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Somatic Excision Demonstrates that c-Jun Induces Cellular Migration
and Invasion through Induction of Stem Cell Factor�†

Sanjay Katiyar,1 Xuanmao Jiao,1 Erwin Wagner,2 Michael P. Lisanti,1 and Richard G. Pestell1*
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Cancer cells arise through sequential acquisition of mutations in tumor suppressors and oncogenes. c-Jun,
a critical component of the AP-1 complex, is frequently overexpressed in diverse tumor types and has been
implicated in promoting cellular proliferation, migration, and angiogenesis. Functional analysis of candidate
genetic targets using germ line deletion in murine models can be compromised through compensatory mech-
anisms. As germ line deletion of c-jun induces embryonic lethality, somatic deletion of the c-jun gene was
conducted using floxed c-jun (c-junf/f) conditional knockout mice. c-jun-deleted cells showed increased cellular
adhesion, stress fiber formation, and reduced cellular migration. The reduced migratory velocity and migratory
directionality was rescued by either c-Jun reintroduction or addition of secreted factors from wild-type cells.
An unbiased analysis of cytokines and growth factors, differentially expressed and showing loss of secretion
upon c-jun deletion, identified stem cell factor (SCF) as a c-Jun target gene. Immunoneutralizing antibody to
SCF reduced migration of wild-type cells. SCF addition rescued the defect in cellular adhesion, cellular
velocity, directional migration, transwell migration, and cellular invasion of c-jun�/� cells. c-Jun induced SCF
protein, mRNA, and promoter activity. Induction of the SCF promoter required the c-Jun DNA-binding
domain. c-Jun bound to the SCF promoter in chromatin immunoprecipitation assays. Mutation of the c-Jun
binding site abolished c-Jun-mediated induction of the SCF promoter. These studies demonstrate an essential
role of c-Jun in cellular migration through induction of SCF.

The c-jun proto-oncogene encodes a prototypical member of
the AP-1 transcription factor family. c-Jun heterodimerizes
with members of the Jun/Fos and MaF/Nr1 families through a
leucine zipper motif. AP-1 proteins, in turn, regulate transcrip-
tional activity of downstream target genes or interact directly
to influence transcription through association with other tran-
scription factors (13, 23, 28, 39). Phosphorylation of the c-Jun
N-terminal kinase (JNK) subgroup of mitogen-activated pro-
tein (MAP) kinases plays a key role in responding to diverse
stress signals (28). JNK activation has been linked to both the
inhibition and induction of cellular apoptosis and to the regu-
lation of cellular migration (26, 68, 69).

The migration of cells plays a critical role in a broad variety
of biological processes including cellular development, tissue
repair, and metastasis of tumors (29, 34, 42). Initiation of
cellular migration requires cell substratum adhesion interac-
tion and the sequential generation of membrane protrusions
(36). Actin polymerization provides both protrusive activity
and directionality of cellular movement. New adhesive sites are
sequentially established in the extended membranes. Motile
cells constantly remodel transient adhesions at the leading
edges (43). In fibroblasts, focal complexes form which mature
into focal adhesions. Remodeling of these focal adhesions is

important, as cell motility is a dynamic balance between con-
tractual forces driving the cell body forward and detachment of
the posterior edge of the cell from its substratum.

Cellular migration is induced by a variety of growth factors
and cytokines. Stem cell factor (SCF), and its receptor Kit, play
pivotal roles in cellular migration as well as differentiation,
proliferation, and migration (74). SCF exists as a secreted
soluble form and as a membrane-bound glycoprotein (15, 73).
Complete absence of SCF in the mouse is embryonic lethal
(15), and SCF binding to Kit induces cellular migration of
diverse cell types including neural stem cells and endothelial
cells (33). SCF directly activates microvascular endothelial
cells to promote tumor angiogenesis (55). Intracellular kinases
are activated consequent upon ligand-induced dimerization
and transphosphorylation of Kit, a type III receptor protein-
tyrosine kinase (70). The relative importance of SCF-induced
JNK, Akt, and extracellular signal-regulated kinase (ERK) ac-
tivity to cellular migration remains to be fully understood.

c-jun�/� mice die in gestation from cardiovascular and he-
patic defects (12). Therefore, to examine the role of c-Jun in
cellular adhesion, migration, and directional persistence, trans-
genic mice carrying floxed c-jun alleles (c-junf/f) in which the
gene was flanked by loxP sites were used herein. Acute excision
of c-jun using Cre recombinase identified a key role for c-Jun
in cellular adhesion. Within 48 h of c-jun excision, c-jun�/�

fibroblasts were round and flat and demonstrated greater cel-
lular spreading. Cellular adhesion was enhanced in c-jun�/�

murine embryonic fibroblasts (MEFs), associated with in-
creased stress fiber formation and reduced migration into a
wound. c-Jun induced both the velocity of cellular migration as
well as directional persistence. The reduced persistence of
migratory directionality of c-jun�/� cells was reversed by the
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addition of medium from parental c-jun�/� cells. Using an
unbiased array-based proteomic approach, subtractive analysis
of cytokine and growth factors differentially secreted upon
deletion of c-jun identified SCF as a cytokine secreted in re-
sponse to c-Jun. SCF rescued the defective migration of
c-jun�/� cells, and SCF expression was induced by c-Jun. To-
gether these studies demonstrate a key role for c-Jun in cellu-
lar migration through induction of SCF.

MATERIALS AND METHODS

Transgenic mice, expression plasmids, and promoter cloning. Transgenic an-
imals carrying floxed c-jun alleles, c-junf/f, were previously described (71). All
experimental procedures with these mice were approved by the ethics committee
of Georgetown and Thomas Jefferson University. Animals were examined for a
coital plug to define the day zero of gestation whenever copulation was detected.
The MEFs were produced as previously described (1) and cultured following the
3T3 protocol (60).

