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Abstract 
 
Arterial spin labeling (ASL) perfusion fMRI is an emerging method in clinical neuroimaging. Its non-invasiveness, absence of 
low frequency noise, and ability to quantify the absolute level of cerebral blood flow (CBF) make the method ideal for 
longitudinal designs or low frequency paradigms. Despite the usefulness in the study of cognitive dysfunctions in clinical 
populations, perfusion activation studies to date have been conducted for simple sensorimotor paradigms or with single-slice 
acquisition, mainly due to technical challenges. Using our recently developed amplitude-modulated continuous ASL (CASL) 
perfusion fMRI protocol, we assessed the feasibility of a higher level cognitive activation study in twelve healthy subjects. 
Taking advantage of the ASL noise properties, we were able to study tonic CBF changes during uninterrupted 6-min continuous 
performance of working memory and sustained attention tasks. For the visual sustained attention task, regional CBF increases (6 
–12 ml/100 g/min) were detected in the right middle frontal gyrus, the bilateral occipital gyri, and the anterior cingulate/medial 
frontal gyri. During the 2-back working memory task, significantly increased activations (7–11 ml/100 g/min) were found in the 
left inferior frontal/precentral gyri, the left inferior parietal lobule, the anterior cingulate/medial frontal gyri, and the left occipital 
gyrus. Locations of activated and deactivated areas largely concur with previous PET and BOLD fMRI studies utilizing similar 
paradigms. These results demonstrate that CASL perfusion fMRI can be successfully utilized for the investigation of the tonic 
CBF changes associated with high level cognitive operations. Increased applications of the method to the investigation of 
cognitively impaired populations are expected to follow.      

Keywords: Arterial spin labeling; CASL; Cerebral blood flow; 2-back task; Clinical neuroimaging  

Introduction  

During the past decade, functional magnetic resonance imaging (fMRI) has become a standard tool for 
visualizing resting and task-related brain activations. In comparison to positron emission tomography 
(PET) or single photon emission computed tomography (SPECT), fMRI has higher spatial and temporal 
resolution, does not involve exposure to ionizing radiation, and is widely available at medical centers. 
These merits have expanded the applications of fMRI to many clinical areas including presurgical 
mapping, psychopharmacology, and pediatric neuroimaging (Detre and Floyd, 2001; Hennig et al., 2003; 
Honey and Bullmore, 2004; Matthews and Jezzard, 2004; Wilke et al., 2003). Blood-oxygenation-level-
dependent (BOLD) fMRI has been the method of choice in most occasions, due to its high sensitivity to 
task-related effects and relative ease of implementation. However, BOLD contrast is known to be a 



complex interaction of multiple physiological parameters including blood flow, blood volume, and 
hemoglobin oxygenation (Kwong et al., 1992; Mandeville et al., 1999; Ogawa et al., 1993). As a result, it 
confounds changes from neuronal activation with vascular effects, making the interpretation of data 
difficult when circulatory changes are expected due to cerebrovascular disease or direct vascular effects of 
pharmacological intervention. Lack of an absolute measure of cerebral blood flow also limits the 
application of BOLD fMRI in situations where multiple scanning sessions need to be compared since 
condition differences can arise due to either (or both) an increase in activation or a decrease in deactivation 
(e.g., Poldrack, 2000). In addition, the presence of low frequency noise in the BOLD signal (Friston et al., 
2000; Zarahn et al., 1997) precludes using a long task block (e.g., >2 min), making it difficult to investigate 
slow processes such as learning, emotion, and sustained attention in healthy and clinical populations.  
 

Arterial spin labeling (ASL) fMRI is an emerging methodology that uses magnetically labeled arterial 
blood water as an endogenous tracer to provide quantitative cerebral blood flow (CBF) measurements 
(Detre et al., 1992; Williams et al., 1992). This non-invasive method provides highly reliable measures of 
CBF, making it particularly suitable for longitudinal studies of treatment (e.g., drug or training) effects or 
functional recovery processes that require assessment of baseline function and repeated measurements 
across sessions (Detre and Alsop, 1999; Detre and Wang, 2002). ASL contrast, due to the pairwise 
subtraction of temporally adjacent images, is also free from the slow signal drifts present in BOLD fMRI 
contrast (Aguirre et al., 2002). As a result, it is well suited for investigating low frequency brain events 
such as changes related to practice, mood, and mental set (Wang et al., 2003a,b). In addition, recent 
evidence suggests that ASL fMRI may provide contrasts with smaller intersubject variability (Aguirre et 
al., 2002; Kemeny et al., 2005), reduced susceptibility artifacts in regions of high static inhomogeneity 
(Tjandra et al., 2005; Wang et al., 2004), and more specific functional localization than BOLD fMRI 
(Duong et al., 2001; Luh et al., 2000).  
 

