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Autocrine Prolactin Promotes Prostate Cancer Cell Growth via Janus Kinase-2-
Signal Transducer and Activator of Transcription-5a/b Signaling Pathway  

Ayush Dagvadorj, Sean Collins, Jean-Baptiste Jomain, Junaid Abdulghani, James Karras, Tobias 
Zellweger, Hongzhen Li, Martti Nurmi, Kalle Alanen, Tuomas Mirtti, Tapio Visakorpi, Lukas 
Bubendorf, Vincent Goffin, and Marja T. Nevalainen  

Department of Cancer Biology (A.D., J.A., M.T.N.), Kimmel Cancer Center, Thomas Jefferson University, 
Philadelphia, Pennsylvania 19107; Department of Oncology (S.C., H.L.), Lombardi Comprehensive Cancer 
Center, Georgetown University, Washington, D.C. 20057; Institut National de la Sante´ et de la Recherche 
Médicale (J.-B.J., V.G.), Unité 808, Laboratory “PRL, GH, and Tumors” and University Paris Descartes, 
Faculty of Medicine Rene Descartes, Paris 5-Necker site, F-75015 Paris, France; ISIS Pharmaceuticals (J.K.), 
Carlsbad, California 92008; Department of Urology (T.Z.), University of Basel, CH-4056 Basel, Switzerland; 
Department of Surgery (M.N.), University Hospital of Turku, 20014 Turku, Finland; Department of Pathology 
(K.A., T.M.), Institute of Biomedicine, University of Turku, 20520 Turku, Finland; Institute of Medical 
Technology (T.V.), University of Tampere and Tampere University Hospital, Tampere 33520, Finland; and 
Institute for Pathology (L.B.), Basel CH-4003, Switzerland  

The molecular mechanisms that promote progression of localized prostate cancer to hormone-refractory 
and disseminated disease are poorly understood. Prolactin (Prl) is a local growth factor produced in 
high-grade prostate cancer, and exogenously added Prl in tissue or explant cultures of normal and 
malignant prostate is a strong mitogen and survival factor for prostate epithelium. The key signaling 
proteins that mediate the biological effects of Prl in prostate cancer are Signal Transducer and Activator 
of Transcription (Stat)-5a/5b via activation of Janus kinase-2. Importantly, inhibition of Stat5a/in 
prostate cancer cells induces apoptotic death. Using a specific Prl receptor antagonist (Δ1–9G129R-
hPRL), we demonstrate here for the first time that autocrine Prl in androgen-independent human 
prostate cancer cells promotes cell viability via Stat5 signaling pathway. Furthermore, we examined a 
unique clinical material of human hormone refractory prostate cancers and metastases and show that 
autocrine Prl is expressed in 54% of hormone-refractory clinical human prostate cancers and 62% 
prostate cancer metastases. Finally, we demonstrate that autocrine Prl is expressed from both the 
proximal and distal promoters of the Prl gene in clinical human prostate cancers and in vivo and in vitro 
human prostate cancer models, independently of pituitary transcription factor-1 (Pit-1). Collectively, the 
data provide novel evidence for the concept that autocrine Prl signaling pathway is involved in growth of 
hormone-refractory and metastatic prostate cancer. The study also provides support for the use of Prl 
receptor antagonists or other therapeutic strategies to block the Prl-Janus kinase-2-Stat5 signaling 
pathway in advanced prostate cancer. 

The central problem in clinical management of prostate cancer is the development of hormone-refractory and 
metastatic disease. The molecular mechanisms underlying the progression of prostate cancer to disseminated 
disease and the growth of prostate cancer in an androgen-deprived milieu are largely unknown. Adaptation of 
prostate cancer cells to androgen deprivation may involve both amplification and mutations of androgen 
receptor (AR) (1). In addition to alterations of AR function, protein kinase signaling pathways activated by 
peptide hormones and local growth factors are known to promote proliferation and survival of prostate cancer 
cells either directly or through stimulation of AR action (2). 
  

One such local growth factor-initiated protein kinase signaling pathway in prostate cancer is the prolactin 
(Prl)-Janus kinase (Jak)-2-Signal Transducer and Activator of Transcription (Stat)-5a/b signaling cascade. We 
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have previously demonstrated that receptors for Prl are expressed in human prostate epithelial cells (3, 4) and 
that Prl protein is produced in both normal and malignant prostate epithelium (4, 5). We also showed that 
expression of Prl and activation of Stat5a/b in clinical human prostate cancer specimens are associated with 
high histological grade (5), suggesting that the autocrine Prl-Jak2-Stat5a/b signaling pathway might be involved 
in clinical progression of human prostate cancer to advanced disease. The human Prl gene is regulated at the 
transcriptional level by two distinct promoters (6, 7). The proximal promoter, also referred to as the pituitary 
promoter, is located in exon 1b. The distal promoter is located 5.8 kb upstream of the pituitary transcription 
start site, resulting in the transcription of an extra noncoding exon 1a (6), which is known to direct Prl gene 
transcription in extrapituitary sites such as lymphoid and decidual cells (8, 9). The transcription from the 
alternative promoter does not lead to generation of different protein isoforms but provides an additional level of 
transcriptional regulation of the Prl gene (10). The promoter that drives Prl gene expression in human prostate 
cancer has not been identified.  

Prl added exogenously to organ explant cultures of normal and malignant prostate tissue promotes 
proliferation and inhibits apoptosis of prostate epithelial cells (11–18). The key signaling proteins that are 
activated by Prl in prostate cancer cell lines and clinical human prostate cancer specimens are Stat5a and Stat5b 
via the Jak2 tyrosine kinase (5, 19). Importantly, we have shown that inhibition of Stat5a/b induces rapid death 
of human prostate cancer cells (20), a finding that was later confirmed in transgenic adenocarcinoma of mouse 
prostate (TRAMP) mice by another laboratory (21). Transgenic mice overexpressing the Prl gene develop 
hyperplasia of the prostate (14–16), and, correspondingly, Prl-null mice have smaller prostates than their wild-
type (WT) counterparts (18). Even if the effects of exogenously added Prl on prostate cells have been 
extensively investigated using various experimental models, the biological significance of locally produced Prl 
by prostate cells has so far not been established. Pseudophosphorylated Prl has been demonstrated to inhibit 
growth of human prostate cancer cells (22), but the mechanisms of action of pseudophosphorylated Prl are 
largely unclear. Specifically, the antagonistic properties of pseudophosphorylated Prl are not based on 
competitive inhibition of Prl receptor (23) but may involve induction of alternative splicing of Prl receptor 
transcripts (24). This effect on Prl receptor isoforms varied among different cell lines, which further 
complicates the interpretation of the results and development of this agent for clinical use. Here we use a 
competitive Prl receptor antagonist (Δ1–9G129R-hPRL) to block autocrine Prl in human prostate cancer cells 
to determine the biological effects of prostate epithelial Prl. The Prl receptor antagonist Δ1–9G129R-hPRL, 
which was developed based on rational drug design, inhibits ligand-induced Prl receptor activation and 
therefore Prl-activated intracellular signaling pathways (23, 25, 26).  
 

