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The effect of paromomycin on the interaction of ribosomal subunits was studied. Paromomycin inhibited the
antiassociation activity of initiation factor 3 (IF3). Furthermore, ribosomal subunits were associated to form
708 ribosomes by paromomycin even in the presence of 1 mM Mg>*. Paromomycin did not inhibit the binding
of IF3 to the 30S ribosomal subunits. On the other hand, IF3 bound to the 30S subunits was expelled by
paromomycin-induced subunit association (70S formation). These results indicate that the stabilization of 70S
ribosomes by paromomycin may in part be responsible for its inhibitory effects on translocation and ribosome

recycling.

Aminoglycosides cause miscoding (6, 18), stabilization of
70S ribosomes (4, 26), inhibition of translocation (2, 10, 16,
24), alanylation of transfer mRNA (37), and recycling of ribo-
somes (12, 13, 17). Although the mechanisms of the miscoding
effect of paromomycin have been worked out previously (27—
29), the exact mechanism of the effect of paromomycin on the
translocation and recycling steps remains obscure. We investi-
gated the effect of paromomycin on the interaction of subunits
which plays an important role in both of these steps. We show
that paromomycin inhibits the antiassociation activity of initi-
ation factor 3 (IF3), which is an important component of the
disassembly reaction of posttermination ribosomal complexes
(14). This inhibitory effect comes from the fact that paromo-
mycin strengthens the interaction between ribosomal subunits
and even induces association of the subunits at low Mg>"
concentrations. Upon the association of subunits by paromo-
mycin, the 30S-bound IF3 is displaced from the ribosomes. A
possible mechanism of the inhibitory action of paromomycin
on the translocation step is discussed.

MATERIALS AND METHODS

Buffers. Buffer J consisted of 10 mM Tris-HCI, pH 7.4, 10 mM MgSO,, 50 mM
KCl, and 1 mM dithiothreitol (DTT). Buffer R consisted of 10 mM Tris-HCI, pH
7.4, 8.2 mM MgSO,, 84 mM NH,CI, and 0.5 mM DTT. Buffer S consisted of 10
mM Tris-HCI, pH 7.4, 1 mM MgSO,, 84 mM NH,CI, and 0.5 mM DTT. Buffer
S2 consisted of 10 mM Tris-HCI, pH 7.4, 4 mM MgSO,, 84 mM NH,CI, and 0.5
mM DTT. Buffer S3 consisted of 10 mM Tris-HCI, pH 7.4, 6 mM MgSO,, 84 mM
NH,CI, and 0.5 mM DTT.

Ribosomes and factors. Vacant ribosomes were prepared from Escherichia coli
MRE600 (purchased from the University of Alabama Fermentation Facility,
Birmingham) as described previously (21). Ribosome recycling factor (RRF) and
elongation factor G (EF-G) were purified as described previously (11, 21) from
E. coli DHS5« harboring plasmid pRR2 (34) and E. coli JIM83 harboring plasmid
pECEG (15) (obtained from P. March), respectively. IF3 was purified from E.
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coli XL1-Blue harboring a plasmid expressing His-IF3 (35) (obtained from T.
Ueda).

Sucrose density gradient ultracentrifugation (SDGC). Unless otherwise men-
tioned, 0.6 A,4, units (approximately 14 pmol) of 70S ribosomes (or the disso-
ciated subunits) or 0.45 A,4, units (approximately 31 pmol) of isolated 30S
subunits in 275 pl of a reaction mixture (described in the figure legends) was
applied on 4.5 ml of a 15% to 30% sucrose gradient prepared in the same buffer
as the reaction mixture. Samples were centrifuged at 40,000 rpm (Beckman
SW50.1 rotor) for 2.5 h at 4°C. For Fig. 1 and 3, the absorbance at 254 nm in the
gradient was analyzed by use of an ISCO optical unit type 11 and a UA-6
detector (Teledyne Isco, Inc., Lincoln, NE) and areas corresponding to 30S, 50S
subunits and 70S ribosomes were measured by ImageJ software (National Insti-
tutes of Health, Bethesda, MD; http://rsb.info.nih.gov/ij/). For Fig. 2 and 4,
fractions were taken from the bottom of the tube (10 drops per fraction) and the
absorbance at 260 nm was measured manually.