Due to the advantageous characteristics mentioned above, ASL perfusion fMRI has been increasingly 
adopted for clinical studies of cerebral perfusion during resting states (e.g., Ances et al., 2004; Johnson et 
al., 2005; Oguz et al., 2003; Rashid et al., 2004). However, few studies have attempted to validate this 
technique with cognitive activation paradigms. Previous activation studies have mainly used passive visual 
stimulation (Aguirre et al., 2002; Talagala and Noll, 1998) or simple psychomotor tasks such as finger 
tapping (Garraux et al., 2005; Mildner et al., 2003; Wang et al., 2003a,b). Only two studies to date have 
used cognitive paradigms such as the 2-back and verb generation tasks (Ye et al., 1998; Yee et al., 2000). 
However, these studies acquired only single slices, limiting their use to hypothesis testing regarding a 
priori regions-of-interest (ROIs). Thus, a whole-brain multi-slice study with conventional voxelwise group 
analyses is needed to validate ASL pefusion fMRI for the investigation of the widely distributed neural 
networks of high-level cognitive processes such as attention and working memory.  
 

It is known from previous PET studies that there are significantly smaller CBF changes during cognitive 
activation tasks compared to those during simple sensory–motor tasks (Colebatch et al., 1991; Jonides et 
al., 1997; Paulesu et al., 1993; Ramsey et al., 1996). Considering the relatively low signal-to-noise ratio 
(SNR) of ASL fMRI (cf. Calamante et al., 1999), detecting these subtle changes could be a major challenge 
for studies of higher cognitive processes using this method. The combination of high magnetic field 
strength and continuous ASL (CASL) method offers an appealing approach to improve the SNR and image 
coverage of ASL fMRI (Wang et al., 2002). One way of implementing a high-field ASL fMRI is to use a 
separate small RF coil for labeling (Mildner et al., 2003; Zaharchuk et al., 1999). However, this dual-coil 
approach requires special hardware and relies heavily on the labeling geometry, which may vary from 
subject to subject. The added distance for arterial transit from the carotid tagging region and the relatively 
poor labeling of the vertebral arteries also limit the practical use of this approach. Recently, we 
demonstrated that whole-brain multi-slice CASL fMRI could be successfully implemented with a single 
transmit–receive coil at 3.0 T by reducing RF pulses and gradient strength appropriately (Wang et al., 



2005). Our goal in the present study was to demonstrate that higher cognitive processes could be studied 
utilizing the same imaging protocol, with appropriate sensitivity and localization power.  
 

Two cognitive tasks were selected to assess CASL fMRI’s sensitivity to CBF changes related to high-
level cognitive processes. Both tasks are known to be ‘frontal’ tasks–that is, they involve prefrontal areas 
for successful performance–by previous PET and BOLD fMRI investigations. The first task was a visual 
sustained attention task (Whyte et al., 1995). Since sustained attention is also implicated in various clinical 
disorders including attention deficit hyperactivity disorder, traumatic brain injury, and Alzheimer’s disease, 
it is important to understand the neural correlates of this cognitive function. Previous neuroimaging studies 
of sustained attention in the visual modality have consistently identified a right hemisphere dominant 
fronto-parietal network (Coull et al., 1996, 1998; Lawrence et al., 2003; Pardo et al., 1991). However, these 
studies used rather short data acquisition blocks (40–90 s) that might not be optimal for detecting aspects of 
sustained attention associated with prolonged task performance. Taking advantage of ASL fMRI’s noise 
characteristics, the current study was able to employ a long (6 min) block of uninterrupted performance of 
visual target detection. It was hypothesized that we would find tonic changes of CBF in the previously 
identified areas of the visual sustained attention network, including the right middle frontal and right 
parietal cortices.  
 

