamine 



 16  

production by the adrenal medulla (16). Thus, it is entirely plausible that, driven by the 

enhanced GRK2 activity, adrenal βarr1 activity towards receptors, including the AT1Rs, 

is also increased in chronic HF or during progression from MI to HF, which could 

mediate (at least in part) the chronically elevated circulating levels of aldosterone that 

precipitate this disease. Importantly, we have previously shown that GRK2 can 

desensitize AngII receptors in the heart in vivo (26), and that overexpression of GRK2 in 

rat adrenal glands also causes elevation of plasma aldosterone (15). Both of these 

findings argue in favor of the aforementioned scenario.   

             Furthermore, it is now well established that, in addition to the circulatory renin-

angiotensin-aldosterone system (RAAS), there are also several other local RAAS`s in 

peripheral tissues, including the heart (intracardiac RAAS) and the kidneys (intrarenal 

RAAS), and these systems also hyperfunction in HF contributing to the HF-associated 

hyperaldosteronism (27,28). Therefore, it would be worth investigating whether βarr1 is 

involved in aldosterone production by these local RAAS`s, and whether it contributes to 

their increased aldosterone output during HF as well.  In fact, specifically for the 

intracardiac RAAS, this possibility is very likely, given the elevated cardiac GRK2 levels 

in HF (29). 

            One of the major physiological effects of aldosterone is an increase in blood 

pressure via salt and water retention (4,5). Thus, alterations in mean arterial pressure by 

the elevated aldosterone levels caused by adrenal βarr1 overactivity might very well have 

contributed to the observed cardiac phenotype of adrenal βarr1-overexpressing post-MI 

rats. It should be noted here however that βarr1 knockout mice do not show any changes 

in blood pressure compared to wild type age-matched control mice (30). Additionally, the 
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direct effects of aldosterone on cardiac tissue are bound to have played the most 

important role in the observed cardiac phenotype of the post-MI animals, given the 

relatively small time-period (only 7 days) between genetic manipulation of adrenal βarr1 

levels which raises aldosterone levels (i.e. gene delivery) and the day of cardiac 

measurements/examination, which is rather insufficient for blood pressure to affect 

cardiac function and remodeling that dramatically. Besides, whether changes in blood 

pressure play any role in the cardiac effects of aldosterone is still an open question in its 

own right, since there are several reports in the literature showing aldosterone to affect 

cardiac function and fibrosis in post-MI rats independently of changes in mean blood 

pressure (31,32). Indeed, no differences in systemic mean arterial pressure among the 

three post-MI treatment groups of the present study (i.e. AdGFP, Adβarr1, Adβarr1ct) 

were observed at one week post-gene delivery (data not shown), further supporting the 

notion that blood pressure did not play any major role in the observed cardiac effects of 

βarr1-dependent aldosterone at this early post-MI time-point (3 weeks). 

 The last finding of the present study is that the aldosterone-lowering actions of 

losartan, the prototypic drug of the class of AT1AR antagonists (sartans) (23,24), are 

countered by adrenal βarr1.  Although at normal βarr1 levels (control AdGFP-treated 

post-MI rats) it is capable of producing a small but significant plasma aldosterone 

lowering as expected, when adrenal βarr1 is overactive (Adβarr1-treated post-MI rats), 

losartan does not decrease plasma aldosterone at all.  This finding implies that inhibition 

of adrenal βarr1 in vivo can facilitate the inhibitory effects of losartan (and possibly also 

of the other sartans) on AngII-induced aldosterone production. Of note, limited efficacy 

of losartan and other sartans at lowering aldosterone levels in HF patients and in 
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experimental animals, the so-called “aldosterone escape”, has been reported (20,33,34). 

Therefore, the finding that losartan`s effects on aldosterone production can be 

antagonized by adrenal βarr1-AT1R coupling might explain (at least in part) this reported 

limited efficacy of losartan and related drugs at curbing aldosterone levels. On the other 

hand, increased activity of the βarr1 co-factor GRK2 on cardiac AT1Rs also attenuates 

the pro-contractile signaling of these receptors (26). Therefore, the development of novel, 

functionally selective (or “biased”) AT1R ligands (35,36), which would inhibit AT1R-

induced GRK2/βarr1 activation, at least as effectively as AT1R-induced G-protein 

activation, might prove extremely beneficial in the treatment of HF-related 

hyperaldosteronism and decreased cardiac function.  

            Clinical implications. We have found that circulating aldosterone levels are 

reciprocally regulated by adrenal βarr1 activity in vivo, in that they are directly 

proportional to βarr1 activity toward AngII receptors in the adrenal glands. Therefore, 

inhibiting adrenal βarr1 action markedly decreases circulating aldosterone and attenuates 

its detrimental effects on the post-MI heart, such as fibrosis, hypertrophy, and dilatation, 

thereby preventing or even reversing adverse remodeling post-MI and maintaining 

cardiac function in the face of post-MI-driven cardiac decline. Additionally, losartan, a 

classical AngII receptor antagonist drug used in the treatment of hypertension, appears 

unable to counter this adrenal βarr1-promoted hyperaldosteronism post-MI. Taken 

together, the present findings suggest adrenal βarr1 as a major driving force behind post-

MI aldosterone elevation, whose inhibition in vivo, either via gene therapy or 

pharmacologically, could potentially be of enormous therapeutic value in the 

management of post-MI HF patients. Finally, from the pharmacotherapeutic standpoint, 



 19  

an evaluation of the whole class of AT1R antagonists (sartans) in terms of their efficacy 

at antagonizing βarr1-driven hyperaldosteronism is highly warranted, as it could help 

explain some well-known existing differences in therapeutic efficacy, and also identify 

the most efficacious agents at lowering  post-MI aldosterone, within this very important 

cardiovascular drug class.  