In this work, we demonstrate that Prl gene transcription is driven by both the proximal and distal promoters 
in human prostate cancer cell lines, prostate xenograft tumors, and clinical human prostate cancer specimens, 
and this occurs independently of pituitary transcription factor (Pit)-1. We show that the Prl protein is expressed 
in a large proportion of hormone-refractory clinical human prostate cancers and in prostate cancer metastases. 
We compare different approaches of pharmacological inhibition of the Prl-Jak2Stat5a/b axis in prostate cancer 
cells and establish that the Prl receptor antagonist Δ1–9G129R-hPRL (23) inhibits constitutive activation of 
Stat5a/b by autocrine Prl in androgen-independent human prostate cancer cells and induces death of the cells. 
The work presented here provides the first evidence of potential involvement of autocrine loop of Prl in 
androgen-independent growth of clinical human prostate cancer. Moreover, identification of the promoters 
driving Prl gene expression in prostate cancer provides the basis for the identification of coactivators and 
signaling pathways that may represent additional molecular targets for drug development for prostate cancer.  
 
Materials and Methods  
 
Cell culture  
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CWR22Rv, LNCaP, DU145, and PC-3 cells (American Type Culture Collection, Manassas, VA) were 
cultured in RPMI 1640 (Biofluids, Gaithersburg, MD) containing 10% fetal calf serum, 2.5 mM L-glutamine, 
and penicillin-streptomycin (100 IU/ml and 100 µg/ml, respectively) at 37 C with 5% CO2. LNCAP cells were 
cultured in the presence of 0.5 nM dihydrotestosterone (5α-androstan-17ß-ol-3-one; Sigma, St. Louis, MO).  
 

In the experiments testing the effects of AG490 or the Prl receptor (PrlR) antagonist on Stat5a/b 
phosphorylation, CWR22Rv cells were transfected with 1.0 µg of plasmids encoding WT PrlR and WTStat5a 
or WTStat5b using Lipofectamine 2000 (Invitrogen, Carlsbad, CA). Twenty-four hours after the transfection, 
the cells were pretreated for 1 h with AG490 or the PrlR antagonist (Δ1–9G129R hPRL) at the indicated 
concentrations with appropriate controls and subsequently stimulated with 10 nM human Prl (hPrl) for 15 min. 
In the experiments testing the effects of the dominant-negative (DN) Jak2 or DNPrlR on Stat5a/b 
phosphorylation, CWR22Rv cells transfected with 1.0 µg of pWTPrlR and pStat5a or pStat5b were 
cotransfected with pWTJak2 or pDNJak2 or pWTPrlR or pDNPrlR or empty control plasmid as indicated using 
Lipofectamine 2000 (Invitrogen). Then 24 h after transfection, cells were serum starved for 24 h and stimulated 
with hPrl (10 nm) for 15 min.  
 

Production of the hPRL receptor antagonist Δ1–9G129R hPRL  
Recombinant WTHPRL and mutated hPRL (Δ1–9G129R) were produced in Escherichia coli as inclusion 

bodies and purified as we have reported previously (26). 
  

Clinical human prostate cancer specimens and prostate cancer metastases  
Recurrent human prostate cancer specimens (n = 183) were obtained from Tampere University Hospital in 

Finland (n = 73) (27) and the Institute for Pathology (University of Basel, Basel, Switzerland; n = 110) (28). 
All samples were transurethral resections from local recurrences. Of the patients, 116 had received androgen 
ablation therapy (orchiectomy, n = 71; LHRH, n = 19; estrogen, n = 2; antiandrogen, n = 1; orchiectomy + 
estrogen, n = 2; maximal androgen blockade, n = 20; maximal androgen blockade + estramustine, n = 1), 
whereas the rest (n = 67) had received no hormonal treatment. The fresh benign prostate hyperplasia and 
prostate cancer specimens were obtained from 10 patients undergoing radical prostatectomy at the Turku 
University Hospital by the urologist (M.N.). The prostate tissues were obtained after informed consent of the 
patient and approval of the Ethical Committee of the Turku University Hospital. Within 1–3 h of the surgery, a 
board-certified pathologist (K.A.) made a selection of the tissue slices of prostate cancer nodules that were 
available for the analysis. The selection of the area was assisted by frozen sections and the clinical information 
of the localization of the cancer based on the location of the needle biopsy taken at the time of the diagnosis.  
 

Paraffin-embedded prostate cancer metastases were obtained from the Turku University Hospital (n = 93) 
(lymph node metastases, n = 38; metastases to other organs, n = 55) and the Institute for Pathology, University 
of Basel (lymph node metastases, n = 19; metastases to other organs, n = 69). The use of the de-identified 
archival tissue specimens in research was approved by the Thomas Jefferson University Institutional Review 
Board. All tissue sections (prostate cancer recurrences and metastases) were on tissue microarrays.  
 

Immunohistochemical detection of Prl in human prostate cancer  
Formalin-fixed prostate cancer sections were immunostained for Prl as described previously 

(5). Tissue sections were deparaffinized and treated with pepsin (2.5 mg/ml; BioGenex, San 
Ramon, CA) for 10 min at 37 C to unmask the epitopes. Endogenous peroxidase activity was 
blocked by 0.3% hydrogen peroxide and the primary antibody recognizing Prl (mAb) (BioGenex) 
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was used at concentration of 1:40. Antigen-antibody complexes were detected using a 
biotinylated goat secondary antibody followed by streptavidin-horseradish-peroxidase complex 
(BioGenex). 3,3’-Diaminobenzidine was used as chromogen and hematoxylin as counterstain. For 
controls, subtype-specific IgG was used as appropriate. Human pituitary prolactinoma was used 
as a positive control tissue.  
 
 
Scoring of levels of active Stat5a/b in primary and recurrent clinical human prostate cancer  
 
Individual prostate tumor samples on tissue microarrays were scored (M.T.N., J.A., and A.D.) for Prl level on a 
scale from 0 to 1, where 0 was undetectable and 1 represented positive immunostaining.  

Human prostate cancer xenograft tumors  
Castrated male athymic mice were purchased from Taconic (Germantown, NY) and cared for according to 

the institutional guidelines. Briefly, 1 x 10
6 
human prostate cancer cells (CWR22Rv, LNCAP, DU145, and PC-

3) were mixed with half of the total injection volume of 0.2 ml with Matrigel (BD Bioscience, Palo Alto, CA). 
Simultaneously with the tumor cell inoculation (two sites/mouse), sustained-release testosterone pellets (12.5 
mg/pellet, one pellet/mouse; Innovative Research of America, Sarasota, FL) were implanted sc. When the 
tumors reached 12–15 mm in diameter, mice were killed and the tumor tissues were harvested.  
 

Stat5a/b antisense transfections  
CWR22Rv cells were transfected with Stat5a/b antisense oligodeoxynucleotides (900 pmol) with mismatch 

oligodeoxynucleotides (ODNs) (ISIS Pharmaceuticals, Carlsbad, CA) as control using jetPEI (QBiogene Inc., 
Carlsbad, CA) (900 pmol per 1 x 10

6 
cells) according to manufacturer’s instructions. This yielded a 

transfection efficiency of 50–60% (our unpublished data). Specifically, Stat5a/b antisense ODN (5’-GGG CCT 
GGT CCA TGT ACG TG-3’) (a shared sequence within both human Stat5a and Stat5b transcripts) (bp 2153–
2173 in open reading frame) were synthesized using a phosphorothioate backbone with 2’O-methoxyethyl 
modification of five terminal nucleotides (underlined) to increase their stability (ISIS 130826) as described 
before (29). Mismatch ODN for the same chemistry was synthesized as a mixture of all four bases. After 24 h, 
the cells were harvested for Western blotting and the cell viability assays were carried out 72 h after the 
transfection.  
 