The expression plasmids encoding adenovirus directing Cre (Ad-Cre) expres-
sion or control virus (Ad-Null) were previously described (66). The EcoR1
fragment of the rat c-jun DNA (53) was subcloned into a retroviral expression
vector, murine stem cell virus-internal ribosomal entry site-green fluorescent
protein (MSCV-IRES-GFP), to form MSCV-c-Jun-IRES-GFP. The murine SCF
promoter was cloned by amplifying a 2-kb fragment from the 5� flanking region
of the kit-ligand (Kitl) gene (Table 1 lists the oligonucleotide primers), followed
by its insertion into the SmaI site of the pGL3-basic luciferase reporter vector.
The c-Jun wild type and c-Jun DNA� were previously described (2). For creating
the AP-1 deletion mutant of the SCF promoter, each of the AP-1 sites (TGAC
CCTCA,�1421 to �1413; TGAGTAA, �1375 to �1369; TGAATCA, �1050 to
�1056; and TGAGTCA, �604 to �598) contained within the SCF promoter
were sequentially deleted by in vitro mutagenesis. By making use of oligonucle-
otide primers lacking the AP-1 sites, the pGL3-SCF promoter plasmid was
amplified using Phusion High-Fidelity DNA polymerase (Finnzymes Oy, Espoo,
Finland) followed by DpnI digestion to remove original template plasmid. First,
single-site deletion mutants were created, followed by deletion of the second,
third, and fourth sites in subsequent rounds of amplifications and digestions.

Reagents and antibodies. The kinase inhibitor for MAP kinase (PD98059),
Jun N-terminal kinase (SP600125), and phosphatidylinositol 3 (PI3)-kinase
(LY294002) were obtained from Calbiochem EMD Bioscience (San Diego, CA).
The p38 MAP kinase inhibitor (SB203580) was from Tocris Cookson Inc. (El-
lisville, MO), epidermal growth factor (EGF) was obtained from Biosource
International (Camarillo, CA), transforming growth factor � (TGF-�) was from
Promega (Madison, WI), and interleukin-1 (IL-1) and tumor necrosis factor
alpha were from Sigma-Aldrich (St. Louis, MO). SCF from Peprotech Inc.
(Rocky Hill, NJ), anti-c-Jun antibody (H-79; Santa Cruz Biotechnology, Santa
Cruz, CA), anti-GDI (RTG Sol, Gaithersburg, MD), anti-SCF antibody (R&D
Systems, Minneapolis, MN), and rhodamine-anti-phalloidin and DAPI (4�,6�-
diamino-2-phenylindole) (both from Sigma-Aldrich Corp., St. Louis, MO) were
also used. Biodipy 650/665 anti-phalloidin was from Molecular Probes, Inc.
(Eugene, OR).

Cell culture, viral cell transduction, and reporter gene assays. Cells were
maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum and 100 �g/ml (each) of penicillin and streptomycin
and were cultured in 5% CO2 at 37°C. Adenovirus propagation was previously
described (65). Infection was done at a multiplicity of infection (MOI) of 20, cells
were cultured overnight, and medium was changed prior to experimental anal-
ysis. Retroviral infections were conducted as previously described (65). Trans-
fections were conducted using Genejuice transfection reagent (EMD Bio-
sciences, San Diego, CA) and Lipofectamine (Invitrogen Corp, Carlsbad, CA) as
described previously (7). Statistical analysis was conducted using a Mann-Whitney
U test.

Microscopy and phalloidin staining for F-actin quantitation. Immunopositive
MSCV-IRES-GFP- and MSCV-c-jun-IRES-GFP-transduced cells were exam-
ined in six-well plates. Phase-contrast microscopy and fluorescent imaging were
carried out using the 20� and 60� objectives of an Olympus LSM-5 Meta Laser
confocal scanning microscope. Rhodamine-phalloidin F-actin staining was con-
ducted as previously described (35). F-actin quantitation was also carried out by
fluorescence-activated cell sorting analysis (40). Briefly, confluent c-junf/f cells
treated with adenoviruses were harvested and washed with phosphate-buffered
saline (PBS). Cell pellets were fixed with paraformaldehyde and permeabilized
with Triton X-100. Following a wash with PBS, cells were stained with 0.6 �M
biodipy 650/665 phalloidin (Molecular Probes, Eugene, OR) in PBS for 10 min
at room temperature (64).

TABLE 1. List of oligonucleotide primers used in this studya

Gene (purpose)b Orientation Sequence 5�33�

SCF promoter cloning Forward ATA GGC TAG CAG CAC AGA CTT CCC TCC ACA AAG T
Reverse CAT GGA AGC TTT GTG GCG ACT CCG TTT AGC T

c-jun genotyping Forward CTC ATA CCA GTT CGC ACA GGC GGC
Reverse CCG CTA GCA CTC ACG TTG GTA GGC
Reverse CAG GGC GTT GTG TCA CTG AGC T

RPL-19 (DNA PCR) Forward AAT GCT CGG ATG CCT GAG AA
Reverse CTC CAT GAG GAT GCG CTT GT

Cre recombinase Forward TGC TCT GTC CGT TTG CCG
Reverse ATC GTG TCC AGA CCA GGC

RPL-19 (for RT-PCR) Forward CTGAAGGTCAAAGGGAATGTG
Reverse GGACAGAGTCTTGATGATCTC

c-jun (for RT-PCR) Forward AGA GCG GTG CCT ACG GCT ACA GTA A
Reverse CGA CGT GAG AAG GTC CGA GTT CTT G

SCF (KL-1, soluble) Forward GGAATCCTGTGACTGATAATGT
Reverse CAGGGGGTAACATAAATGGT

SCF (KL-2, membrane bound) Forward GGA ATC CTG TGA CTG ATA AT
Reverse CTA AGG GAG CTG GCT GCA AC

18S rRNA Forward AGGAATTCCCAGTAAGTGCG
Reverse GCCTCACTAAACCATCCAA

AP-1-like elements (1) Forward GCT GGG AAA GGC AAG GAA ATG GAA
Reverse TGC AAC TCC TTG CTA GTG CCT ACT

AP-1-like element (2) Forward GGC AGT ATG TCC AAG GTT CTG GAT
Reverse TCCA TGT TAT AGA TTA AGA AAT AGC CTC AAGT

AP-1 element (3) Forward CTT TCT GTG AGA ACA ACC CGC AGT
Reverse TCC TTC CTT CTT CCT TCC TCC CTT

Negative (4) Forward TTC ATT TGC TGT CTG TCA CCG GG
Reverse TGC AGA TAG TCC CAG CAT TGG GTA

a Primers used in cloning SCF promoter, PCR, RT-PCR, real-time quantitative RT-PCR analysis (54), and ChIP assays.
b Numbers in parentheses refer to AP-1 elements and negative control (see promoter line diagram in Fig. 11).
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Cells were plated on fibronectin-coated glass coverslips and grown to approx-
imately 80% confluence, and scanning electron microscopy was conducted as
described previously (35).