The second task was a working memory (2-back) task (Cohen et al., 1997; Jonides et al., 1997). It is 
known from previous neuroimaging studies that various versions of this task invoke activations in a large-
scale network including prefrontal, premotor, supplementary motor, and parietal cortices (Cabeza and 
Nyberg, 2000; D’Esposito et al., 1998; Smith and Jonides, 1998, 1999). Since this task is one of the most 
frequently used high-level cognitive tasks in various clinical populations (e.g., Callicott et al., 2003; Kwon 
et al., 2001; Scheibel et al., 2003; Sweet et al., 2004; Valera et al., 2005), implementing it with a whole-
brain multi-slice ASL approach would provide useful comparison CBF data for future clinical 
neuroimaging studies. It was predicted that we would replicate the results from prior normative studies 
using the 2-back task (for review, see Owen et al., 2005).  

Materials and methods  

Participants  

Seventeen healthy volunteers participated in this study. Five subjects were excluded from subsequent 
data analysis due to large head movements during scanning (see Imaging data analysis for the criteria). The 
remaining subjects included 9 men and 3 women aged between 21 and 46 years (mean age = 34.4 years, 
SD = 9.5) with a mean education of 13.3 years (SD = 2.0). Eleven of them were right-handed (Edinburgh 
Handedness Inventory, Oldfield, 1971). Subjects had no previous history of neurological or major 
psychiatric disorder and had normal or corrected-to-normal visual acuity. After complete description of the 
study, subjects provided written informed consent to the University of Pennsylvania Institutional Review 
Board-approved protocol.  
 
Cognitive tasks  

Visual sustained attention task  
 

A simple go/no-go visual reaction time task was used to examine the neural network involved in 
maintaining visual sustained attention (Whyte et al., 1995, 2004). Stimuli consisted of pairs of vertical lines 
presented for a brief period in the center of the screen. The central area of the screen was covered by a 
random pattern mask with a fixation cross except when a stimulus was presented. The mask subtended 
approximately 1º and 4º of horizontal and vertical visual angle, respectively. Subjects were taught that a 



pair of identical lines constituted a target, whereas a pair of grossly unequal lines constituted a foil (one 
line was the same length as the target and the other was 50% shorter), and to press the button with their 
dominant hand as quickly and accurately as possible in response to targets only. They were also explicitly 
told that only 20% of the stimuli were targets. A total of 60 stimuli were presented during an uninterrupted 
6-min task block with an average interstimulus interval of 6 s (range: 4 to 8 s).  

Two-back task  
 

A letter version of 2-back task (Awh et al., 1996; Cohen et al., 1997) was employed to examine the 
neural network involved in continuous performance of a working memory task. In this task, subjects were 
presented with a series of letters in the center of the screen. The letters subtended approximately 1.5º

 
 × 

1..5º of visual angle. Subjects were required to press the button whenever each letter presented was 
identical to the one presented two letters previously in the sequence. A total of 180 letters were presented 
with an exposure duration of 1 s and an interstimulus interval (ISI) of 2 s. The target rate for this task was 
12%.  

Experimental design and procedure  

Prior to the scanning sessions, subjects were trained on the two tasks outside of the scanner. For the 
visual sustained attention task, stimulus exposure durations were individualized to avoid ceiling or floor 
performance level. Average stimulus exposure duration was 62.2 ms (SD = 21.2). Details of the calibration 
procedure are available elsewhere (Whyte et al., 1995). The order of task blocks was always resting first, 
the sustained attention task second, and the 2-back task last. Each task block was approximately 6 min, and 
the intervals between task blocks were approximately 30 s. During the resting condition, which was used as 
the baseline control, subjects were instructed to close their eyes but stay awake. For both tasks, responses 
and reaction times (RTs) were recorded for further analysis.  
 
Imaging data acquisition  

The functional imaging was conducted on a Siemens 3.0 T Trio whole-body scanner (Siemens AG, 
Erlangen, Germany), using a standard transmit–receive head coil. An amplitude-modulated CASL 
technique was implemented for perfusion fMRI scans (Wang et al., 2005). Interleaved images with and 
without labeling were acquired using a gradient echo echo-planar imaging sequence with the following 
acquisition parameters: FOV = 22 cm, matrix = 64 × 64, TR = 4 s, TE = 17 ms, flip angle = 90º. Fourteen 
slices (6 mm thickness with 1.5 mm gap) were acquired from inferior to superior in a sequential order to 
cover the whole brain. A delay time of 1 s was inserted between the end of labeling pulses and image 
acquisition to reduce transit-related effects. Each subject performed three CASL scans each with 92 
acquisitions (approximately 6 min). Before the functional scans, high resolution T1-weighted anatomic 
images were obtained using 3D MPRAGE: TR = 1620 ms, TI = 950 ms, TE = 3 ms, flip angle = 15º, 160 
contiguous slices of 1.0 mm thickness, FOV = 192 × 256 mm

2
, matrix = 192 × 256, 1NEX with a scan time 

of 6 min.  
 