RT-PCR  
Total RNA was isolated using TRIZOL reagent (Invitrogen) and reverse transcribed with Super-Script II 

reverse transcriptase (Invitrogen) using oligodeoxythymidylic acid primers. The conditions for PCR for all 
reactions were 94 C for 2 min, followed by 30 sec of denaturation at 94 C, 30 sec of annealing at 60 C, 30 sec 
of extension at 72 C, and final extension period of 10 min. The PCR products were size separated on a 2% 
Tris-borate EDTA-agarose gel. For detection of Prl mRNA, we used the following primer pair (30): forward 
primer (exon 2), 5’-CTCTCCTCAGAAATGTTCAGC-3’ and reverse primer (exon 4) 5’-
GGTTTGCTCCTCAATCTCTAC-3’. The size of the PCR product yielded by this primer pair was 276 bp.  
 

To identify the promoter used for regulation of Prl gene expression in human prostate cancer, we used two 
different primer pairs. Specifically, for distal promoter (exon 1a), we used 5’-
CATTCCAGAAGTACCCTCAAAGAC-3’ as the forward primer and 5’-GGTTTGCTCCTCAATCTCTAC-
3’ (exon 4) as the reverse primer, which yields 618-bp PCR product. For proximal promoter we designed 
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forward primer between -315 and -295 upstream of transcription start codon, which was a unique sequence for 
the proximal promoter driven Prl mRNA and was confirmed by sequencing. 5’-
GGTTTGCTCCTCAATCTCTAC-3’ (exon 4) was used as the reverse primer, and the size of the PCR product 
yielded was 768 bp for the mRNA transcribed from the proximal promoter (see Fig. 2).  
 

For detection of Pit-1 mRNA, we used the following primer pair: forward primer Pit1-F 5’-
GATAATGCATCACAGTGCTG-3’ (in exon 1; position between 200 and 219 in open reading frame) and 
reverse primer Pit1-R 5’-GGCAGATTGTTGTTTGACTG-3’ (in exon 4; position between 639 and 620 in 
open reading frame) (GenBank accession no. NM_000306 for human Pit1). The size of the PCR product 
yielded by this primer pair was 440 bp. Human brain pituitary total RNA was purchased from BioChain 
Institute, Inc. (Hayward, CA) and was used as positive control.  
 
Luciferase reporter gene assay  

CWR22Rv cells were transfected with 1.0 µg of pCDNA-WTPrlR and pCDNA-WTStat5a or pCDNA-
WTStat5b plasmid, 2.0 µg of pZZ1, and  
0.1 µg of pRL-TK as an internal control using Lipofectamine 2000 (Invitrogen). In addition, cells were 
cotransfected with 1.0 µg of pCDNA3.1-WTJak2 or pCDNA3.1-DNJak2 or pCDNA3.1-DNPrlR in some of the 
experiments. Dominant-negative mutant of Jak2 was created by deletion of the JH1 domain and dominant-
negative PrlR lacked the B1-box, which mediates the binding of Jak2 to PrlR. Twenty-four hours after the 
transfection, cells were stimulated with hPrl (10 nM) for 12 h in starvation medium before the assay for the 
firefly and Renilla luciferase activity.  
 

In the experiments testing the efficacies of pharmacological Jak2 inhibitor or Prl receptor antagonist in 
inhibition of the transcriptional activity of Stat5a/b, CWR22Rv cells cotransfected with pCDNA-WTPrlR and 
pCDNA-Stat5a or pCDNA-Stat5b were pretreated 24 h after transfection with AG490 (Tyrphostin 42; 
Calbiochem, San Diego, CA) for 30 min at indicated concentrations with AG9 (Tyrphostin 1, inactive control 
compound; Calbiochem) as a control before 16 h stimulation of the cells with hPrl (10 nm) in the presence of 
the compound in the starvation medium. Alternatively, CWR22Rv cells were pretreated 24 h after the 
transfection with indicated concentrations of hPrlR antagonist, Δ1– 9G129R hPRL, for 30 min before the 16 h 
hPrl stimulation (10 nM) of the cells in the presence of the hPrlR antagonist in the starvation medium. The cells 
were then assayed for firefly and Renilla luciferase activities. Three independent experiments were carried out, 
and the firefly luciferase activity was normalized to the Renilla luciferase activity of the same sample, and the 
mean was calculated from the parallel. From the mean values of each independent run, the overall mean and SE 
were determined.  
 

Cell viability assay, DNA fragmentation assay, and flow cytometry  
Nontransfected CWR22Rv cells were treated with the PrlR antagonist for indicated times and the media were 

changed every day. Cell viability was determined by counting attached cells by hemacytometer and trypan blue 
exclusion. For flow cytometry, CWR22Rv cells (1 x 10

6 
cells/sample) were stained with 100 µg/ml propidium 

iodide (Roche Applied Science, Mannheim, Germany) and treated with RNase A (Invitrogen) for 30 min at 37 
C. The cells were analyzed by flow cytometry using a Coulter EPICS XL cell analyzer (Beckman-Coulter, 
Fullerton, CA). Fragmentation of DNA was determined by photometric enzyme immunoassay according to the 
manufacturers’ instructions (cell death detection ELISA

PLUS
; Roche Molecular Biochemicals, Indianapolis, IN). 

Briefly, cells were centrifuged at 200 x g, and cytoplasmic fractions containing fragmented DNA were 
transferred to streptavidin-coated microtiter plates that had been incubated with biotinylated monoclonal 
antihistone antibody. The amount of fragmented DNA bound to anti-histone antibody was evaluated by 
peroxidase-conjugated monoclonal anti-DNA antibody.  
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Protein solubilization and immunoblotting  
Pellets of prostate cancer cells were solubilized in lysis buffer [10 mM Tris-HCl (pH 7.6), 5 mM EDTA, 50 

mM sodium chloride, 30 mM sodium pyrophosphate, 50 mM sodium fluoride, 1 mM sodium orthovanadate, 
1% Triton X-100, 1 mM phenylmethylsulfonyl fluoride, 5 µg/ml aprotinin, 1 µg/ml pepstatin A, and 2 µg/ml 
leupeptin], rotated end over end at 4 C for 60 min, and insoluble material pelleted at 12,000 x g for 30 min at 4 
C. In some of the experiments, protein concentrations of the clarified lysates were determined by a simplified 
Bradford method (Bio-Rad Laboratories Inc., Hercules, CA) before Western blotting of the cell lysates. One 
milliliter of the cell lysates was used for immunoprecipitation for3hat4C with polyclonal rabbit antisera against 
either Stat5a or Stat5b (2 µl/ml; Advantex Bioreagents, Conroe, TX). Antibodies were captured by incubation 
for 60 min with protein A-Sepharose beads (Pharmacia Biotech, Piscataway, NJ). Samples were run on a 4–
12% SDS-PAGE under reducing conditions. The primary antibodies were used at the following concentrations: 
antiphosphotyrosine-Stat5a/b (Y694/Y699) mAb (Advantex BioReagents; 1 µg/ml), anti-Stat5a pAb (Advantex 
BioReagents; 1:3000), anti-Stat5b pAb (Advantex BioReagents; 1:3000), and anti-Stat5ab mAb (1:1000; 
Transduction Laboratories, Inc., Lexington, KY) and detected by horseradish peroxidase-conjugated secondary 
antibodies in conjunction with enhanced chemiluminescence.  