Cell adhesion assay. Ninety-six-well cell surface matrix-coated strip-well tissue
culture plates (no coating, collagen I, collagen IV, poly-L-lysine, laminin, fi-
bronectin, and vitronectin) were used for cell adhesion assays. Equal numbers of
cells were seeded at the bottom of each coated well and allowed to adhere by
incubating the plates at 37°C in 5% CO2 for planned intervals. Strip-wells
containing adherent cells were removed at 30 min, 1 h, 1.5 h, 2 h, 3 h, and 4 h;
cells were fixed in 1% glutaraldehyde for 10 min and stained with 0.1% crystal
violet for 30 min. Following PBS washes, 100 �l of 0.5% Triton X-100 was added
to each well to lyse the cells and extract dye by incubating the plates overnight at
room temperature with gentle shaking. Quantitation of extracted dye was con-
ducted by measuring the absorbance at 595 nm. For each cell surface matrix, the
background was noted from a coated well with no cells seeded and subtracted to
obtain the actual values of absorbance at 595.

Assays of cell motility, migration, and invasion. Cells were plated on plastic
dishes coated with 10 �g/ml fibronectin and cultured overnight in DMEM con-
taining 5% fetal bovine serum. Cell movements were monitored using a Zeiss
inverted microscope. Video images were collected with a charge-coupled-device
camera (model 2400) at planned intervals, digitized, and stored as images using
Metamorph, version 3.5, software (18). Images were converted to QuickTime
movies, and the positions of nuclei were tracked to quantify cell motility. Cellular
velocity was calculated in micrometers using Metamorph software. The effect of
kinase inhibitors on cell migration were determined after culturing the cells with
25 �M PD98059, 25 �M LY294002, 25 �M SB203580, 25 �M SP600125, 10 �M
Y27632, 10 �M H-1152, and 10 �M HA-1100 (6, 10, 27, 47, 49, 67). Prior to an
examination for effects on cell motility, analyses were conducted for 3 h. At this
time point, the persistence for migratory directionality was determined as a
relative D/T ratio representing the ratio of the direct distance (D) from start
point to end point divided by the total track distance (T) (18). Net displacements
were measured every 15 min from start point to end point. Data from at least 100
cells were collected for each set or treatment.

Migration of cells across a membrane was determined using a Boyden cham-
ber, as previously described (31, 32). A gradient of SCF was created through the
addition of SCF (0.5 ng/ml) to the lower chamber. Analysis of three-dimensional
invasive activity was conducted as previously described (44). A total of 105 cells
were embedded in 100 �l of collagen in a 96-well plate and cultured for 24 h. The
collagen-cell plugs were transferred to 24-well plates and embedded in 1 ml of
collagen and cultured for 5 days. Migration from the central plug into the
surrounding collagen was monitored by phase-contrast microscopy.

Cytokine array analysis. Mouse cytokine arrays spotted on nitrocellulose
membranes were obtained from Raybiotech (Norcross, GA). Conditioned me-
dium from Ad-Null- and Ad-Cre-treated c-junf/f cells was prepared by culturing
cells in serum-free DMEM for 24 to 48 h. Membranes were then processed
according to the manufacturers’ instructions for assessment of secreted cytokines
and growth factors present in conditioned medium.

Real-time PCR, ChIP assays, and enzyme-linked immunosorbent assay
(ELISA). All gel-based PCRs and reverse transcription-PCRs (RT-PCRs) were
done with an ExTaq DNA Polymerase kit (Takara Shuzo, Shiga, Japan) using the
oligonucleotide primers listed in Table 1. RNA was extracted using a standard
guanidinium isothiocyanate method, RQ1 DNase I (Promega, Madison, WI)
treated, and phenol-chloroform extracted. RNA quantitation was done in an
Agilent 2100 Bioanalyzer (Palo Alto, CA), and equal quantities were used for the
reverse transcription reactions. Primers for all the genes including housekeeping
control gene transcripts were either designed using Primer Express 5.1 (Applied
Biosystems Inc., Foster City, CA) (Table 1) or referenced from Sugimoto et al.
(54). Chromatin immunoprecipitation (ChIP) analysis was performed according
to a standard protocol provided by Upstate Biotechnology, Inc., with minor
modifications (14, 22). PCR amplifications were done using a Takara ExTaq Kit
and oligonucleotide primers listed in Table 1. PCR amplification was carried out
for a region not containing any AP-1 site within the SCF promoter to serve as a
control (negative) for sonication.

For ELISA, cells were seeded at 80% of confluence, and the growth medium
was changed 24 h later to basal medium containing 0.1% bovine serum albumin
after samples were washed with PBS. Forty-eight hours later, the conditioned
medium was collected, and supernatant was obtained by centrifugation at 2,000
rpm for 5 min, followed by filtration through a 0.45-�m-pore-size membrane
filter. SCF in the conditioned medium was measured using a mouse SCF ELISA
kit (Raybiotech, Narcross, GA) in triplicate, as per the manufacturer’s recom-
mendations, and normalized by the total protein levels in the medium of each
individual sample. The TGF-� and EGF ELISA assays were conducted using a
mouse TGF-� Quantikine ELISA Kit (R&D Systems, Inc., Minneapolis, MN)

(11) and a Mouse EGF Quantikine ELISA kit (R&D Systems, Inc., Minneapolis,
MN) (8), respectively. Experiments were conducted at least three separate times.

Measurement of ROCK activation. Rho-associated protein kinase (ROCK)
activation was assessed by a CycLex Rho kinase assay kit (Cyclex Co., Ltd.,
Nagano, Japan) which uses the myosin-binding subunit of myosin phosphatase as
a substrate (59). To exclude the activity of other kinases from the results, the
absorbance values obtained from ROCK inhibitor-treated lysates were sub-
tracted from total absorbance.

