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Comparative Effectiveness of Total Population versus
Disease-Specific Neural Network Models in 

Predicting Medical Costs

ALBERT G. CRAWFORD, Ph.D., M.B.A., M.S.I.S.,1 JOSEPH P. FUHR, JR., Ph.D.,1
JANICE CLARKE, R.N., B.B.A.,1 and BRANDON HUBBS, M.A.2

ABSTRACT

The objective of this research was to compare the accuracy of two types of neural networks
in identifying individuals at risk for high medical costs for three chronic conditions. Two
neural network models—a population model and three disease-specific models—were com-
pared regarding effectiveness predicting high costs. Subjects included 33,908 health plan
members with diabetes, 19,264 with asthma, and 2,605 with cardiac conditions. For model de-
velopment/testing, only members with 24 months of continuous enrollment were included.
Models were developed to predict probability of high costs in 2000 (top 15% of distribution)
based on 1999 claims factors. After validation, models were applied to 2000 claims factors to
predict probability of high 2001 costs. Each member received two scores—population model
score applied to cohort and disease model score. Receiver Operating Characteristic (ROC)
curves compared sensitivity, specificity, and total performance of population model and three
disease models. Diabetes-specific model accuracy, C � 0.786 (95%CI � 0.779–0.794), was
greater than that of population model applied to diabetic cohort, C � 0.767 (0.759–0.775).
Asthma-specific model accuracy, C � 0.835 (0.825–0.844), was no different from that of popu-
lation model applied to asthma cohort, C � 0.844 (0.835–0.853). Cardiac-specific model accu-
racy, C � 0.651 (0.620–0.683), was lower than that of population model applied to cardiac co-
hort, C � 0.726 (0.697–0.756). The population model predictive power, compared to the disease
model predictive power, varied by disease; in general, the larger the cohort, the greater the
advantage in predictive power of the disease model compared to the population model. Given
these findings, disease management program staff should test multiple approaches before im-
plementing predictive models. (Disease Management 2005;8:277–287)
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INTRODUCTION

ROUGHLY one half of all health care costs in
the United States stem from chronic dis-

eases, and this proportion is expected to in-
crease as the proportion of seniors rises.1 By the

year 2020, it is expected that approximately
50% of Americans (157 million) will have one
or more chronic illnesses.2 Each of the three
chronic conditions included in this study gen-
erates more than $10 billion annually in U.S.
healthcare costs:

1Department of Health Policy, Jefferson Medical College, Philadelphia, Pennsylvania.
2Informatics, American Healthways, Inc., Nashville, Tennessee.



• Diabetes generated $132 billion in direct and
indirect costs in 2002.

• Asthma generated $12.7 billion in healthcare
costs in 1998.

• Heart failure generated $22 billion in direct
costs in 2003.3

Over the past decade, disease management
(DM) programs have proven effective in con-
trolling these costs while improving health out-
comes.4 DM is a process by which health plan
members at risk of chronic illness are identified
and targeted for interventions aimed at im-
proving their clinical outcomes, thereby reduc-
ing medical costs associated with poorly con-
trolled conditions.5 A core component of DM
is identification of individuals at risk of devel-
opment or exacerbation of illness and con-
comitant costs.5–10 Using various disease mark-
ers, types of health services utilization, and
healthcare cost levels, predictive modeling
techniques have been developed to pinpoint in-
dividuals at risk for adverse health outcomes.
Predictive models can be either generic or spe-
cific in their population of interest. Another 
dimension of differentiation among predictive
models is the specific analytical technique em-
ployed, eg, linear or logistic regression analy-
ses, classification/decision trees, or neural net-
works.11–13

Neural network techniques are derived from
theories of human cognition and employ non-
statistical algorithms to explain or predict vari-
ations in data. In neural networks, the individ-
ual inputs to a neuron, with initial values of 0
or 1, are multiplied by their respective weights,
and these weighted inputs are summed and
processed through a threshold function to de-
termine whether the summed input exceeds the
threshold for the neuron.

There are various types of neural networks,
based on number of neurons, number of lay-
ers, number of hidden layers, and number of
outputs. The most common implementation 
of neural networks is backpropagation. Back-
propagation is a two-stage process, consisting
of (1) feed-forward activation from the input
layer to the output layer, and (2) propagation
of errors and adjustments backward to the in-
put layer. In backpropagation, if an output is
correct, no change is necessary; if there is a false

positive or false negative error, each weight is
adjusted according to the direction and degree
of error. Backpropagation requires hidden lay-
ers, ie, middle layers that provide an internal
model of how inputs are related to outputs. As
the number of hidden layers increases, the
training error rate decreases as a result of in-
creased flexibility in modeling the data.