Behavioral data analysis  

Performance of the subjects was characterized with respect to three dimensions: discrimination, response 
bias, and speed. Discrimination was measured with d′. Response bias was characterized by yes rate (total 
proportion of button presses without regard to accuracy). Speed was operationalized as median RT on hits 
(correct button presses to targets).  

Imaging data analysis  



Functional image pre-processing and individual-level analysis were carried out using VoxBo software 
(Center for Functional Neuroimaging, Philadelphia, PA, http://www.voxbo.org). The group-level analysis 
was performed with Statistical Parametric Mapping software (SPM99, Wellcome Department of Cognitive 
Neurology, London, UK, http://www.fil.ion.ucl.ac.uk/spm) . For each subject, functional images were 
realigned to correct the head motion using a 6-parameter rigid-body least squares realignment routine 
(Friston et al., 1995). Subjects who showed excessive head motion, defined as any translational movement 
larger than 2 voxels along the x or y axis or 1 voxel size along the z axis, were excluded from further 
analysis (n = 5). Realigned images were smoothed in space with a three-dimensional Gaussian kernel (4 × 
4 × 3 voxels at FWHM). Perfusion-weighted image series were generated by pairwise subtraction of the 
label and control images followed by conversion to absolute CBF image series based on a single 
compartment CASL perfusion model (Wang et al., 2005). The resulting CBF data sets contained 46 images 
for each 6-min task block with an effective TR of 8 s. The CBF images were then normalized to a 3 × 3 × 
3mm

3 
Montreal Neurological Institute (MNI) template using bilinear interpolation.  

 
For each cognitive task, the following statistical analyses were conducted. First, for each subject, voxel-

wise individual GLMs were built comparing each task condition with the resting baseline by using 
appropriately weighted linear contrasts. The global signal covariate was included in the GLM to reduce 
spatially coherent noise in the data (Aguirre et al., 1998). The perfusion MRI data are known to be free 
from any substantial temporal autocorrelation (Aguirre et al., 2002; Wang et al., 2003a,b). Therefore, no 
filtering, autocorrelation modeling, or smoothing was done for the time series. The resulting parameter 
estimates were then fed into a random effects model to allow population-level inferences (Holmes and 
Friston, 1998). Areas of significant activation were identified at the cluster level (Forman et al., 1995) for 
the P value smaller than 0.005 (t = 3.11) and the cluster extent size larger than 50 voxels. These criteria 
yielded a level of P < 0.005 for each significant cluster after correction for multiple comparisons. The 
resultant activation clusters were used as functionally defined regions of interest (ROIs) for the subsequent 
ROI analysis.  
 

A public domain software package MRIcro (http://www.psychology.nottingham.ac.uk/staff/cr1/mricro.html) was used 
to project group activation data to the Colin-brain atlas (Van Essen et al., 2001) in MNI space for display 
purposes. Activation peaks in MNI space were converted to Talaraich coordinates (Talairach and Trounoux, 
1988) to allow better comparison with locations of activations from previous studies. This  
non-linear conversion was achieved using a MATLAB program provided with SPM extensions  
(http://www.mrc-cbu.cam.ac.uk/Imaging/Common/ mnispace.shtml). Anatomical labels for these activation peaks  
were determined using the Talairach Daemon (Lancaster et al., 2000). To calculate the mean CBF  
increase (and % CBF change equivalent) of activation relative to the resting baseline, the adjusted (for  
the global signal) CBF time series for each voxel from each subject was averaged across all the voxels  
in each ROI and then averaged across subjects.  

Results  

Behavioral results  

Subjects performed the visual target detection task with a d′ (mean ± standard deviation) of 1.41 ± 1.11 
and an RT of 979 ± 362 ms. The yes rate was 0.29 ± 0.12 (where target rate = 20%). The d′ and the RT of 
the 2-back task were 3.03 ± 1.06 and 717 ± 137 ms. The yes rate was 0.12 ± 0.02 (where target rate = 
12%).  