Binding of IF3. Binding of IF3 to ribosomes and the subunits was analyzed
essentially as described previously (14), with modifications as described below.

After the SDGC and fractionation were completed as described above, frac-
tions containing 30S or 50S subunits or 70S ribosomes were collected. For Fig. 2,
two fractions containing the peak of 30S subunits were collected, while for Fig.
4, only one fraction containing the peak of 30S or 50S subunits or 70S ribosomes
was collected. Proteins in the fractions were precipitated by 10% trichloroacetic
acid on ice for 1 h, washed in an ether-ethanol mixture (50% each), and then
dried. Samples were suspended in 19 wl of Laemmli loading buffer with 1 pl of
Tris base, boiled, and then subjected to 15% sodium dodecyl sulfate-polyacryl-
amide gel electrophoresis. Proteins were blotted to a nylon membrane and
analyzed by Western blotting. One-fourth (5 pl) (Fig. 2), one-half (10 wl) (Fig.
4B), or all (20 pl) (Fig. 4A) of the precipitated samples was analyzed. For Fig. 2
and 4B, 7 pmol of purified IF3 was also subjected to sodium dodecyl sulfate-
polyacrylamide gel electrophoresis as a standard. For the detection of IF3, rabbit
antiserum against E. coli IF3, peroxidase-conjugated goat antibody against rabbit
immunoglobulin G, and Amersham ECL detection reagents (GE Healthcare,
Piscataway, NJ) were used. Rabbit antiserum against E. coli IF3 was raised by
Rockland Immunochemicals, Inc. (Gilbertsville, PA), and used at a 1/5,000
dilution.

RESULTS

Paromomycin inhibits antiassociation activity of IF3. We
first examined if paromomycin inhibits the antiassociation ac-
tivity of IF3. In the experiment depicted in Fig. 1, vacant
ribosomes were dissociated into subunits at 1 mM Mg”* (Fig.
1A) and exposed to 6 mM Mg”* so that the subunits were
reassociated into 70S ribosomes (Fig. 1B, left). If IF3 was
present, the reassociation was inhibited and almost no 70S
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FIG. 1. Paromomycin inhibits antiassociation activity of IF3. (A) 70S ribosomes (0.05 wM) were dissociated into subunits in buffer S (1 mM
Mg** and other components) at 30°C for 7 min. (B) Subunits prepared as described for panel A were further incubated in the absence (left panel)
or presence of IF3 (4.5 uM) (center panel) or IF3 (4.5 pM) and paromomycin (30 wM; Sigma, St. Louis, MO) (right panel) at 30°C for 5 min,
and then magnesium acetate was added to 6 mM and the mixture was incubated at 30°C for an additional 10 min. The mixtures described for panels
A and B were subjected to 15% to 30% SDGC (Beckman SW50.1 rotor at 40,000 rpm for 2.5 h). Sedimentation was from left to right.
(C) Dose-response curves of paromomycin inhibition on the antiassociation activity of IF3 at 6 mM Mg?* or 8.2 mM Mg?*. The following equation
was used to calculate the inhibitory effect of paromomycin on the antiassociation activity of IF3: percent inhibition = [1 — (%70S' —
%70S%)/(%70S' — %70S*)] X 100, where %70S" is the percentage of 70S ribosomes in the absence of both IF3 and paromomycin at 6 mM (B,
left panel) or at 8.2 mM (data not shown) Mg, %70S” is the percentage of 70S ribosomes in the presence of both IF3 and paromomycin at 6
mM (B, right panel) or at 8.2 mM (data not shown) Mg?*, and %70S is the percentage of 70S ribosomes in the presence of only IF3 at 6 mM
(B, center panel) or at 8.2 mM (data not shown) Mg**.

ribosome was observed (Fig. 1B, center). In the presence of
paromomycin, however, certain subunits were reassociated
into 70S ribosomes even in the presence of IF3 (Fig. 1B, right).
The dose-dependent inhibitory effect of paromomycin is plot-
ted in Fig. 1C. The inhibitory action of paromomycin on the
antiassociation activity of IF3 could also be observed in the
presence of 8.2 mM Mg** (Fig. 1C, filled circles). It is clear
from this figure that paromomycin, even at a concentration as
low as 0.1 M, inhibits the antiassociation activity of IF3. It is
noted that the inhibitory effect of paromomycin was slightly
higher when association was induced at 8.2 mM Mg>". Since
this is the Mg>* concentration at which paromomycin inhibited

the disassembly of posttermination ribosomal complexes by
RRF and EF-G (13), this could be the step which is influenced
by paromomycin in the disassembly reaction.