Applications of neural networks include
games, speech synthesis and interpretation,
and signal processing, cleaning, and interpre-
tation, as well as the focus of this analysis, med-
ical decision-making, specifically diagnosis.
Neural networks have recently been used to
predict, among other outcomes, acute pancre-
atitis patient outcomes,14 length of stay in a
postanesthesia care unit,15 breast cancer sur-
vival,16 and 5-year colon carcinoma survival.13

One important issue is how neural network
techniques compare in predictive power with
statistical techniques, ie, linear and logistic re-
gression. The four studies cited immediately
above all compared neural network analyses
with other analytic techniques. In the study
predicting acute pancreatitis patient outcomes
by Keogan et al,14 neural network predictions
were not significantly better than linear dis-
criminant analysis predictions (C � 0.83 and
C � 0.82, respectively). On the other hand, in
the study of postanesthesia care unit length of
stay by Kim et al,15 a neural network predicted
correctly in 81.4% of situations, while logistic
regression analysis predicted correctly in
65.0%. Similarly, the study of breast cancer sur-
vival by Burke et al16 found that both a back-
propagation neural network (C � 0.768) and a
probabilistic neural network (C � 0.759) were
significantly more accurate than the pTNM
(primary tumor, regional lymph nodes, and
distant metastases) staging system in predict-
ing breast cancer survival (C � 0.720). Finally,
the comparison by Snow et al13 predicting 5-
year colon carcinoma survival found that a
neural network performed better than a stan-
dard parametric logistic regression in terms of
both C-statistics and specificities at 95% sensi-
tivity.

Among the reasons why neural networks of-
ten perform better than statistical techniques
are the assumptions required by the latter.
Clinical research must address numerous di-
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chotomous outcomes, including health versus
illness, receiving a service or not, being admit-
ted to a hospital or not, and survival itself.
While linear regression cannot handle dichoto-
mous outcomes, logistic regression can do so.
Still, no regression technique has the capability
to handle associations between outcomes, con-
tinuous or dichotomous, and predictor vari-
ables whose effects are neither simply linear
nor linear following adjustment through a
mathematical transformation, eg, logarith-
mic/exponential, polynomial, trigonometric.
In contrast, neural networks have no such lim-
itations in terms of either forms of variables or
forms of associations between variables. While
neural networks have the aforementioned
strengths in incorporating complex variables
and associations and in overall predictive
power, they also have weaknesses. Among
their disadvantages are use of hidden layers
(which are inherently somewhat indescrib-
able), lack of easily interpretable results, and,
specifically, lack of detailed or summary quan-
titative results.17,18

The general aim of this analysis was to com-
pare the effectiveness of two neural network
modeling approaches in predicting high med-
ical costs: a model based on a population of
health plan members versus three cohort mod-
els targeting members with specific diseases, ie,
asthma, diabetes, and cardiac conditions—con-
gestive heart failure (CHF) and coronary artery
disease (CAD). A more specific aim of the anal-
ysis was to determine the more effective pre-
diction method to increase the clinical benefits
and cost effectiveness of the DM program.

The conditions studied—diabetes, asthma,
and CHF and CAD combined—were selected
because they are the three conditions most
commonly targeted by DM programs. Of all
health plans participating in the 2001 Ameri-
can Association of Health Plans Annual In-
dustry Survey, 97% had a diabetes DM pro-
gram, 86% had an asthma DM program, and
83% had a CHF DM program.19

The total population model was developed
through analysis of a health plan population
containing members with and without chronic
diseases. Each disease-specific model was de-
veloped by focusing on the cohort of members
diagnosed with or having risk factors for that

disease. The choice of the outcome of high fu-
ture costs was driven by two exigencies: (1) the
availability and importance of high costs as an
indicator of adverse health status, and (2) the
goal of managing the DM program as cost ef-
fectively as possible.

MATERIALS AND METHODS

The total study population consisted of
375,426 members of a health plan where Amer-
ican Healthways, Inc. provided DM services.
The three disease cohorts included 33,908
members with diabetes, 19,264 members with
asthma, and 2,605 members with CHF and/or
CAD. A caveat is in order regarding the dis-
ease hierarchies in the three cohorts. On the one
hand, the asthma cohort is relatively uniform:
only 0.8% of its members have cardiac condi-
tions and only 0.3% have diabetes; moreover,
since there is a separate chronic obstructive
pulmonary disease (COPD) cohort not in-
cluded in these analyses, there are no members
with COPD in the asthma cohort. On the other
hand, the diabetes and cardiac cohorts are more
complex: in the diabetes cohort, 18.2% have car-
diac conditions and 9.6% have asthma; and, in
the cardiac cohort, 5.6% have diabetes and
11.3% have asthma.