Imaging results  

Fig. 1 shows the quantitative mean CBF images in a representative subject, with fourteen slices covering 



the whole brain from the top of the brain to the cerebellum. Without using a separate labeling coil, we were 
able to obtain clear quantitative perfusion contrasts of the gray and white matter. The calculated mean CBF 
of the group (n = 12) was 51.69 ml/100 g/min ± 12.7 for the whole brain, which is comparable to 
previously reported mean CBF values for the whole brain using PET and ASL methods (e.g., Lassen, 1985; 
Yee et al., 2000).  
 

Significant task-related CBF changes were observed in many hypothesized areas for each task. Tables 1 
and 2 list the clusters showing significant CBF changes for each task. The coordinates of the local maxima 
and percent CBF changes associated with each region are also reported. Fig. 2 illustrates resampled axial 
images of the activated areas for the two tasks.  
 

For the visual sustained attention task, four activated clusters were identified including the right middle 
frontal gyrus (BA 9), bilateral occipital gyri (BA 18), and the anterior cingulate/medial frontal gyrus (BA 
32/8) (Fig. 2; Table 1). All of these areas showed increased CBF during performance of the visual attention 
task relative to the resting baseline. In addition to these activated areas, there were ‘de-activated’ regions 
more active in the resting baseline compared to the active task block. These areas included the left 
superior/middle temporal gyri, the bilateral posterior cingulate gyri, and the right superior/medial frontal 
gyrus.  As shown in Table 1, the magnitude of % CBF changes ranged from 9 to 23% (6-12 ml/100 g/min) 
at the cluster level.  Sizes of the ROIs and standard deviations of the CBF values are also reported. 
 
   For the letter 2-back task, the task versus resting contrast showed strong left-hemispheric lateralization 
with activation in the left inferior frontal/precentral gyri (BA 9/6), the left inferior parietal lobule (BA 40), 
the left middle occipital gyrus (BA 37), and the anterior cigulate/medial frontal gyri (BA 32/6) (Fig. 2; 
Table 2).  Regions that were deactivated during the task block compared to the baseline included bilateral 
posterior cingulated/medial frontal gyri, bilateral superior/middle temporal gyri, bilateral posterior insular 
cortices, and the left superior frontal gyrus.  As shown in the Table 2, the magnitude of % CBF changes 
ranged from 10 to 26% (7 – 11 m./100 g/min) at the cluster level. 

Discussion 
 
The purpose of the present study was to demonstrate the feasibility of CASL perfusion fMRI for the 
investigation of higher cognitive processes.  Utilizing our amplitude-modulated CASL MRI imaging 
protocol with a single coil at 3 T field strength (Wang et al., 2005), we were able to characterize tonic CBF 
changes associated with an uninterrupted 6 min continuous performance of the two high-level cognitive 
tasks—i.e., visual sustained attention and verbal working memory. Appropriate image quality and whole 
brain coverage were obtained without using any additional hardware, such as a separate labeling coil 
(Talagala et al., 2004; Zaharchuk et al., 1999).  
 

Activated areas of the two tasks largely coincided with the regions in similar tasks from prior 
neuroimaging studies. For the 2-back task, we found a left-hemisphere dominant activation pattern 
throughout the fronto-parietal ‘working memory network’ (Klingberg et al., 1997). Recently, Owen and 
colleagues provided a metaanalysis of neuroimaging studies that used variants of the n-back task (Owen et 
al., 2005). Among the studies reviewed in the article, we selected 11 studies that included a verbal 2-back 
condition. Then, we made a list of activated regions from those studies to compare them with the activated 
areas of the present study. It was found that every activated area found in our study (Table 2) was also 
reported as a significant activation focus in one or more previous studies of the verbal 2-back task (Awh et 
al., 1996; Braver et al., 1997; Cohen et al., 1994, 1997; Honey et al., 2000; Jonides et al., 1997; Kim et al., 
2002; Nystrom et al., 2000; Ragland et al., 2002; Smith et al., 1996; Veltman et al., 2003).  
 



The strong laterality effects observed in the current study support the domain dominance hypothesis of 
working memory stating that verbal memory involves predominantly left hemisphere while spatial memory 
mainly involves right hemisphere (Smith et al., 1996). However, it is possible that the observed laterality is 
a result of a lack of power to detect activations in the right hemisphere. To test this hypothesis, a new 
voxel-wise group analysis was performed using a more lenient threshold (P < 0.01, uncorrected for 
multiple comparison). The new statistical parametric map additionally revealed subthreshold activations (Z 
values near 3.0) in the right middle frontal/precentral (BA 6) and the right inferior parietal (BA 40) regions, 
supporting the notion that the laterality effects are quantitative rather than qualitative (Walter et al., 2003).  
 