RESULTS

Endogenous c-Jun inhibits cellular adhesion. In order to
examine the role of c-Jun in guided migration, conditional
knockout mice in which the c-jun gene is flanked by loxP sites
were used. MEFs derived from these mice (c-junf/f) were cul-
tured (60) and transduced with either adenovirus-expressing
Cre or an equal titer of adenovirus-null virus. Analyses were
conducted within 48 h of transduction with Ad-Cre. PCR and
RT-PCR confirmed the deletion of c-jun in DNA and the
presence of expressed Cre mRNA transcripts in cellular RNA.
Equal amounts of amplification of RPL-19 in DNA and
RPL-19 transcripts in RNA served as housekeeping gene con-
trols for the PCR and RT-PCR amplification reactions (Fig.
1A and B). Expression of Cre recombinase resulted in deletion
of c-Jun and loss of c-Jun protein by Western blot analysis
when normalized to the protein loading control GDI (Fig. 1C).
No inhibitory effect of either the Ad-Cre or Ad-null virus on
proliferation of cells was observed, consistent with recent stud-
ies (45). To determine whether c-Jun regulates cellular diam-
eter in suspension, the diameters of cells were assessed using a
Multisizer Z3 (Beckman Coulter Inc, Miami, FL). Cell diam-
eters in suspension were identical for the c-jun�/� and
c-jun�/� cells (Fig. 1D), but c-jun�/� cells adhered to tissue
culture plates showed greater cellular spreading by phase-con-
trast microscopy (Fig. 1E); this observation warrants further
analysis.

To examine the morphology of cells deleted of c-Jun, scan-
ning electron microscopy was conducted (Fig. 2A). Fibroblasts
demonstrated an elongated bipolar fibroblastoid shape, either
in the absence of adenovirus or in the presence of a control
adenovirus. The addition of adenovirus-expressing Cre re-
sulted in both c-jun excision and a change in cellular morphol-
ogy. Cells deleted of c-jun were rounder and flatter (Fig. 2A).
Stress fiber formation assessed by phalloidin (Fig. 2B) con-
firmed the spread morphology and demonstrated a peripheral
distribution of stress fibers in c-jun�/� cells (Fig. 2B). In order
to examine whether the round morphology of c-jun�/� cells
correlated with increased cellular adhesion, assays were con-
ducted on distinct substrata (Fig. 2C). Adhesion analyses were
conducted at several time points. In order to determine the
effect of substratum adhesion, a comparison was made be-
tween c-jun�/� and c-jun�/� cells at 30 and 240 min. c-jun�/�

cells were more adherent than c-jun�/� cells at 240 min. For
ease of comparison of the effect of the substratum upon the
increase in adhesion, at initial contact (30 min) was normalized
to 100%. A relative increase in adhesion was observed in
c-jun�/� versus c-jun�/� for cells plated on laminin and vitro-
nectin (Fig. 2C and D).

c-Jun enhances cellular migratory velocity. The speed of
wound closure represents the combination of several factors
including migratory velocity and persistence of migratory di-

1358 KATIYAR ET AL. MOL. CELL. BIOL.



rectionality (18). Video microscopy was undertaken of wound
closure (Fig. 3A and B) to determine a detailed analysis of the
cellular velocity of c-Jun-deficient cells (Fig. 3C). Wound clo-
sure was delayed in c-jun�/� cells (Fig. 3B). The c-jun�/� cells
showed reduced (�45%) cellular velocity (Fig. 3C) (P � 0.05).

The relatively greater defect in wound closure rate com-
pared with the reduction in cellular velocity of c-jun�/� cells
suggested that a defect in directional persistence may contrib-
ute to defective wound closure. Analysis was therefore con-
ducted of the persistence of migratory directionality (PMD).
Representative examples of cell movement plated on fibronec-
tin-coated slides tracked at 15-min intervals over 3 h were used
to determine the role for c-Jun in persistence of migratory
directionality (Fig. 3D). The quantitation of PMD was under-
taken using a relative D/T ratio, representing the ratio of direct
distance from the start point to the endpoint divided by the
total track distance (18). c-Jun-deficient cells showed a 66%
reduction in persistence of directionality (Fig. 3D).

To determine whether c-Jun was sufficient to reverse the
defect in cellular migration, c-jun�/� MEFs were transduced
with a retroviral expression vector encoding c-Jun. c-junf/f cells
were transduced with Ad-Cre or Ad-control and then sequen-
tially transduced with a retrovirus expression vector encoding
IRES-GFP or c-Jun-IRES-GFP. Reanalysis was conducted

48 h posttransduction with the retrovirus encoding c-Jun. c-Jun
expression reversed the defect in cellular velocity and migra-
tory directionality (Fig. 4).

The effect of c-Jun on the cellular area of adherent cells was
next assessed. Deletion of c-jun increased the cellular area
(Fig. 5A and C). Reintroduction of c-jun by viral transduction,
reduced the cellular area compared to that of wild-type control
cells (Fig. 5A and C). Studies were undertaken to determine
whether c-Jun was capable of rescuing the defect in cellular
migration, or whether the defect in migration was being main-
tained by secondary effects, independent of c-Jun. Reintroduc-
tion of c-jun into the c-jun�/� cells also rescued the abundance
of c-Jun protein, which was very similar to c-jun�/� cells, as
assessed by Western blot analysis (Fig. 5B). Compared with
c-jun�/� cells, c-jun�/� cells displayed a threefold increase in
cellular area. Reintroduction of c-Jun into c-jun�/� cells re-
stored the cellular area to that of c-jun�/� cells (Fig. 5C).