The time frame of the study was calendar
years 1999–2001, where 1999 was modeling
year 1, 2000 was modeling year 2, and 2001 was
the evaluation year.

The outcome variable predicted by the mod-
els was high medical costs, defined as the top
15% of the total cost distribution, ie, the seg-
ment targeted for the most intense disease
management interventions. This kind of oper-
ational definition of high costs reflects the fact
that approximately 10% of the US population
is responsible for roughly 70% of direct med-
ical costs.20 A set of potential predictive risk
factors was identified for use in modeling both
the total population and each of the three dis-
ease cohorts. American Healthways, Inc. col-
lected and processed all relevant medical 
(inpatient, outpatient, and physician) and phar-
macy claims, laboratory results, and other clin-
ical data to identify risk factors and to develop,
calibrate, and implement the predictive mod-
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els for this member population. In model de-
velopment, a set of more than 100 risk factors
was compiled based on (1) epidemiological and
clinical knowledge of chronic disease condi-
tions and their progression, and (2) the clinical
and administrative experience of a wide range
of commercial health plans.

Proprietary algorithms employed a variety
of factors derived from members’ claims histo-
ries to identify members with each chronic con-
dition. A specific identification algorithm was
developed for each disease, including data
drawn from both medical claims—Interna-
tional Classification of Diseases, Ninth Revi-
sion, Clinical Modification (ICD-9) diagnosis
codes, ICD-9 procedure codes, and Current
Procedure Terminology (CPT) procedure
codes—and pharmacy claims—National Drug
Code (NDC) codes. Selection criteria for dia-
betes and for asthma included a combination
of specific ICD-9 and NDC codes; selection cri-
teria for cardiac conditions included a combi-
nation of specific ICD-9, CPT, and NDC codes.
Given that the identification of each disease co-
hort required at least two services with speci-
fied ICD-9 diagnosis codes, the false positive
rate for each disease cohort is less than 5%, sug-
gesting that false positives do not represent a
major limitation of these analyses.

Decision trees were used to reduce the total
set of more than 100 predictive factors to
smaller subsets of factors based on their rela-
tionships to the outcome variable, high med-
ical costs. The threshold to include a factor in
each subset was a chi-square significance test
where p � 0.20. Each of the four neural net-
work models contained one hidden layer, and
within this layer a default value of three hid-
den units was used. The average error model
selection criterion was used for each neural
network. All classification and neural network
modeling was performed using SAS Enter-
prise Miner,® version 4.1.21 The ultimate cri-
terion for inclusion in the model was that the
importance statistic, representing the relative
importance of a variable and generated by the
decision tree component of SAS Enterprise
Miner, had a value greater than or equal to
0.05.21

Four metrics by which a predictive model
can be evaluated are (1) the true positive rate

(sensitivity), (2) the true negative rate (speci-
ficity), (3) the false positive rate, and (4) the
false negative rate. These rates are interrelated.
The false positive rate represents the percent-
age of members who were predicted to incur
high costs but who did not actually incur high
costs. The false negative rate represents the per-
centage of members who were not predicted to
incur high costs but who actually incurred high
costs.

Receiver Operating Characteristic (ROC)
curves were plotted to compare the perfor-
mance of the total population model with that
of each disease-specific model. These ROC
curves plot the sensitivity of each model as a
function of its false positive rate (1 minus speci-
ficity); the area under the ROC curve represents
the overall accuracy or performance of each
model.22,23 The three comparisons focused on
differences between the confidence intervals
around the pairs of C-statistics generated by
applying the two predictive models (total pop-
ulation and disease specific) to each disease co-
hort. The C-statistic can range from 0 to 1; a 
C-statistic of 0.50 would indicate that a model
was 50% accurate in categorizing members as
having high versus low costs (odds which are
no greater than chance); a C-statistic of 1.00
would indicate a perfect model, ie, a model that
perfectly predicts whether members incur high
cost or not.

The four neural network models were con-
structed using claims data for modeling year 1
(1999) to predict which members had high costs
in modeling year 2 (2000). After the models
were developed and validated, they were ap-
plied to modeling year 2 (2000) claims factors
to predict year 3 (2001) costs. The outcome of
interest is the probability that members have
high costs in year 3. Members in each of the
three disease categories received two scores,
one based on the total population model ap-
plied to the disease cohort and the other based
on the respective disease-specific model. True
positive high cost members were identified as
those in the top 15% of the year 3 cost distri-
bution.