For the visual sustained attention task, a right-hemisphere dominant activation pattern was found in the 
middle frontal gyrus (BA 9), the occipital gyri (BA 18), and the anterior cingulate/ medial frontal gyrus 
(BA 32/8). Each of these areas was also reported as an activation focus in one or more of the prior studies 
of visual sustained attention (Coull et al., 1996, 1998; Lawrence et al., 2003; Pardo et al., 1991). However, 
there was a potentially interesting difference between our study and previous studies of visual sustained 
attention: the right parietal activation reported in most of the prior studies was not found in the present 
study. Employing a more lenient threshold ( P < 0.01, uncorrected) did not reveal a subthreshold cluster of 
parietal activation. We speculate on two possible explanations. One is simply that the parietal activation 
seen in previous BOLD studies could be associated with target detection, rather than the continuous task 
set of sustained attentiveness, and thus might be more transient than the right frontal activation. In that 
case, transient neural activations in parietal cortex might have not been detected due to the rather long ISI 
(6 s) combined with the slow data acquisition rate (8 s effective TR). A second possibility is that the 
activation of parietal cortex in sustained attention tasks reflects the confounding with working memory 
processes. In fact, sustained attention and working memory are frequently difficult to disentangle. 
Sustained attention tasks used in most previous studies had strong working memory components, such as 
updating consecutive digits (Coull et al., 1996; Lawrence et al., 2003) or counting certain types of events 
(Pardo et al., 1991). If parietal activation in those studies reflected maintenance processes of working 
memory (e.g., Jonides et al., 1998; Mannan et al., 2005; Ravizza et al., 2005), lack of parietal activation in 
the present study may be due to the fact that our visual target detection task required minimal working 
memory load.  
 

The areas of deactivation largely concur with previous studies (Binder et al., 1999; Mazoyer et al., 2001; 
Shulman et al., 1997). Deactivated areas included the superior/middle temporal gyrus (BA 21/22), the 
posterior cingulate (BA 24), and the superior frontal gyrus (BA 10). Different from the activated areas, 
deactivated foci showed a large overlap between two tasks, supporting the existence of a common ‘default’ 
network (Gusnard and Raichle, 2001). The only difference is the fact that the 2-back task showed larger 
and more bilateral areas of deactivation compared to the visual sustained attention task.  
 

Percent CBF changes during the visual sustained attention task ranged from 9 to 23% (6–12 ml/100 
g/min), based on the functionally defined ROIs in normalized space. Previous PET studies of visual 
sustained attention (Coull et al., 1996, 1998; Pardo et al., 1991) typically did not report mean CBF 
increases or % CBF changes for activated regions due to their global normalization procedure (e.g., 
artificially setting the global signal to 50 ml/100 g/min), precluding comparison with the current findings. 
For the 2-back task, we found % CBF changes ranging from 10 to 26% (7 –11 ml/100 g/min). Some PET 
studies reported 2–7% CBF changes for the 2-back condition compared to the 0back control (e.g., Jonides 
et al., 1997; Kim et al., 2003). However, % CBF changes are likely to be influenced by many factors such 
as the nature of the control condition, the sizes of smoothing kernels and ROIs and whether normalization 
was done or not. Thus, cautious efforts to exactly replicate prior studies in terms of data acquisition and 
imaging analysis parameters are needed in the future to make precise comparisons of % CBF change 
values between studies.  
 



Several limitations of the present study should be recognized. First, the temporal resolution of the 
current CASL method was rather low compared to that of a BOLD fMRI experiment, which has typically a 
TR of 2 - 4 s. However, for some research questions, this limitation is outweighed by the CASL 
technique’s ability to measure activation associated with prolonged mental activity and tonic task sets, as 
well as its ability to study longitudinal change in performance during learning or neurologic recovery, and 
its ability to distinguish the direct cardiovascular effects of psychoactive drugs from secondary effects 
related to changes in cognitive processing. In addition, novel labeling paradigms have been proposed 
recently to improve the temporal resolution of ASL methods, even allowing event-related fMRI designs 
(Wong et al., 2000; Yang et al., 2000).  
 