 
Results  
 
Prl protein is expressed in hormone refractory human prostate cancers and prostate cancer metastases  

Based on our previous results showing that activation of the Prl-signaling molecule Stat5a/b in primary 
human prostate cancer predicts early prostate cancer recurrence (31) and that Prl protein expression is elevated 
in high-grade prostate cancer (5), we hypothesized that autocrine Prl contributes to progression of prostate 
cancer to androgen-independent and disseminated disease. As a first step to test this hypothesis, we determined 
whether Prl protein is expressed in clinical human prostate cancer during long-term androgen deprivation. 
Specifically we first assessed the frequency of Prl expression in 183 local recurrences of prostate cancer 
obtained by transurethral resection of prostate (Table 1) and next focused on recurrent prostate cancers from 
patients that had been treated with hormone therapy before the recurrence occurred. Prl protein expression was 
analyzed by immunohistochemical detection in paraffin embedded tissue sections. The specificity of anti-Prl 
mouse monoclonal antibody has been previously validated by peptide competition (5). Representative prostate 
cancers of positive (Fig. 1, left panel) or negative (Fig. 1, right panel) Prl expression status are presented in Fig. 
1, A and B. Human prolactinomas were used as positive control tissues and sections of human prostate cancer 
or human prolactinoma were stained with subtype-specific mouse IgG for negative controls (data not shown).  
 

Significant expression of Prl was detected in 91 (50%) of the entire collection of 183 recurrent human 
prostate cancer specimens (Table 1). Of these 183 patients, 116 had been treated with androgen deprivation 
before the recurrence occurred (see Materials and Methods). Prl protein was expressed in 63 (54%) of the 116 
recurrent prostate cancers that had been treated with hormone therapy (Table 1). In summary, the Prl protein is 
expressed in a large fraction of hormone-refractory recurrent human prostate cancers. To address the question 
whether the Prl protein is also expressed in clinical prostate cancer metastases, we analyzed Prl protein 
expression in paraffin-embedded sections of prostate cancer metastases (total n = 181) to regional lymph nodes 
(n = 57) and other organs (n = 124). Overall, a positive immunoreaction for Prl protein was detected in 62% 
(112 of 181) of the prostate cancer metastases. In prostate cancer metastases to lymph nodes, a clear positive 
immunoreaction in the cytoplasms of prostate cancer cells (Fig. 1B) was detected in 38 of 57 (67%) of the 
specimens, whereas 74 of 124 (60%) of the distant prostate cancer metastases showed positive immunostaining 
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for Prl. In conclusion, the Prl protein is expressed at high frequency in hormone-refractory human prostate 
cancers and clinical human prostate cancer metastases to both lymph nodes and other organs.  
 
Prl gene expression in human prostate cancer is driven by both the proximal and distal promoters  

Prl gene expression is driven by two different promoters. In the pituitary, the hPrl mRNA starts with exon 1b 
at the pituitary start site and transcription is controlled by the pituitary (proximal) promoter (32). The proximal 
promoter contains binding sites for the pituitary-specific transcription factor Pit-1 and several binding sites for 
ubiquitous binding factors (33). The distal promoter is located 5.8 kb upstream of the pituitary start site in the 
exon 1a and produces an mRNA, which is 150 nucleotides longer than the transcript from the proximal 
promoter (6). To identify the promoter that drives Prl gene expression in human prostate cancer, we designed 
primer pairs specific for transcripts expressed from the distal promoter or for the proximal promoter (Fig. 2, A 
and B). Specifically, the primer pair detecting Prl mRNA transcribed from the distal promoter was located next 
to exon 1a (forward primer) and exon 4 (reverse primer) with a RT-PCR product of 618 bp (Fig. 2A). The 
forward primer detecting the Prl mRNA transcribed from the proximal promoter was located to a proximal 
promoter-specific sequence 518 bp upstream of the exon 1b, and the reverse primer was located to exon 4 
producing a RT-PCR product of 768 bp (Fig. 2B).  
 

In the first RT-PCR experiments with a primer pair (forward primer: exon 2; reverse primer: exon 4), which 
detects Prl mRNA regardless of the promoter usage, we showed for the first time Prl gene transcription in 
clinical human prostate cancer specimens (Fig. 2C, top panel). We also show Prl gene transcription in all 
human prostate cancer cell lines grown in tissue culture (LNCaP, DU145, PC-3, and CWR22Rv) and LNCaP, 
DU145, and PC3 xenograft tumors. The xenograft tumors are thought to reflect better the in vivo growth 
environment of prostate cancer, and our results indicated that Prl is expressed in both the primary (CWR22p) 
and recurrent CWR22 (CWR22r) tumors. CWR22 xenograft prostate cancer model closely mimics clinical 
human prostate cancer. Specifically CWR22 transplantable tumors were originally established from a stage D 
primary human prostate cancer with bone metastasis (34). Primary CWR22 tumors (CWR22p) are androgen 
dependent and regress in male mice after orchiectomy (35). However, within 7–9 months of androgen 
deprivation, the tumors start to regrow and the recurrent CWR22 tumors (CWR22r) are not dependent on 
androgens for growth (36). Because of varying AR status in different prostate cancer cell lines (LNCap and 
CWR22Rv are AR positive, whereas Du145 and PC-3 are AR negative) and because circulating testosterone 
(Te) levels are highly variable in nude mice, we normalized the Te levels inserting sustained-release Te pellets 
to nude mice that had been castrated.  
 

In the second set of experiments, RT-PCR was run using the two primer pairs specific for the proximal or 
distal promoters. The RT-PCR results show that Prl gene transcription in clinical human prostate cancer 
samples, human prostate cancer cells lines, and xenograft tumors is driven by both the proximal and distal 
promoters (Fig. 2C, middle and bottom panels). Pit-1 is a POU-domain transcription factor of the anterior 
pituitary that specifies cell lineage differentiation and is required for Prl gene expression in lactotropes (37). 
Because the proximal promoter, which drives Prl gene transcription in pituitary gland under control of Pit1, is 
also active in human prostate cancer, we next determined whether Pit-1 is expressed in human prostate cancer. 
Pit-1specific RT-PCR was negative for all prostate-derived samples, whereas pituitary mRNA showed the 
expected 440 bp Pit-1 RT-PCR product (Fig. 2D). In summary, the results presented here indicate that Prl 
mRNA is transcribed in not only prostate cancer cell lines but also clinical human prostate cancer specimens. 
Furthermore, Prl gene transcription in prostate cancer is driven by the proximal and distal promoters, 
independently of Pit-1.  