SCF is secreted in response to endogenous c-Jun and pro-
motes cellular migration. Earlier coculture experiments of hu-
man keratinocytes and c-jun�/� fibroblasts identified IL-1 as
a c-Jun target gene regulating keratinocyte differentiation
through paracrine secretion (56). To consider the possibility
that c-Jun may regulate the secretion of paracrine factors,
which in turn contribute to fibroblast migration, conditioned

FIG. 1. Somatic excision of c-jun in mouse embryo fibroblasts induces a spread cellular morphology. (A) Schematic outline of the genomic
wild-type (c-jun), floxed (c-junf/f), and deleted c-jun (c-jun	) locus with loxP sites (Š) and PCR primer binding sites (3). (B) PCR showing excision
of c-junf/f alleles (I). Lanes 1 to 4, wild-type c-jun�/�; lanes 5 to 8, c-junf/f DNA. All sample lanes were treated with Ad-Cre at various MOIs of
virus as indicated. RT-PCR from the RNA shows expression of Cre in Ad-Cre treated fibroblast cells (II). (C) Western analysis of (c-junf/f) cells
with no virus, Ad-Null-, and Ad-Cre-treated (MOI of 20) cells analyzed for the presence of c-Jun protein in the lysates; GDI was used as loading
control. (D) Cell diameter measurements (in suspension) of Ad-Null- and Ad-Cre-treated c-junf/f cells determined on cells in suspension.
(E) Spread morphology of Ad-Null- and Ad-Cre-treated c-junf/f cells growing in culture adhering to the tissue culture plate.
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medium from c-jun�/� cells was added to the c-jun�/� cells.
The conditioned medium of c-jun�/� cells rescued the migra-
tory characteristics of c-jun�/� cells including cellular migra-
tion velocity and PMD (Fig. 6A). The medium from c-jun�/�

cells restored the defective PMD of c-jun�/� cells, indicating a
key role for secreted factors in defective migration of c-jun�/�

cells (Fig. 6). Neither IL-1 nor tumor necrosis factor alpha
rescued the PMD defect of c-jun�/� cells (data not shown).

In view of the ability of conditioned medium from c-jun�/�

cells to rescue the defective migration of c-jun�/� cells, an
unbiased proteomic analysis was conducted to screen for ad-
ditional candidate cytokines and growth factors contributing to
cellular migration. A cytokine and growth factor array ap-
proach was used, conducting subtractive comparison of me-

dium from c-jun�/� and c-jun�/� cells. Multiplicative quanti-
tative studies demonstrated that the abundance of most
proteins was unaltered by c-Jun deletion (Fig. 7A; see Fig. S1
in the supplemental material). The abundance of SCF was,
however, reduced by 35% (Fig. 7A). In order to determine the
mechanisms by which c-Jun regulated SCF abundance, an
ELISA was conducted for secreted SCF in conditioned me-
dium (Fig. 7B). c-jun deletion reduced SCF protein abundance
from 500 pg/ml to 200 pg/ml (Fig. 7B). The mRNA levels of the
secreted (KL-1) and membrane-bound (KL-2) forms of SCF
were determined by real-time quantitative RT-PCR from c-
junf/f cells treated with Ad-Null and Ad-Cre (Fig. 7C). The
relative quantitation data obtained from real-time quantitative
RT-PCR shown in the Fig. 7C was normalized to expression of

FIG. 2. c-Jun regulates cellular spreading and adhesion. (A) Scanning electron micrographs of c-junf/f cells treated with either no virus, Ad-Null,
or Ad-Cre. Note the Ad-Cre-treated c-junf/f cells show a flattened appearance after c-jun excision. (B) Rhodamine-phalloidin staining for F-actin
of untreated, Ad-Null, and Ad-Cre-treated c-junf/f cells. Peripheral staining of F-actin is observed in Ad-Cre-treated cells (deleted of c-jun). Note
that c-jun�/� cells show greater spreading in comparison to c-jun�/� cells (untreated or Ad-Null-treated cells). Magnification, �600 (60� objective
and 10� eyepiece). (C) Cellular adhesion assay comparing c-junf/f MEFs treated with either Ad-Null or Ad-Cre. Cells were plated on distinct
substrata as indicated and analysis was conducted at six time points (30 min to 240 min). The data are shown as mean 
 standard deviations of
three separate experiments. (D) The substratum-induced adhesion is shown as difference in adhesion at 4 h and 30 min in Ad-Cre- versus
Ad-Null-treated c-junf/f cells.
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the housekeeping gene 18S rRNA using ABI SDS 2.1 software.
SCF mRNA levels were reduced more than 80% in c-jun�/�

cells compared with the wild-type control (Fig. 7C). Several
other known c-Jun target genes assessed as a form of positive
control also showed reduced expression in c-jun�/� cells, in-
cluding twist homolog 1, twist homolog 2, and twist neighbor
(Fig. 7D).

To determine whether the reduction in SCF abundance in
c-jun�/� cells contributed to the defect in cellular migration,
c-jun�/� cells were treated with SCF. The addition of 0.5 ng/ml
SCF completely reversed the defect in cellular migration (Fig.
8A) velocity and directionality (Fig. 8 B and C, bars 7 versus 8).
Immunoneutralizing antibody to SCF was used to examine its
ability to inhibit migration of c-jun�/� cells. SCF immunoneu-
tralization reduced cellular velocity and persistence of migra-
tory directionality by 40% (Fig. 8B and C, bars 4 versus 6).
Collectively, these studies suggest that the reduced SCF pro-
duction in c-jun�/� contributes to the defect in velocity and
directionality of cellular migration. To determine whether the

increased cellular adhesion observed in c-jun�/� cells (Fig. 2)
was a function of defective SCF secretion, adhesion assays
were conducted. Addition of SCF reduced cellular adhesion of
c-jun�/� cells particularly when cells were plated on laminin or
vitronectin (Fig. 8D).

Transmigration or migration across a cellular membrane was
next assessed using a Boyden chamber. c-jun�/� cells were
defective in transmigration compared with c-jun�/� cells (Fig.
9A). The addition of SCF (0.5 ng/ml) promoted transmigration
of c-jun�/� cells and fully rescued the defect in transmigration,
while immunoneutralizing antibody to SCF reduced migration
of c-jun�/� cells by 40% (Fig. 9B). The restoration of c-jun�/�

cellular transmigration by SCF is consistent with a role of
reduced SCF production leading to a migration defect. In
order to determine the role of c-jun in cellular invasion, the
ability of cells to invade a collagen matrix in three dimensions
was assessed (44). The invasive phenotype displayed by cells
negotiating three-dimensional extracellular matrix barriers is a
more complex form of cellular behavior and may more closely