Another potential limitation of the present study is related to the nature of the resting condition used as 
the baseline. We used a resting condition with closed eyes because this condition could yield a 
physiological baseline (Gusnard and Raichle, 2001), and it was used as a control condition for a majority of 
previous PET studies of sustained attention (Coull et al., 1996; Kinomura et al., 1996; Pardo et al., 1991). 
In fact, one might argue that the resting baseline is most suitable for a sustained attention task since most 
control tasks would also induce a sustained attention load. However, utilizing a more specific control 
condition such as 0-back, 1-back, or variants of visual fixation will eventually be more helpful in isolating 
specific cognitive processes. It still remains as an empirical question whether CASL perfusion fMRI can 
detect subtle condition differences to isolate more specific subcomponents of higher cognition.  
 

Lastly, one can be concerned about the fixed order of the task blocks in the current study since time-
dependent physiologic noise such as fatigue or adaptation effects might have affected the results.  
However, these effects, if any, did not prevent us from finding distinct activation patterns of the two tasks. 
Good agreement on activation sites with previous studies of each task also indicates that observed 
activation differences between the two tasks are not merely due to the time-related effects.  
 

ASL perfusion fMRI is a completely non-invasive technique that shows the capability to quantify 
absolute CBF and stable noise characteristics over the entire spectrum. CBF measurements with ASL 
perfusion MRI have recently been shown to agree with results from 

15
O-PET (Ye et al., 2000) and dynamic 

susceptibility contrast agent approach (Siewert et al., 1997; Wolf et al., 2003). ASL perfusion 
measurements both at rest and during task activation have also been demonstrated to be highly 
reproducible across intervals varying from a few minutes to a few days (Floyd et al., 2003; Wang et al., 
2003a,b). In addition, as reviewed in Introduction, this method may provide (1) reduced motion and 
susceptibility artifacts in regions of high static inhomogeneity, (2) smaller intersubject variance, and (3) 
potentially greater spatial resolution. On the other hand, the current state of the method has several 
technical limitations including (1) fewer number of slices, (2) low temporal resolution, and (3) relatively 
low SNR. Because of its superior sensitivity, BOLD fMRI will be the method of choice when a maximum 
detection power is needed and when the subject of interest is the processing of specific events. However, 
due to the merits mentioned above and continuing technical improvements to come, ASL perfusion fMRI 
will be increasingly used for basic and clinical neuroimaging applications, particularly when longitudinal 
stability (e.g., studies of drug treatment or training effects) and slow changes in mental state (e.g., task set, 
learning, emotion, and sustained attention) are of interest. The present study has for the first time 
demonstrated that the CASL perfusion fMRI methodology can be successfully utilized for the study of 
higher cognition such as sustained attention and working memory. An extensive number of ASL studies of 
higher cognitive processes in healthy and clinical populations are expected to be seen in the near future.  
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Figures and Tables 
 

 
Fig. 1. Mean CBF images in a representative subject during the entire experiment. Total acquisition time was 18 min.  

 

 
Fig. 2. Areas of significant CBF changes during the visual sustained attention and the 2-back task projected onto the Colin-brain 
atlas in MNI space. Activations are coded with hot colors (yellow and red) and deactivations cold colors (green and blue).  



 
 
Table 1  
Clusters of significant CBF changes during the visual sustained attention task compared to the resting baseline

a 
 

Talairach coordinates   Type  Size 
(voxels)  

Anatomical label  BA  
x               y              z 

Z score  ∆ CBF ± SD 
(ml/100 g/min)  

% CBF change ± SD 

Activation  
 
 
 
 
 
Deactivation  

113  
111 
 
  97  
  70  
 
394  
 
 
125  
 
 
106  
 
  53  

R. middle frontal gyrus  
R. middle occipital gyrus  
R. cuneus  
L. middle occipital gyrus  
R. medial frontal gyrus  
L. cingulate gyrus  
L. cingulate gyrus  
L. superior temporal gyrus  
N/A 
L. superior temporal gyrus  
L. superior temporal gyrus  
L. middle temporal gyrus  
R. cingulate gyrus  
R. postcentral gyrus  
R. superior frontal gyrus  
R. medial frontal gyrus  

  9  
18  
18  
18  
  8  
32  
24  
41  

N/A  
22  
21  
21  
24  
  3  
10  
10  

  45  
  30  
  18 
 -33  
    9  
   -6 
 -18  
 -33  
 -33  
 -65  
 -53  
 -68  
  15  
  27  
  12 
    6  