Inhibition of Stat5a/b by Stat5 antisense oligodeoxynucleotides induces death of CWR22Rv cells  
We have previously shown by adenoviral gene delivery of a dominant-negative mutant of Stat5a/b that 
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inhibition of Stat5a/b-induced apoptotic death of prostate cancer cells within a few days (20). To validate this 
finding by an alternative method, we set up Stat5a/b inhibition by Stat5a/b antisense ODNs (900 pmol per 1 x 
10

6 
cells). Transfection of CWR22Rv cells with antisense ODNs targeted against a homologous region between 

both Stat5a and Stat5b (29) resulted in a decrease in Stat5a and Stat5b protein expression at 24 h, as 
demonstrated by Western blotting of the cell lysates (Fig. 3A, upper panel). Reblotting of the filters with 
antiactin antibody demonstrated equal loading of the gel (Fig. 3A, lower panel). Stat5a/b inhibition induced 
significant death of CWR22Rv cells by 72 h after transfection as demonstrated by cell morphology (Fig. 3B, 
upper panel). Specifically, inhibition of Stat5a/b protein expression induced extensive cell rounding, 
detachment, shrinkage, and blebbing, mismatch control oligonucleotides. In addition, nucleosomal which are 
morphological changes consistent with apoptotic DNA fragmentation was increased by 6-fold on average in 
cell death. In contrast, there was no evidence of reduced cell Stat5a/b antisense-treated cells 72 h after 
transfection (Fig. viability in response to the transfection reagent itself or to 3B, lower panel). These results 
indicated that antisense inhibition of Stat5a/b protein expression induces rapid apoptotic death of human 
prostate cancer cells.  

The Δ1–9G129R-hPRL Prl antagonist disrupts constitutive activation of Stat5a/b in human prostate cancer 
cells effectively and induces death of the cells  

Given that the key Prl-signaling protein Stat5 is critical for viability of prostate cancer cells and that the 
components of autocrine Prl-Stat5a/b signaling pathway are expressed and active at high frequency in high-
grade prostate cancers (5,31), hormone-refractory prostate cancers, and prostate cancer metastases (Table i), we 
wanted to determine the involvement of autocrine Prl in prostate cancer growth.  We chose to use a specific 
competitive Prl receptor antagonist (Δ1-9G129R-hPR) developed based on rational drug design (23) to inhibit 
autocrine Prl in human prostate cancer cells.  To set up a reference for the pharmacological Prl receptor 
antagonist, we first inhibited phosphorylation of stat5a/b by a CNPrlR.  This is a PrlR mutant lacking both the 
cytoplasmic box 1 and internalization motif and therefore is unable to bind Jak2 and accumulates on the cell 
surface.  CWR22Rv cells transfected with STPrlR and Stata or Stat5b were cotransfected with DNPrlR or 
empty control vector.  Then 24 h after the transfection, the cells were serum starved for 24 h and stimulated 
with 10 nM hPrl for 15 min.  Expression of DN-PrlR in CWR22Rv cells inhibited Prl-induced phosphorylation 
of Stat5a and Stat5b, as shown by Western blotting by approximately 80-90% (Fig. 4A).  In line with these 
results, DN-PrlR inhibited ligand-induced transcriptional activity of Stat5a and Stat5b by approximately 80-
90% when tested in ß-casein-luciferase of CWR22Rv cells cotransfected with WTPrlR, Stat5a, Stat5b, 
DNPrlR, or empty control vector (Fig. 4B). 

 
   Δ1-9-G129R-hPRL acts as a competitive PrlR antagonist because the mutation of glycine 129 to arginine 
impairs the interaction of hPrl with a second PrlR molecule and prevents functional receptor dimerization.  This 
mutation is further enhanced by deletion of the first nine N-terminal residues, which is thought to prevent 
additional hormone-ligand interactions presumably involved in receptor activation (23).  Next, we wanted to 
establish the efficacy of a specific PrlR antagonist in disruption of autocrine Prl-Jak2-Stat5 signaling pathway 
in prostate cancer cells.  CWR22Rv cells were cotransfected with WPPrlR and Stat5a or Stat5b, and 24 h after 
the transfection the cells were pretreated for 30 min with the PrlR antagonist and stimulated with 10 nM hPrl 
for 16 h in the presence of the PrlR antagonist. Δ1–9-G129R-hPRL inhibited transcriptional activity of Prl-
induced Stat5a and Stat5b in ß-casein reporter gene assay in a dose-dependent manner (Fig. 4C). We have 
shown previously that hPrl activated both Stat5a and Stat5b in CWR22Rv cells (5). To test whether Δ1–9-
G129R-hPRL will inhibit Prl-induced phosphorylation of Stat5a and Stat5b, CWR22Rv cells were transfected 
with WTPrlR and Stat5a or Stat5b and pretreated with the PrlR antagonist at the indicated concentrations for 1 
h before stimulation of the cells with 10 nM hPrl for 15 min. Δ1–9-G129R-hPRL inhibited phosphorylation of 
Prl-induced Stat5a/b in a dose-dependent manner shown by Western blotting (Fig. 4D). A 100-nM 
concentration of the PrlR antagonist-induced inhibition of Stat5a/b activity after stimulation of the CWR22Rv 
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cells with 10 nM exogenous Prl (Fig. 4, C–E). These experiments concluded that Δ1–9-G129RhPRL is a potent 
inhibitor of Prl-activated Stat5a/b signaling in human prostate cancer cells.  
 

Next, we aimed to test whether autocrine Prl activates Stat5a/b and promotes prostate cancer cell viability 
using the specific Prl receptor antagonist Δ1–9-G129R-hPRL. Because autocrine peptide hormones require 
higher concentrations of respective antagonist for effective inhibition compared with concentration needed for 
antagonizing the exogenously added hormones (38) and because 100 nM Δ1–9-G129R-hPRL showed residual 
Stat5a/b phosphorylation after Prl-induction in Western blotting (Fig. 4D), we chose to use 500 nM 
concentration of Δ1–9-G129R-hPRL to disrupt autocrine Prl in prostate cancer cells. In the first set of 
experiments, Δ1-9-G129R-hPRL was tested for inhibition of autocrine Prl activation of Stat5a/b in 
nontransfected androgen-independent human CWR22Rv prostate cancer cells. CWR22Rv cells were chosen as 
an experimental model because exogenously added Prl activated Stat5a/b in CWR22Rv cells (5). Moreover, 
CWR22Rv cells produce autocrine Prl (Fig. 2C), and Stat5a/b is constitutively active in this cell line (Fig. 5A)  
potentially due to autocrine Prl. Treatment of nontransfected CWR22Rv cells with Δ1–9-G129R-hPRL for 10 d 
resulted in 46% inhibition of basal phosphorylation of Stat5a/b, which was reversed by addition of exogenous 
hPrl (Fig. 5A). Filters were stripped and reblotted for total Stat5a/b to verify equal loading of the gel. At the 
same time point, the number of attached cells after washing of the wells with medium was determined in 
parallel sets of wells (n = 8) by trypan blue exclusion accompanied by manual counting. This indicated a 64% 
decrease in attached and viable CWR22Rv cells in the Prl antagonist treatment group (Fig. 5B). The cell death 
induced by the Prl-antagonist was partly prevented by addition of hPrl to the cells. The result was further 
confirmed by cell cycle analysis (Fig. 5C) in which Δ1–9-G129R-hPRL treatment of nontransfected CWR2Rv 
cells induced a 2-fold increase in dead cells (preG1 peak) at d 10 (Fig. 5C). However, addition of exogenous 
hPrl did not affect the volume of the preG1-peak, which might be due to saturation of the PrlRs with autocrine 
Prl. These data indicated that Δ1–9-G129R-hPRL disrupts autocrine Prl-Jak2-Stat5a/b signaling in CWR22Rv 
human prostate cancer cells and decreases the viability of the cells.  
 