FIG. 3. c-jun excision reduces cellular migration rates. Wound healing assay of untreated, Ad-Null-, or Ad-Cre-treated c-junf/f cells. (A) Cells
were imaged every 15 min by video microscope for 24 h. Representative images at 0, 12, and 24 h are shown. c-jun�/� cells showed reduced wound
closure at 24 h. Graphs show wound size (B), migration velocity (C), and PMD (D) at 0, 12, and 24 h. D/T calculations were based on data collected
after analysis of video images for cell movement every 15 min for 3 h. Data are shown as means 
 standard error of the means for more than three
separate experiments. *, P � 0.05.
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resemble the in vivo function of c-Jun. Invasion of collagen was
assessed by the detection of refractile cells distal to the cellular
margin after 5 days. Deletion of c-jun virtually abolished the
ability of cells to invade the collagen in a three-dimensional
matrix (Fig. 10B). Addition of SCF (0.5 ng/ml) rescued the
invasive phenotype of c-jun-deficient cells. Immunoneutraliz-

ing antibody to SCF reduced the number of cells invading
collagen by 23% (Fig. 10E versus F).

SCF is a direct target gene induced by c-Jun. To determine
whether the SCF gene was a direct transcriptional target of
c-Jun, a 2.0-kb fragment of the murine SCF promoter was
cloned and linked to a luciferase reporter gene. Sequencing of

FIG. 4. c-Jun rescues the migration defect of c- jun�/� cells. c-junf/f cells transduced with Ad-Cre to excise c-junf/f 48 h postexcision were
retransduced with retrovirus expressing either GFP or c-Jun. Video microscopy demonstrated induction of migration by c-Jun expression and
rescue of cellular migration in c-jun�/� cells. (A) Path tracings of cellular movements. (B) Quantitation of cellular velocity. (C) Persistence of
directionality of migration. EB, error bar; SEM, standard error of the mean.

FIG. 5. c-jun rescues cellular morphology of c-jun�/� cells. IRES-GFP- or c-Jun-IRES-GFP-expressing MSCV vectors were transfected into
untreated, Ad-Null-, or Ad-Cre-treated c-junf/f cells. (A) Fluorescence microscopy of c-jun�/� (c) versus cells rescued with c-jun (f). (B) Western
blot analysis of the MEFs either deleted of c-jun or rescued with c-jun. GFP is expressed by the MSCV vectors used. (C) Cellular area determined
using NIH Image software. EB, error bar; SEM, standard error of the mean.
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the SCF promoter demonstrated the presence of a canonical
AP-1 binding site(s) (Fig. 11). The activity of the murine SCF
promoter was reduced by 80% in c-jun�/� cells when normal-
ized for transfection efficiency using the Renilla luciferase re-
porter gene, pRL-LUC (Fig. 11A). Transfection of c-jun�/�cells
with an expression vector for c-Jun induced SCF-Luc reporter
activity sixfold compared with the effect of expression of a
DNA-binding-defective mutant of c-Jun (c-Jun DNA�) (Fig.
11B). In order to determine whether the SCF promoter func-
tioned as direct transcriptional target, deletion mutation of the
SCF promoter AP-1 sites was conducted. Comparison was
made between the SCF-wt and SCF-AP-1 mutant promoters.
c-Jun induced the SCF promoter but failed to induce the SCF-
AP-1 mutant promoter (Fig. 11C). The SCF promoter was 5- to
10-fold more active than the luciferase vector control in the
presence of c-jun while the SCF-AP-1 mutant reporter con-
veyed basal activity to the luciferase vector under identical
conditions. The finding suggests that the AP-1 sites function as
both basal level and c-Jun-responsive enhancer elements.

To determine whether c-Jun bound the SCF promoter in the

context of local chromatin, ChIP assays were conducted. Oligo-
nucleotide primers designed to the proximal SCF promoter
(designated “negative” in Fig. 11D) failed to amplify genomic
SCF sequence in the presence of the c-Jun immunoprecipitate,
indicating the efficiency of sonication. Amplification of SCF
promoter sequences was observed with primers directed to the
AP-1 site and three other AP-1 like elements in the SCF
promoter. ChIP assays conducted on c-junf/f cells treated with
Ad-Cre abrogated c-Jun occupancy at the SCF promoter AP-1
site (Fig. 11D). Thus, c-Jun induces SCF protein and mRNA
abundance and c-Jun induces the SCF promoter through a
DNA-binding-dependent mechanism.

DISCUSSION

The current studies demonstrate an essential role for c-Jun
in regulating the velocity of cellular migration and directional
persistence. Wound healing is known to induce the expression
of AP-1 transcription factors (16). c-Jun together with Jun-B,

FIG. 6. Conditioned medium from c-jun�/� cells rescues the defec-
tive migratory response of c-jun�/� cells. (A) Path tracings from PMD
assays conducted on untreated (a), Ad-Null (b), Ad-Cre (c), and Ad-
Cre c-junf/f cells treated with conditioned medium (d) from c-jun�/�

cells. Treatment of Ad-Cre-infected cells with conditioned tissue cul-
ture medium (CM) from wild-type cells rescued their defective cellular
migration (cellular velocity) (B) and persistence of direction (C) (D/T
ratio). EB, error bar; SEM, standard error of the mean.

FIG. 7. c-jun induces SCF secretion and expression. (A) The su-
pernatant of c-jun�/� and c-jun�/� cells was analyzed by cytokine and
growth factor arrays. Supernatant from c-jun�/� cells that rescued a
c-jun�/� cellular migration defect was assessed. Representative data of
three separate experiments are shown. Mean data of the SCF abun-
dance are shown (see Fig. S1 in the supplemental material for names
of the proteins assayed in the array). (B) ELISA for SCF abundance in
conditioned medium from c-junf/f cells treated with no virus, Ad-Null,
and Ad-Cre. (C) Real-time RT-PCR quantification of c-jun, SCF
(KL-1, soluble form; KL-2, membrane-bound form) transcripts of KL
gene for SCF. (D) Real-time RT-PCR quantitation of known c-jun
target genes (twist 1, twist 2, and twist neighbor). In all real-time quan-
titative RT-PCR assays, the data for the gene of interest were normal-
ized to the expression of transcripts for the 18S rRNA housekeeping
control gene.
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c-Fos, and FosB is induced within 1 h of wounding of corneal
epithelium (50). It has been proposed that AP-1-dependent
activation of a subset of genes including keratins and integrins,
in turn, contributes to the epithelial cell migration response to
wounding (4, 5). The AP-1 transcription factors induce pro-

duction of matrix metalloproteases and plasminogen activator,
providing a mechanism by which cells move into the extracel-
lular matrix. Herein, video microscopy demonstrated a reduc-
tion in the migratory velocity of cells acutely deleted of c-jun.
The defect in migratory persistence of c-jun�/� cells was res-