Paromomycin does not inhibit binding of IF3 to the 30S
ribosomal subunit. The inhibition of the antiassociation activ-
ity of IF3 by paromomycin could be due to its inhibitory effect
on the binding of IF3 to 30S subunits. To explore this possi-
bility, the isolated 30S subunits were incubated with IF3 in the
presence or absence of paromomycin at 8.2 mM (Fig. 2) or 1
mM (data not shown) Mg®*. The mixture was subjected to
SDGC, and fractions were collected and examined for the
presence of IF3 on 30S subunits by Western blot analysis. The

=
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80.4 E —_—
2 @ 0 30 100 pM
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FIG. 2. Paromomycin does not inhibit the binding of IF3 to 30S subunits. 30S subunits (0.45 4, units) were incubated with IF3 (4.5 uM) in
buffer R (8.2 mM Mg>* and other components) followed by the addition of paromomycin or buffer. The mixture was subjected to SDGC as
described in the legend for Fig. 1, except for the use of buffer R, and fractionated from the bottom of the tube (10 drops per tube). Absorbance
at 260 nm was measured (left panel), and two fractions containing the peak of 30S subunits (filled circles) were collected and analyzed by Western
blot analysis using anti-IF3 rabbit antiserum (right panel). Purified IF3 (7 pmol) was used as a standard.
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FIG. 3. Paromomycin associates ribosomal subunits into 70S ribosomes. (A) Sedimentation pattern of ribosomes in the presence of paromo-
mycin at 1 mM Mg?*. 70S ribosomes (0.05 uM) were dissociated into subunits in buffer S (1 mM Mg>" and other components), various amounts
of paromomycin (as indicated) were added, and the mixtures were incubated at 30°C for 10 min and analyzed as described in the legend for Fig.
1A. (B) Dose-response curves of subunit association by paromomycin at various Mg>" concentrations. Ribosomal subunits were prepared in buffer
S, various concentrations of paromomycin were added, the mixture was incubated at 30°C for 5 min, magnesium acetate was added to 4 mM (filled
circles), 6 mM (open squares), or 8.2 mM (filled squares), and the mixture was incubated at 30°C for an additional 10 min and subjected to SDGC.
Percentages of 70S ribosomes were calculated and plotted against paromomycin concentrations.

result showed that even a high concentration of paromomycin
(100 nM) does not inhibit the binding of IF3 to 30S subunits.

Ribosomal subunits are associated by paromomycin. Having
ruled out the possibility that paromomycin may inhibit the
binding of IF3 to 30S subunits, the inhibitory effect of paro-
momycin on the antiassociation activity of IF3 may be due to
the possibility that paromomycin associates the ribosomal sub-
units. To explore this possibility, the experiment depicted in
Fig. 3A was performed. In this experiment, vacant ribosomes
were incubated with increasing concentrations of paromomy-
cin in the presence of 1 mM Mg?* and the mixture was sub-
jected to SDGC. It is noted that increasing amounts of 70S
ribosomes were observed in the presence of paromomycin in a
dose-dependent manner. The activity of paromomycin to as-
sociate subunits was plotted against the amount of paromomy-
cin added (Fig. 3B, open circles). Fifty percent of subunits were
associated into 70S ribosomes in 1 mM Mg>" in the presence
of 20 pM paromomycin. Increasing the concentration of paro-
momycin beyond 20 pM did not increase the association of
subunits, indicating that some subunits are not sensitive to the
paromomycin association activity. It is also noted that a small
population of ribosomes (about 10%) remained as subunits in
8.2 mM Mg" even in the presence of a high concentration of
paromomycin (Fig. 3B).

The association activity of paromomycin can be observed
with all Mg?* concentrations tested, except for 8.2 mM Mg>",
where almost all of the ribosomes are already associated. At 4
mM Mg?", 708 ribosomes were 40%, and addition of 0.1 mM
paromomycin increased this value to close to 70% (Fig. 3B),
while addition of 2 mM Mg>* (total, 6 mM Mg>") increased
70S ribosomes to only 55% (Fig. 3B, open square at 0 uM
paromomycin). This indicates that the association capacity of
paromomycin is far greater than that of Mg®" ions.