 22 
-84  
-99  
-85  
 29  
 22  
-18  
-31  
-25  
  -5  
-15  
-26  
-18  
-33 
 62  
 59  

29 
  2 
  8  
 -1  
48  
38 
40  
13  
34  
  9  
 -2  
 -1  
42  
49  
25 
  8  

3.64  
3.28  
3.19  
3.81  
4.02 
3.79  
4.01  
3.93  
3.34  
3.57  
3.21 
3.20  
3.60  
3.49  
3.27  
3.08  

   7.6 ± 4.6  
 12.1 ± 8.8  
 
 10.8 ± 8.7  
   5.9 ± 5.3 
 
  -4.9 ± 2.3  
 
 
  -7.1 ± 4.6 
 
 
  -6.0 ± 6.3  
 
  -8.8 ± 6.4  

        13.2 ± 7.2  
        23.4 ± 18.6  
 
        22.0 ± 20.1  
          9.2 ± 9.0  
 
       -12.4 ± 7.9 
 
 
        12.2 ± 7.7  
 
 
       -13.4 ± 17.2  
 
        -17.6 ± 16.6  

 
a Cluster sizes are in voxels. Coordinates of local maxima at least 16 mm apart are reported per each cluster (maximum 3 maxima). The anatomical labels of the  

nearest gray matter within a 7 × 7 × 7 mm range were also reported. DCBF and % CBF values were calculated for each cluster. R. = Right. L. = Left.  
BA = Brodmann area. SD = standard deviation.  

 



 
 
Table 2  
Clusters of significant CBF changes during the 2-back task compared to the resting baseline

a  

Talairach coordinates    Type  Size 
(voxels)  

Anatomical label  BA  

x               y              z 

Z score  ∆ CBF ± SD 
(ml/100 g/min)  

% CBF change ± SD 

Activation  
 
 
 
 
 
 
 
Deactivation  

194 
 
186 
 
141  
   
 
120 
432 
 
 
399  
 
 
392  
 
 
  61  

L. inferior parietal lobule 
L. inferior parietal lobule 
L. inferior frontal gyrus 
L. precentral gyrus 
L. medial frontal gyrus 
R. cingulated gyrus 
L. medial frontal gyrus 
L. middle occipital gyrus 
L. medial frontal gyurs 
R. cingulated gyrus 
R. paracentral lobule 
R. insular 
R. insular 
R. superior temporal gyrus 
L. superior temporal gyrus 
L. insular 
L. middle temporal gyrus 
R. superior frontal gyrus  

 40  
40 
  9 
  6 
  6 
32 
  6 
37 
  6 
24 
  6 
13 
13 
22 
22 
13 
21 
10 

  -50 
  -33 
  -50 
  -39 
    -6 
     9 
    -3 
  -48 
    -6 
   12 
     9 
   36 
   39 
   62 
  -53 
  -45 
  -50 
   15  

 -33 
 -50 
    4 
  22 
  17 
  14 
    3 
 -64 
 -20 
 -13 
 -24 
   -5 
 -22 
    3 
 -12 
 -20 
   -1 
  62  

40 
41 
30 
27 
43 
38 
55 
-7 
56 
39 
51 
20 
29 
-5 
  1 
15 
-18 
 22  

3.70 
3.00 
3.84 
2.84 
3.86 
3.60 
3.28 
3.27 
4.07 
3.94 
3.74 
3.65 
3.54 
3.25 
3.91 
3.63 
3.37 
3.45 

     8.3 ± 6.1  
 
     7.7 ± 5.0  
 
     7.3 ± 4.2  
   
 
   11.1 ± 13.8b 
    -5.6 ± 2.6  
 
 
    -5.6 ± 2.7 
 
 
    -6.9 ± 3.4  
 
  
    -6.5 ± 4.2  

        15.7 (± 13.0)  
        
        14.1 (± 11.6)  
 
        11.5 (± 6.6)  
       
 
        26.0 (± 39.3)b  
       -12.1 (± 6.3) 
 
 
       -11.5 (± 6.1)  
 
 
       -10.2 (± 3.9)  
 
        
       -13.5 (± 10.3)  

 

a The details of this table are the same as those for Table 1.  
b Based on n = 11. One subject’s resting CBF value for this region showed extreme value due to artifacts and was excluded.  
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