DNJak2 and small-molecule inhibitor of Jak2 in suppression of Stat5a/b phosphorylation and transcription  
 
   To set up an alternative strategy to pharmacologically mpanied inhibit Prl-Jak2-Stat5 signaling in human 
prostate cancer cells, we decided to inhibit tyrosine kinase Jak2 by a small-molecule Jak2-inhibitor, AG490 
(Tyrphostin 42). As a reference, we first established inhibition of Stat5a/b phosphorylation and transcriptional 
activity by a dominant-negative mutant of Jak2 (DNJak2), which lacks the kinase domain JH1 (5, 39) (Fig. 6, A 
and B). CWR22Rv cells were cotransfected with WTPrlR, Stat5a, and Stat5b and cotransfected with WT-Jak2 
or DNJak2 or empty control vector, starved for 24 h and stimulated with 10 nM hPrl for 15 min. Western 
blotting with antiactive Stat5a/b antibody shows 90–100% inhibition of Prl-induced Stat5a/b phosphorylation in 
CWR22Rv human prostate cancer cells cotransfected with PrlR, Stat5a/b, and WTJak2 increased 
phosphorylation of Stat5a/b, compared DNJak2 (Fig. 6A, upper panel), whereas the Stat5a/b protein with 
empty control vector-transfected cells. In the second set levels remained constant (Fig. 6A, lower panel). In 
addition, of experiments, CWR22Rv cells transfected with WTPrlR, Stat5a, or Stat5b were cotransfected with 
either WTJak2 or DNJak2 or empty control vector and stimulated 24 h after the transfection with 10 nM hPrl 
for 12 h in starvation medium. Prl-induced transcriptional activation of Stat5a/b on genomic ß-casein promoter-
Luc was 100% inhibited by cotransfection of CWR22Rv cells with DNJak2, whereas WTJak2 increased 
transcriptional activity of Stat5a/b. (Fig. 6B). The ß-casein promoter reporter gene was chosen for these 
experiments because it contains a Stat5-binding site flanked by a nonconsensus binding site and therefore 
constitutes a strong tetrameric Stat binding promoter (40). The results of these experiments serve as standard 
for testing the efficacy of pharmacological inhibitor of Jak2 in disruption of PrlJak2-Stat5 signaling pathway 
with Stat5a/b activation as the readout.  
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First, we established a dose-response curve for inhibition of transcriptional activity of Prl-induced Stat5a/b by 
a small-molecule inhibitor of Jak2, AG490. CWR22Rv cells were transfected with WTPrlR and Stat5a or 
Stat5b and pretreated with AG490 for 30 min with dimethylsulfoxide as a control before hPrl (10 nM) 
stimulation of the cells for 16 h in the presence of AG490 or control. We determined that 100 µM concentration 
of AG490 resulted in 50 –60% inhibition of Stat5a (Fig. 6C) and 30 –40% inhibition of transcriptional activity 
of Stat5b (Fig. 6D). We then compared the efficacy of 100 µM AG490 in inhibition of Prl-induced 
phosphorylation of Stat5a/b with AG9 (inactive compound provided by the supplier) as a control compound in 
Western blotting. CWR22Rv cells transfected with WTPrlR and Stat5a or Stat5b were serum starved for 24 h 
and pretreated with AG490 for 1 h before 15 min stimulation of the cells with 10 nM hPrl. AG490 inhibited 
phosphorylation of Stat5a and Stat5b by approximately 50%, whereas the control compound AG9 also resulted 
in Stat5a/b inhibition of approximately 20–30% in CWR22Rv cells (Fig. 6E). Reblotting of the stripped filters 
with anti-Stat5ab antibody demonstrated equal loading of the gel. Comparison of AG490 in inhibiting 
transcriptional activity of Stat5a/b to the control compound at 100 µM concentration in ß-casein luciferase 
reporter gene assay showed consistent inhibition of transcriptional activity of Stat5a and Stat5b by 
approximately 45 and 35%, respectively (Fig. 6F). Treatment of nontransfected CWR22Rv cells with AG490 
did not cause changes in the viability of the cells (data not shown).  
 

Collectively, these results show that AG490 (Tyrphostin 42) is a relatively weak inhibitor of Prl-activated 
Jak2Stat5a/b signaling pathway in prostate cancer cells.  
 
Discussion  

Identification of the molecular mechanisms that promote proliferation and survival of prostate cancer cells is 
required for the development of new therapies for prostate cancer. Protein kinase signaling pathways, often 
activated by local growth factors, may provide the critical growth signals for premalignant lesions to progress 
to clinical prostate cancer and organ-confined primary prostate cancer to progress to hormone-refractory 
disseminated disease. In this work, we show that Prl protein is produced by 54% of hormone-refractory human 
prostate cancers and 62% of clinical prostate cancer metastases and that Prl gene transcription in clinical human 
prostate cancer is regulated by both the proximal and distal promoters. Using a competitive Prl receptor 
antagonist, we demonstrate that autocrine Prl activated Stat5a/b in prostate cancer cells and that disruption of 
autocrine-PrlStat5a/b signaling by Δ1–9-G129R-hPRL induces death of androgen-independent CWR22Rv 
human prostate cancer cells.  
 

This is the first time that disruption of autocrine Prl has been shown to result in decrease of Stat5a/b 
activation in human prostate cancer cells. This is important because active Stat5a/b is highly critical for 
survival and proliferation of prostate cancer cells (20, 21), and therefore, the Prl-Jak2Stat5a/b signaling 
pathway provides several different therapeutic target molecules for human prostate cancer. These include Prl-
receptor inhibitors and antibodies, Stat5a/b phosphatases, and Stat5a/b proteases as well as small-molecule 
inhibitors for Jak2 and Stat5a/b. Here our results demonstrate that the competitive PrlR antagonist Δ1–9-
G129RhPRL decreased transcriptional activity of Stat5a/b and the viability of the androgen-independent 
CWR22Rv human prostate cancer cells. Pseudophosphorylated Prl (S179D Prl) has previously been shown to 
decrease growth of DU145 cells in vitro and in vivo (22), but no data were shown on the effects of 
pseudophosphorylated Prl on PrlR-Jak2-Stat5a/b activation in prostate cancer cells. The mechanism of 
antagonist action of the pseudophosphorylated Prl has been reported to be based on induction of altered 
expression pattern of the different PrlR forms (24), not rational drug design. Future studies need to determine 
the efficacy of the competitive PrlR antagonist, Δ1–9-G129R-hPRL, on inhibition of tumor growth of human 
prostate cancer xenografts in vivo and the effects of Δ1–9-G129R-hPRL on prostate cancer growth in mouse 
prostate cancer models. Furthermore, our data on the efficacy of AG490 (Tyrphostin 42) in inhibiting Stat5a/b 
activation indicated that there is a clear need for development of more efficient small molecule inhibitors for 
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Jak2. 
  