Bound IF3 is displaced upon ribosomal association by paro-
momycin. The lack of the inhibitory effect of paromomycin on
the binding of IF3 to the 30S subunit (Fig. 2) makes one
wonder about what happens to the ribosome-bound IF3 when
the antiassociation activity is inhibited by paromomycin, result-

ing in 70S ribosomes. To answer this question, the experiment
depicted in Fig. 4A was performed. In this experiment, IF3 was
incubated with 30S and 50S subunits in the presence or ab-
sence of paromomycin at a low (1 mM) Mg®* concentration.
The Mg”* concentration was then raised to 6 mM, and the
sedimentation pattern of formed 70S ribosomes (Fig. 4A, left
panel) and the presence of IF3 on the ribosomes (Fig. 4A, right
panel) were examined. It is clear that the 70S ribosomes which
formed in the presence of paromomycin did not retain IF3,
which was originally present on the 30S subunits. It appears
that the 30S-bound IF3 was displaced by 50S ribosomes that
associated with the 30S subunits because of paromomycin. The
ribosomal association effect of paromomycin appears to be
strong enough to expel the 30S-bound IF3.

We have also asked whether or not IF3 is bound to 70S
ribosomes when the dissociation of 70S ribosomes by RRF,
EF-G, and IF3 (14) is inhibited by paromomycin (Fig. 4B). In
this experiment, 70S ribosomes were incubated with RREF,
EF-G, GTP, and IF3 in 8.2 mM Mg*" in the presence or
absence of paromomycin. The splitting of 70S ribosomes by
these three factors was inhibited by paromomycin (Fig. 4B, left
panel), and the remaining 70S ribosome did not contain IF3
(Fig. 4B, right panel).

DISCUSSION

The best-known function of paromomycin is its miscoding
effect. Paromomycin binds to the bulged neck of helix 44 (H44)
around nucleotides 1406 to 1408 and 1492 to 1495 of 16S
rRNA (3, 7, 25), and the mechanism of miscoding has been
proposed through crystallographic (27, 28) and biochemical
(20, 29) studies. Upon binding of paromomycin, nucleotides
A1492 and A1493 of 16S rRNA flip out in a fashion similar to
their flipping out in the presence of cognate tRNA and mRNA
(3, 27). Nucleotides A1492 and A1493 interact with the second
and the first codon-anticodon base pairs in the A site, respec-
tively. Furthermore, binding of paromomycin to H44 rear-
ranges the conformation of the 30S subunit and rotates the
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FIG. 4. Bound IF3 is expelled from 30S subunits upon ribosomal association by paromomycin. (A) Binding of IF3 to ribosomes in the presence
of paromomycin at 6 mM Mg>". 70S ribosomes (0.05 wM) were dissociated into subunits in buffer S (1 mM Mg>* and other components) at 30°C
for 7 min, IF3 (4.5 pM) and paromomycin (0, 30 uM, or 100 wM as indicated) were added, the mixture was further incubated at 30°C for 5 min,
magnesium acetate was then added to 6 mM, the mixture was incubated for 10 min and subjected to SDGC, and the presence of IF3 on 30S or
50S subunits and 70S ribosomes was examined as described in the legend for Fig. 2 except that the sucrose gradient was made in buffer S3 (6 mM
Mg** and other components). The fractions (filled circles) were analyzed by Western blotting. (B) Binding of IF3 after the energy-dependent
ribosomal splitting by RRF and EF-G in the presence of paromomycin. 70S ribosomes (0.05 wM) were incubated with RRF (1 uM), EF-G (1 uM),
GTP (0.36 mM), and IF3 (4.5 pM) in buffer R (8.2 mM Mg>* and other components) in the presence or absence of paromomycin (30 or 100 wM)
at 30°C for 15 min. Samples were subjected to SDGC, and the presence of IF3 on 30S or 50S subunits and 70S ribosomes (filled circles) was
examined as described for panel A except that the sucrose gradient was made in buffer R.

head and the spur towards the shoulder of the 30S subunit
(closed form), which can also be observed upon binding of
cognate tRNA (28). Thus, it appears that the presence of
paromomycin together with near-cognate aminoacyl tRNA
mimics the major conformational changes of ribosomes
caused by cognate aminoacyl tRNA binding. Paromomycin
also causes an error at the translation resuming point of
transfer mRNA (37).