FIG. 8. SCF rescues migration defect of c-jun�/� cells. (A) Path tracings for c-junf/f cells treated with Ad-Cre and either an immunoneutralizing
antibody to SCF (IN-�SCF) (1 �g/ml) or the addition of SCF (0.5 ng/ml). Data for more than three experiments are shown. Data for quantitation
of cell migration parameters, including velocity of migration (B) and the D/T ratio to assess persistence of migratory directionality (C) are shown.
(D) Cellular adhesion assays were conducted as described in the legend of Fig. 2, with the addition of SCF (0.5 ng/ml) on various matrices (collagen
I, laminin, and vitronectin). Substratum adhesion is shown as the difference between 4 h and 30 min. EB, error bar; SEM, standard error of the
mean.

FIG. 9. SCF rescues the transwell cellular migration defect of c-jun�/� cells. c-junf/f cells were treated with Ad-Cre and analyzed for transwell
migration. Cells traversing the membrane were stained blue with crystal violet and appear lighter in the images. The effect of immunoneutralizing
antibody to SCF or addition of SCF (0.5 ng/ml) on transwell migration was quantitated for more than five separate experiments. (B) Data
are shown as the means 
 standard deviations (SD). *, P � 0.05. IgG, immunoglobulin G; IN-�SCF, immunoneutralizing antibody to SCF; EB,
error bar.
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cued through supernatant derived from fibroblasts expressing
c-Jun or with the addition of SCF, consistent with a role for
c-Jun in regulating autocrine secretion of factors that promote
cellular migration. c-jun deletion reduced SCF protein abun-
dance, mRNA, and promoter activity. c-Jun expression in-
duced the SCF promoter and bound the SCF promoter’s AP-1
sites in ChIP assays. These findings define a new role for c-jun
in regulating SCF expression and, thereby, cellular invasion.

SCF induced migration of c-jun�/� cells, suggesting that the
receptor, Kit, maintains normal function in the absence of
c-Jun and confirming the biological importance of SCF as a
c-Jun target gene. In addition to serving as a growth factor for
various cell types, including hematopoietic stem cells, mast
cells, melanocytes, and germ cells, SCF has chemotactic prop-
erties for endothelial cells, functioning as a proangiogenic fac-
tor (55). Complete absence of SCF, which is encoded by the
mouse steel locus (S1), or Kit kinase, leads to embryonic or
perinatal lethality from anemia. In humans, gain-of-function
mutations of c-kit occur in human cancers (gastrointestinal
stromal tumors, mystocytomas, T-cell lymphomas, and dysger-
minomas [19]), and paracrine or autocrine activation of kit has
been implicated in other human malignancies including ovar-
ian and lung cancers (25). The correlation between Kit expres-
sion and functional measurements of pluripotentiality suggests
that kit may be a useful marker for stem cells (38). SCF ex-
pression is upregulated in tumors in a grade-dependent man-
ner, and high SCF expression correlates with short patient
survival (55). Tumor cells with the strongest SCF expression
are found within the tumor-infiltrating border, and c-jun is
expressed predominantly at the infiltrating tumor edge (63).
Collectively, these studies are consistent with a model in which
c-Jun-mediated SCF production may contribute to tumor pro-
gression.

Both TGF-� and EGF have been implicated in cellular mi-
gration during Drosophila development (72). Neither TGF-�
or EGF were represented on the arrays used. TGF-� and EGF
production was reduced in c-jun�/� MEFs, as determined by
ELISA, approximately 25% and 60%, respectively (see Fig.
S1B in the supplemental material). We examined the possibil-
ity that TGF-� or EGF may also promote migration of
c-jun�/� cells. Although addition of supraphysiological con-

centrations of EGF (10 ng/ml) and TGF-� (10 ng/ml) rescued
in part the PMD defect of c-jun�/� cells, physiological concen-
trations (EGF at 20 pg/ml and TGF-� at 100 pg/ml) did not
rescue the migration defect (see Fig. S1C to E in the supple-
mental material). These findings indicate that in cells acutely
deleted of c-jun, the receptor signaling pathway for TGF-� and
EGF remains intact. Furthermore, these studies suggest that
supraphysiological or pathological but not physiological con-
centrations of EGF and TGF-� may play a role in c-jun-me-
diated migration. TGF-� is a known target of c-Jun in mam-
malian cells (62). The current findings are consistent with
previous studies in Drosophila melanogaster, in which a key role
for c-jun kinase in cellular migration is evidenced by dorsal
closure. Mutations of hemipterous and basket, the Drosophila
homologs of human JNKK and JNK, respectively, are associ-
ated with failed closure of the dorsal cuticle. Drosophila JNK is
activated transiently immediately prior to dorsal closure, facil-
itating amnio serosa contraction in adhesion complexes in ad-
jacent cells (37). It has been proposed this activity may con-
tribute to the anterior movement of dorsal epithelium.
Drosophila JNK activity persists in leading-edge epithelial cells
to promote ongoing expression of the TGF-� homolog decap-
entaplegia (52). decapentaplegia is known to promote cellular
migration in an autocrine fashion at the epithelial cell edge
(17). The findings herein that the c-jun�/� cellular migratory
defect is rescued by supraphysiological concentrations of
TGF-� suggests that the loss of TGF-� production in c-jun�/�

cells may contribute to defective migration in murine fibro-
blasts under a subset of circumstances.