The second key finding of this work was the demonstration of Prl gene transcription in prostate cancer being 

driven by both the proximal and the distal promoters. Prl gene expression from the proximal and distal 
promoters was shown in not only human prostate cancer cell lines but also prostate xenograft tumors and, more 
importantly, in clinical human prostate cancer samples. Transcription factor Pit-1, which regulates Prl gene 
expression in the pituitary gland, was not expressed in prostate cancer cells or in prostate cancer specimens, 
suggesting that factors other than Pit-1 control the proximal promoter activation in prostate cancer. Future work 
will focus on identifying the transcription factors that are crucial for proximal and distal promoter-driven Prl 
gene transcription in human prostate cancer. Some of these factors may be prostate specific, and therefore, they 
will potentially provide therapeutic target proteins for prostate cancer. Of special interest will be evaluation of 
androgens as regulators of proximal and distal promoter-driven Prl gene transcription in normal and malignant 
prostate cells. This is based on the hypothesis that liganded ARs repress Prl gene transcription in prostate 
cancer leading to increased Prl expression during androgen deprivation.  
 
Autocrine Prl protein was expressed in 54% of hormone-refractory human prostate cancers and 62% of lymph 
node and distant prostate cancer metastases. Our previous data showed that both autocrine Prl and active Stat5 
expression correlated with high histological grade of prostate cancer (5, 31). These findings together support 
the concept that autocrine Prl-Stat5a/b signaling pathway is associated with advanced prostate cancer (high 
grade, hormone refractory, and metastatic disease). It is possible that autocrine Prl-PrlR-Jak2 STAT5a/b 
signaling pathway provides prostate cancer cells with the ability to survive in a growth environment lacking 
androgens. This hypothesis needs to be tested using Δ1–9-G129R-hPRL in appropriate human xenograft 
prostate cancer models such as primary and recurrent CWR22 or LAPC prostate tumors (34, 41, 42). We have 
previously shown that active Stat5a/b in primary human prostate cancer predicts early disease recurrence (31). 
Because autocrine Prl is one of the main activators of Stat5a/b in prostate cancer, it is likely that autocrine Prl 
in primary prostate cancer could provide a prognostic marker to assist clinical decision making in addition to 
active Stat5a/b. Finally, involvement of autocrine Prl in metastatic behavior and homo/heterotypic cell adhesion 
should be investigated to identify the biological functions of autocrine Prl in distant prostate cancer metastasis.  
 
   In summary, this work establishes that autocrine Prl in CWR22Rv prostate cancer cells promotes cell 
viability via Stat5a/b signaling pathway. Moreover, this work shows autocrine Prl expression in 50 –60% of 
hormone-refractory clinical prostate cancers and prostate cancer metastases. This work demonstrates that Prl 
gene in prostate cancer is transcribed from both the proximal and distal promoters, which establishes the 
platform for future studies on the identification of prostate-specific transcriptional regulators of Prl gene. In 
conclusion, this study provides support for therapeutic strategies for prostate cancer based on inhibition of Prl-
Jak2-Stat5 signaling pathway.  
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Tables and Figures 
 
 
TABLE 1. Prl expression in recurrent hormone-refractory prostate cancers and prostate cancer metastasis  

_________________________________________________________________________ 
                                                                                                          No. of patients   %  
_________________________________________________________________________ 
Recurrent prostate cancers  
Prl protein expression status        183  100  
 Negative            92    50  
 Positive            91    50  
Recurrent prostate cancers treated with hormone therapy  
Prl protein expression status        116  100  
 Negative            53    46  
 Positive            63   54 
Prostate cancer metastases (lymph node metastases and  
   metastases to other organs)  
Prl protein expression status        181  100  
 Negative           69    38  
 Positive          112    62  
Prostate cancer metastases to regional lymph nodes  
Prl protein expression status          57  100  
 Negative            19    33  
 Positive            38    67  
Prostate cancer metastases to other organs  
Prl protein expression status        124  100  
   Negative            50    40  
   Positive            74    60 
 
_________________________________________________________________________ 
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FIG. 1. Prl protein in hormone-refractory recurrent human prostate cancers and distant prostate cancer 
metastases. Prl protein is expressed in the majority of hormone-refractory recurrent (A) prostate cancers and 
prostate cancer metastases (B). Prl protein expression in recurrent human prostate cancers and prostate cancer 
metastases was analyzed by immunohistochemical staining using a monoclonal anti-Prl antibody in paraffin-
embedded tissue sections. 3,3’-DAB was used as a chromogen and Mayer hematoxylin as counterstain. 
Biotinstreptavidin amplified peroxidase-antiperoxidase immunodetection shows intense positive reactions for 
Prl in the cytoplasm of epithelial cells of a representative hormone-refractory prostate cancer (A) and prostate 
cancer metastases (B) that had a high level of Prl protein expression (left panels), compared with specimens 
that were considered negative for Prl (right panels).  

 
 
 



 
Authors’ final version prior to publication in Endocrinology 148(7):3089–3101 Copyright © 2007 by The Endocrine Society doi: 10.1210/en.2006-1761  
 

 
 

 
RT-PCR for Prl proximal promoter transcript 

 



 
Authors’ final version prior to publication in Endocrinology 148(7):3089–3101 Copyright © 2007 by The Endocrine Society doi: 10.1210/en.2006-1761  
 

 
 

RT-PCR for Prl proximal promoter transcript 
 



 
Authors’ final version prior to publication in Endocrinology 148(7):3089–3101 Copyright © 2007 by The Endocrine Society doi: 10.1210/en.2006-1761  
 

 



 
Authors’ final version prior to publication in Endocrinology 148(7):3089–3101 Copyright © 2007 by The Endocrine Society doi: 10.1210/en.2006-1761  
 

 
 
 
FIG. 2. Prl gene transcription in human prostate cancer is driven by both the distal and proximal promoters. 
Schematic illustration of the design of the RT-PCR primers for exclusive detection of Prl mRNA transcribed 
from the distal (A) or proximal (B) promoter. A, The primer pair detecting Prl mRNA transcribed from the 
distal promoter was upstream of exon 1a (forward primer) and the reverse primer was in exon 4 with a RT-PCR 
product of 618 bp. B, The distal promoter is located 5.8 kb upstream of the pituitary start site in exon 1a. The 
sequence from 97–518 upstream of exon 1b is a unique sequence for the mRNA transcribed from the proximal 
promoter and is spliced out from the distal promoter derived Prl transcript. The primer pair detecting the Prl 
mRNA transcribed from the proximal promoter was located to the proximal promoter-specific transcript 518 bp 
upstream of the exon 1b (forward primer) and the reverse primer was in exon 4 with a RT-PCR product of 768 
bp. ORF, Open reading frame. C, RT-PCR with a primer pair detecting Prl mRNA regardless of the promoter 
usage (forward primer: exon 2; reverse primer: exon 4) (top panel) or with proximal/distal promoter-specific 
primer pairs (middle and bottom panels, respectively) show Prl gene transcription in human prostate cancer cell 
lines (LNCAP, DU145, PC-3, and CWR22Rv); xenograft prostate tumors [primary (CWR22p) and recurrent 
CWR22 (CWR22r)] tumors; LNCAP, DU145, and PC3 tumors; and clinical human prostate cancer specimens 
(Ca) of different Gleason (Gl) grades. D, For RT-PCR detection of transcription factor Pit-1 mRNA, we used 
the following primer pair: forward primer Pit1-F, 5’-GATAATGCATCACAGTGCTG-3’ (in exon 1; position 
between 200 and 219 in open reading frame) and reverse primer Pit1-R, 5’-GGCAGATTGTTGTTTGACTG-3’ 
(in exon 4; position between 639 and 620 in open reading frame). The size of the PCR product yielded by this 
primer pair is 440 bp. Human brain pituitary total RNA was used a positive control. Pit-1-specific RT-PCR was 
negative for all prostate-derived samples, whereas pituitary mRNA showed the expected 440 bp Pit-1 RT-PCR 
product.  