In this paper, we show a hitherto-unknown activity of paro-
momycin to cause association of ribosomal subunits. There are
two other well-known agents, Mg>" ions and polyamines, that
cause the association of subunits. The ratio of bound Mg>"/
rRNA-phosphate is about 0.1 with 30S and 0.08 with 50S sub-
units (39). With wheat germ ribosomes, the ratio becomes 0.5
under the Mg>* ion saturation condition (36). Polacek and
Barta (31) used the metal ion-induced rRNA cleavage method
to determine the binding sites of Mg®" on 16S and 23S rRNA.
There are at least 5 and 17 specific binding sites of Mg®" in 16S
and 23S rRNA, respectively. Yet, the binding of the divalent
ions to H44 of 16S rRNA was not detected in their study. In
contrast, two Mg>* ions were observed around A1492 and
A1493 of 16S rRNA in the crystal structure of the 30S subunit

(27). The paromomycin binding site appears to overlap with
these Mg?" binding sites.

Kakegawa et al. (19) examined the possible ribosomal pro-
teins that bind polyamines (spermidine and spermine) and
identified 25 proteins. Binding sites of spermine on 16S (1) and
23S (40) rRNA have also been reported previously. Impor-
tantly, the spermine-binding site on H44 of 16S rRNA (nucle-
otide 1411) (1) appears to be situated close to the paromomy-
cin binding site. An antibiotic having spermidine-like moiety,
edeine, also binds to the neck of H44 (around nucleotide 1498
of 16S rRNA) (30).

The fact that binding sites of these three “association re-
agents,” Mg”*, polyamines, and paromomycin, are shared sug-
gests that they share the similar mechanism which involves
H44. The H44 forms four intersubunit bridge regions, B2a, B3,
B5, and B6, with the 50S subunit (9, 33, 41) and plays a role
crucial for association of subunits (22, 32). Furthermore, neo-
mycin, which belongs to the same aminoglycoside class as paro-
momycin, has been shown to bind to the 50S subunit (23). On
the basis of these data, it is possible that paromomycin binds to
both subunits and stabilizes one or more of the intersubunit
bridges. We should hasten to add that, due to the large differ-

1002 ‘9T JaqUIBAON UO AIUM UOSIayar sewoy] Te Bio'wse-oee wolj papeojumod


http://aac.asm.org

VoL. 51, 2007

ence between the molecular sizes of paromomycin and Mg>",
the actual mechanisms of these two agents in the interaction of
subunits must be different. Indeed, the association activity of
paromomycin is much stronger than that of Mg** (Fig. 3) and
it is strong enough to expel IF3 (Fig. 4), which may mimic the
bridge region B2b (5) or may be located on the solvent side of
30S subunits (30). It is also possible that a large conformational
change (closed conformation) of the 30S subunits upon bind-
ing of paromomycin (28) may play an important role for the
association induced by paromomycin. However, these struc-
tural changes were observed at an Mg>* concentration high
enough to cause association of subunits, suggesting that the
paromomycin-dependent structural change may not have a
direct role in the association. It would be interesting to per-
form a cryoelectron microscopy study to see if EF-G binding
causes ratcheting in the presence of paromomycin. In addition,
extensive mutagenesis of the parts of H44 that are involved in
the intersubunit interactions may help to substantiate our pro-
posals.

Taken together, we propose that aminoglycoside binding to
the ribosome makes it difficult for subunits to move relative to
each other (8, 38), resulting in inhibition of translocation (2,
10, 16, 24). On the other hand, alternative possibilities of the
mechanism of paromomycin inhibition on the translocation
not related to the current observation are valid. For example,
the reason could simply be because the affinity of A-site tRNA
may be increased by paromomycin to the extent that it cannot
be moved. However, another aminoglycoside, streptomycin,
which also causes miscoding and inhibits translocation (16),
did not alter the affinity of cognate aminoacyl tRNA, while it
increased the affinity of near-cognate aminoacyl tRNA (18).
Further studies are required to elucidate the mechanism of the
translocation inhibition by paromomycin.
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