            In summary, the present study reports that adrenal βarr1 promotes the well-

documented post-MI-associated elevation of circulating aldosterone, and thus, direct 

inhibition of its activity via adrenal-targeted gene therapy or via development of novel 

AT1R “biased” or “functionally selective” ligands that can prevent/reduce GRK2/βarr1 

activation by the AT1R might be of therapeutic value in post-MI ensuing HF, as well as 

in already established chronic HF, both of which are precipitated by the cardiotoxic 

actions of elevated aldosterone.    
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FIGURE LEGENDS 

 

Figure 1. Regulation of plasma aldosterone levels by adrenal βarr1. Plasma aldosterone 

levels in AdGFP-, Adβarr1-, or Adβarr1ct-treated two-week post-MI rats, at 7 days post-

in vivo gene delivery. *, p<0.05, vs. AdGFP, **, p<0.05 vs. Adβarr1, n=6 rats/group.  

 

Figure 2. Effect of adrenal βarr1-mediated hyperaldosteronism on cardiac function, 

dimensions and contractility. (A) Ejection fraction (EF%) of Adβarr1- and control 

AdGFP-treated post-MI rats pre- and post-gene delivery (see also Table 1). *, p<0.05, vs. 

AdGFP-post-gene delivery or Adβarr1-pre-gene delivery, **, p<0.05, vs. AdGFP-pre-

gene delivery, n=7 rats/group. (B) Left Ventricular End Diastolic Diameter (LVEDD) of 

these rats. *, p<0.05, vs. AdGFP-post-gene delivery or Adβarr1-pre-gene delivery, n=7 

rats/group. (C) Ejection fraction (EF%) and (D) Left Ventricular End Diastolic Diameter 

(LVEDD) of Adβarr1-treated post-MI rats administered either with saline (vehicle) or 

with eplerenone (Adβarr1-Eplerenone) for 7 days, at 1 week post-gene delivery (3 weeks 

post-MI). AdGFP post-MI rats (treated with vehicle) are also shown at 1 week post-gene 

delivery (3 weeks post-MI) for comparisons. *, p<0.05, vs. either AdGFP or Adβarr1-

Eplerenone, no significant difference between AdGFP and Adβarr1-Eplerenone was 

observed at p=0.05, n=5 rats/group. (E, F) Basal and maximal dose of isoproterenol 

(Max. Iso)-stimulated +dP/dtmax (E) and –dP/dtmin  (F) responses of Adβarr1- and control 

AdGFP-treated post-MI rats at 7 days post-adrenal gene delivery (see also Table 1). *, 

p<0.05, vs. AdGFP, n=7 rats/group.  
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Figure 3. Effect of aldosterone levels on cardiac remodeling markers. Heart mRNA 

levels of (A) collagen I (Col1a1); (B) collagen III (Col3a1); (C) atrial natriuretic peptide 

(ANP); (D) brain natriuretic peptide (BNP) in all experimental groups at 7 days post-gene 

delivery (3 weeks post-MI). All values were standardized to amplified 18S rRNA. Data 

are presented as mean ± SEM and plotted as fold of AdGFP values. *, p<0.05, vs. 

AdGFP or Adβarr1ct, **, p<0.05 vs. AdGFP, n=5 rat hearts/group. 

 

Figure 4. Impact of aldosterone levels on cardiac fibrosis and adverse remodeling 

mediators. (A) Trichrome-Masson`s staining in myocardial cross-sections from AdGFP-, 

Adβarr1-, or Adβarr1ct-treated post-MI rats at 7 days post-adrenal gene delivery. Blue 

denotes collagen fibers, red denotes muscle fibers, and black represents cell nuclei. 

Representative images are shown from 5-6 rat hearts stained per group, along with 

staining in sham rat hearts, in which no blue staining was detectable. (B) Quantification 

of the % fibrotic area visualized upon Trichrome-Masson`s staining. *, p<0.05, vs. 

AdGFP, **, p<0.05 vs. Adβarr1, n=5-6 rat hearts/group. (C) Western blotting for cardiac 

PAI-1 and TGF-β1 in AdGFP-, Adβarr1-, or Adβarr1ct-treated post-MI rats, at 7 days 

post-gene delivery, including GAPDH as loading control. (D) Densitometric analysis of 5 

heart samples tested per group. *, p<0.05, vs. AdGFP, **, p<0.05 vs. Adβarr1, n=5 rat 

hearts/group.  

 

Figure 5. Adrenal βarr1-dependent aldosterone levels and losartan. Plasma aldosterone 

levels 7 days post-adrenal gene delivery of post-MI rats after concomitant vehicle (-Los) 
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or losartan (+Los) treatment. *, p<0.05, vs. AdGFP/-Los or Adβarr1/+Los, n=5 

rats/group/treatment. 
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