 
 



 
Authors’ final version prior to publication in Endocrinology 148(7):3089–3101 Copyright © 2007 by The Endocrine Society doi: 10.1210/en.2006-1761  
 

 

 
 
FIG. 3. Inhibition of Stat5a/b in CWR22Rv cells by antisense oligonucleotides (ODNs). CWR22Rv cells 
transiently transfected with Stat5a/b antisense ODNs or mismatch ODNs (900 pmol per 1 x 10

6 
cells) as a 

control. A, At 24 h, whole-cell extracts were immunoblotted with anti-Stat5a/b antibody (upper panel) and 
stripped filters were reblotted with antiactin antibody to demonstrate equal loading. B, Upper panel, 
Microscope photography of Stat5a/b antisense and mismatch ODN-treated cells 3 d after transfection. 
Morphology of cell death induced by Stat5a/b antisense ODN in CWR22Rv cells is consistent with apoptosis. 
Lower panel, Antisense inhibition of Stat5a/b expression induced DNA fragmentation analyzed by nucleosomal 
ELISA 72 h after transfection of the cells with Stat5a/b antisense (AS) or mismatch (MM) oligonucleotides 
(900 pmol per 1 x 10

6 
cells). 
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FIG. 4. Dominant-negative PrlR and a competitive PrlR antagonist Δ1–9G129R-hPR inhibit Stat5a/b 
phosphorylation and transcriptional activity. A, CWR22Rv transiently transfected with pWTPrlR and 
pWTStat5a or pWTStat5b was cotransfected with pDNPrlR or empty plasmid as a control, starved for 24 h in 
serum-free media, and stimulated with hPrl (10 nM) for 15 min before harvesting. Western blotting of whole-
cell extracts with antiactive Stat5a/b antibody (upper panel) with reblotting of the stripped filters with anti-
Stat5a/b antibody (lower panel). B, Transiently transfected CWR22Rv cells with genomic ß-casein-promoter-
luciferase plasmid, pWTPrlR and pWTStat5a or pWTStat5b, were cotransfected with pDNPrlR or empty 
plasmid and stimulated with 10 nM hPrl or vehicle for 12 h in the starvation medium. The mean values of three 
independent experiments are presented and SD values are indicated by bars. C, CWR22Rv cells transiently 
transfected with genomic ß-casein-promoter-luciferase plasmid and pWTPrlR, pWTStat5a or pWTStat5b, 
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pretreated for 30 min with indicated concentrations of Δ1– 9-G129R-hPRL, and stimulated with hPrl (10 nM) 
for 16 h in the presence of the PrlR antagonist in the starvation medium. The mean values of three independent 
experiments are presented and SD values are indicated by bars. D, CWR22Rv cells were transiently transfected 
with pWTPrlR and pWTStat5a or pWTStat5b, starved for 24 h, pretreated with indicated concentrations of Δ1–
9-G129R-hPRL for 60 min, and stimulated with hPrl (10 nM) for 15 min before Western blotting of whole-cell 
extracts with antiactive Stat5a/b antibody (upper panel) and anti-Stat5a or anti-Stat5b antibodies (lower panel). 
E, ß-Casein-promoter-luciferase assay of CWR22Rv cells transfected and treated with Δ1-9-G129R-hPRL at 
indicated concentrations as described in C. The mean values of three independent experiments are presented 
and SD values are indicated by bars.  
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FIG. 5. Disruption of Prl-Stat5a/b autocrine loop in prostate cancer cells by the PrlR antagonist, Δ1–9-G129R-
hPRL, decreases viability of androgen-independent CWR22Rv human prostate cancer cells. A, Δ1–9-G129R-
hPRL inhibits constitutive activation of Stat5a/b in androgen-independent CWR22Rv human prostate cancer 
cells. CWR22Rv cells were treated with Δ1–9-G129R-hPRL and/or hPrl in serum-free medium at indicated 
concentrations for 10 d. Stat5a and Stat5b were immunoprecipitated (IP) and blotted with antiactiveStat5a/b 
antibody (upper panel) and anti-Stat5a/b antibody to demonstrate equal loading of the gel (lower panel). 
Densitometric normalization and comparison of inhibition of Stat5ab activation is shown at the bottom. B, 
Parallel wells (eight wells per treatment) were harvested for counting of attached viable cells. Bars, ± SD.C, 
Δ1–9-G129R-hPRL treatment-induced cell death was determined by flow cytometry on d 10. Cellular 
apoptosis was detected as increased hypodiploid fraction (pre-G1 peak) after treatment of the cells with Δ1–9-
G129R-hPRL with bacterially produced recombinant hPrl as a control at indicated concentrations. FBS, Fetal 
bovine serum.  
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FIG. 6. Inhibition of Stat5a/b phosphorylation and transcriptional activity by DNJak2 and a small molecule 
inhibitor of Jak2. A, CWR22Rv cells transiently transfected with pWTPrlR and pWTStat5a and pWTStat5b 
were cotransfected with pWTJak2, pDNJak2, or empty control plasmid, starved for 24 h, and stimulated with 
hPrl (10 nM) for 15 min before harvesting. Western blotting of whole-cell extracts with antiactive Stat5a/b 
antibody shows inhibition of Prl-induced Stat5a/b phosphorylation in CWR22Rv human prostate cancer cells 
(upper panel), whereas the Stat5a/b protein levels remained constant (lower panel). B, CWR22Rv cells 
transiently transfected with genomic ß-casein-promoterluciferase plasmid, pWTPrlR, and pWTStat5a or 
pWTStat5b were cotransfected with pWTJak2, pDNJak2, or empty plasmid as a control as indicated, with or 
without 10 nM hPrl for 12 h in starvation medium. The mean values of three independent experiments are 
presented and SD values are indicated by bars. Prl-induced transcriptional activation of Stat5a/b on genomic ß-
casein promoter-luciferase was 100% inhibited by cotransfection of CWR22Rv cells with DNJak2. Dose-
response curve for inhibition of transcriptional activity of Prl induced Stat5a (C) and Stat5b (D) by AG490 in 
CWR22Rv cells. CWR22Rv cells transfected with pWTPrlR and pWTSTat5a or pWTSTat5b were pretreated 
with AG490 for 30 min and then stimulated with hPrl (10 nM) for 16 h in the presence of the compound in the 
starvation medium. E, The efficacy of AG490 at 100 µM concentration to inhibit of Prl-induced 
phosphorylation of Stat5a/b and Stat5a/b in CWR22Rv cells shown by Western blotting of whole-cell extracts. 
CWR22Rv cells transfected with pWTPrlR and pWTStat5a or pWTStat5b were preteated for 1 h with AG490 
or AG9 at 100 µM concentration with dimethylsulfoxide (DMSO)-treated cells as an additional control before 
stimulation of the cells with 10 nM hPrl for 15 min. F, The efficacy of AG490 at 100 µM concentration to 
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inhibit transcriptional activity of Prl-induced Stat5a/b in ß-casein-luciferase assay with AG9 as a control 
compound. The transfections for the luciferase assay and Prl stimulation were performed as described in D.  
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