Mouse embryonic eyelid closure requires both the prolifer-
ation of epithelial cells and the migration of epithelial sheets
(51, 57). Defective eyelid closure has been demonstrated in
mice defective in genes encoding growth factors and their
receptors, including EGF receptor (EGFR), TGF-�, activin�B,
and MEKK1. The ablation of genes encoding activin�B, the
TGF-� family, and ROCK I/II results in defective eyelid clo-
sure (58, 61). Thus, both the TGF-� activin, MEKK1, and JNK
pathway and the TGF-�/EGF� and ERK pathway contribute
to active stress fiber formation and cellular migration. The
destruction of either pathway in vivo appears to result in the
failure of eyelid closure in mice. As the rescue of PMD in

FIG. 10. SCF rescues three-dimensional collagen invasion defect of c-jun�/� cells. c-junf/f cells were treated with Ad-Null or Ad-Cre and
analyzed for invasion within three-dimensional collagen gels with or without SCF (0.5 ng/ml), immunoglobulin G (IgG), or immunoneutralizing
antibody against SCF (IN-�SCF). The edge of the embedded island of fibroblasts is marked by a dashed line on each panel. Invasion was
quantitated in three-dimensional collagen gels after 5 days in the presence of SCF or following the addition of immunoneutralizing antibodies
against SCF. EB, error bar; SD, standard deviation.
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c-jun�/� cells with EGF and TGF-� occurred acutely, the
receptors and corresponding signaling pathway of these cells
remained functional.

Our results contrast with studies of more prolonged c-jun
excision in keratinocytes of these mice. K14-Cre; K5-Cre-2;
c-jun	EP mice resulted in a failure of eyelid fusion during
embryogenesis, and mice were born with the “eyes open” phe-
notype (30, 71). c-jun-deficient keratinocytes expressed less

phosphorylated EGFR (71), suggesting that a reduction in
EGFR function may have contributed to defective migration.
These differences may either relate to a cell-type-specific func-
tion of c-jun or reflect acute (this study) versus chronic (30, 71)
effects of c-Jun deletion. Acute deletion of the retinoblastoma
(Rb) gene in primary quiescent cells is sufficient for cell cycle
reentry and has a phenotypic consequence that is different
from germ line Rb functional inactivation (45). Such differ-

FIG. 11. c-jun induces SCF expression and binds to SCF promoter in ChIP assays. Schematic representation of murine SCF gene promoter
linked to luciferase reporter gene and luciferase assay for cloned SCF promoter in c-jun�/� and c-jun�/� cells, effect of expression vectors coding
wild-type c-Jun or DNA-binding-defective c-Jun mutant. As shown in panel A, the activity of the SCF promoter was assessed in c-jun�/� or c-jun�/�

cells, and the luciferase activity was normalized for transfection efficiency through cotransfection with the Renilla luciferase reporter (psv-Renilla-
LUC). (B) Activity of the SCF promoter was determined in the presence of cotransfected expression vector for either wild-type c-Jun or the
DNA-binding-defective c-Jun mutant. Luciferase reporter activity is shown of transfections conducted in c-jun�/� cells. Data are means 
 standard
error of the mean of more than five separate transfections. (C) The SCF promoter AP-1 elements were mutated in the context of the full-length
promoter. Activities of the SCF wild-type (WT) and SCF-AP-1 mutant promoters were compared in the presence of cotransfected the c-Jun
expression vector. (D) ChIP assay showing recruitment of c-jun to the AP-1 sites in the SCF promoter. (E) Schematic representation of mechanism
by which c-jun induction of SCF promotes guided migration.
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ences may be due to functional compensation by Rb-related
proteins. Somatic excision of c-jun in the central nervous sys-
tem blocks perineuronal sprouting, lymphocyte recruitment,
and microglial activation. c-jun-deficient motor neurons show
reduced target muscle reinervation (41). c-jun-deficient neu-
rons expressed reduced galanin, �7�1, and CD44, the expres-
sion of which contributes to normal neuronal regeneration
(41). It will be of interest to assess further the paracrine
secretory deficiencies of c-jun�/� keratinocytes to better un-
derstand the cell-type-specific function of c-jun in cellular mi-
gration.

Kit activation induces multiple downstream signaling path-
ways including JNK, ERK, Akt, and PI3-kinase. In the current
studies multiple intracellular kinase signaling pathways con-
tributed to the migration of wild-type MEFs including the
PI3-kinase, ERK, JNK, and MAP kinase pathways (see Fig. S2
in the supplemental material), consistent with previous studies
implicating these kinases in fibroblast migration (20, 21). The
PI3-kinase pathway has been implicated in the cellular migra-
tory response to growth factor signals including EGF (46, 48).
MAP kinase activity is known to accelerate the immediate cell
motility in some, but not all, cells (9, 24). The role of candidate
intracellular signaling pathways was determined. Specific in-
hibitors for each of the MAP kinase pathways and PI3-kinase
activity were used at the dose shown in many prior studies to
inhibit the relevant pathway (6) without directly affecting via-
bility (cellular viability was confirmed in the current studies in
the presence of inhibitor). The Jun kinase inhibitor SP600125
reduced basal PMD of the cells (see Fig. S2A and C in the
supplemental material). This concentration of SP600125 is
consistent with the dose used in previous studies (6) and did

not affect cell viability. The PI3-kinase inhibitor LY 294002 did
not affect PMD but blocked Ras activation of a multimeric
AP-1 reporter gene in our previous studies (3). Both the p38
and ERK inhibitors (SB203580 and PD98059) reduced basal
level PMD. The ROCK inhibitor Y27632 did not affect wild-
type MEF migration but enhanced c-jun�/� MEF migration. A
similar rescue of migration was observed with specific ROCK
inhibitors, H-1152 and H-1100 (see Fig. S3A to D in the sup-
plemental material). The mechanism by which c-jun deletion
and reduction in SCF leads to altered responsiveness to ROCK
inhibitors remains to be determined.

Imatinib (Gleevec) is a small-molecule inhibitor of signaling
by SCF through c-Kit, in addition to blocking Abl and platelet-
derived growth factor signaling. As SCF promotes tumor cell
proliferation and angiogenesis and c-Jun is frequently overex-
pressed in a broad array of human tumors, SCF inhibitors may
thus provide adjunctive value in c-jun-expressing tumors.
Given the important role of c-Jun as a bona fide oncogene (13,
23) and the common finding of c-Jun overexpression in tumors,
it will be important to assess further the relative importance of
SCF secretion mediated by c-Jun in regulating tumor metas-
tases.
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