The choice of a dichotomous outcome rather
than a continuous one was guided by compar-
ative analysis of models with the two forms of
outcomes. One population model was fitted to
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a dichotomous target, and another population
model was fitted to a continuous, ie, interval
scale target. Two sets of scores were assigned
to the population, and model performance was
compared at the 15% screening level. The re-
sults were consistent with those derived from
analyses of data from other health plans: di-
chotomous targets consistently perform better
than continuous targets, with a significantly
higher percentage of high cost members cap-
tured at the 15% screening threshold, 56.25%
versus 54.19%.

Sensitivity analyses were performed using
different predictive modeling scenarios, vary-
ing the target percentages defining members’
high medical costs, ie, 1%, 5%, 10%, 15%, 20%,
and 30%. These analyses allowed for an as-
sessment of any variations in the accuracy of
the models depending on the threshold se-
lected.

RESULTS

Total population model

The total population model (Table 1) in-
cludes the following predictive factors, listed in
descending order according to the magnitude
of their importance statistics: total medical
costs, physician costs, prescription drug costs,
number of unique diagnoses, age, number of
prescription drug claims, number of unique
procedures, hypertension symptoms, CAD
symptoms, inpatient costs, and diabetes symp-
toms. Four of the 11 factors in the total popu-
lation model indicate costs, another three are
symptoms, three indicate intensity/complexity
of utilization, and the remaining factor is age.

Disease-specific models

Diabetes. The diabetes model includes the fol-
lowing predictive factors, shown in descending
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TABLE 1. IMPORTANCE STATISTICS FOR PREDICTIVE FACTORS IN TOTAL

POPULATION MODEL AND THREE DISEASE-SPECIFIC MODELS

Factor Population Diabetes Asthma Cardiac

Diabetes symptoms 0.0652 0.3885
Hypertension symptoms 0.2786 0.4095
Coronary artery disease symptoms 0.1283 0.4149
Asthma symptoms 0.4201 0.6126
COPD symptoms 0.6809
Cancer symptoms 0.1592
Osteoarthritis symptoms 0.1104
End stage renal disease symptoms 0.0743
IBD symptoms 0.2113

Age 0.5066 0.2965 0.6055 0.7193

Total medical costs 1.0000 1.0000 1.0000 0.9387
Inpatient costs 0.1029 0.2112
Outpatient costs 0.4799 0.4774 0.5133
Physician costs 0.9509 0.9134 0.8925 1.0000
Prescription drug costs 0.5305 0.4509 0.4275

Number of hospitalizations 0.4277 0.1719
Number of specialist visits 0.3477
Number of emergency room visits 0.4930
Number of prescription drug claims 0.4949 0.3526 0.4014
Number of unique diagnosis codes 0.5119 0.2775 0.6834
Number of procedure codes 0.3537 0.3971 0.6710
Number of unique procedure codes 0.4754 0.2936

COPD, chronic obstructive pulmonary disease; IBD, inflammatory bowel disease.



order according to their importance statistics:
total medical costs, physician costs, outpatient
costs, prescription drug costs, number of hos-
pitalizations, diabetes symptoms, number of
procedures, number of prescription drug
claims, age, number of unique procedures,
number of unique diagnoses, and end stage re-
nal disease symptoms. In the diabetes model,
four of the 12 factors indicate costs, only two
are symptoms (one being diabetes itself), five
indicate intensity/complexity of utilization,
and the remaining factor is age.

Asthma. The asthma model includes the fol-
lowing predictive factors, listed in descending
order of importance: total medical costs, physi-
cian costs, number of unique diagnoses, age,
outpatient costs, prescription drug costs,
asthma symptoms, number of prescription
drug claims, number of procedures, number of
specialist visits, and number of hospitaliza-
tions. In the asthma model, four of the 11 fac-
tors indicate costs, only one (asthma) is a symp-
tom factor, five indicate intensity/complexity
of utilization, and the remaining factor is age.

Cardiac. The cardiac model includes the fol-
lowing predictive factors, listed in descending
order of importance: physician costs, total med-
ical costs, age, chronic obstructive pulmonary
disease symptoms, number of procedures,
asthma symptoms, outpatient costs, number of
emergency room visits, CAD symptoms, hyper-
tension symptoms, inflammatory bowel disease
symptoms, inpatient costs, cancer symptoms,
and osteoarthritis symptoms. In the cardiac
model, four of the 14 factors indicate costs, seven
are symptoms, two indicate intensity/complex-
ity of utilization, and the remaining factor is age.

Comparison of total population model with 
disease-specific models. To compare the effec-
tiveness of the total population model with that
of the three disease-specific models, two ROC
curves were plotted for each disease. These
ROC curves plot the sensitivity of each model
versus its false positive rate (1 minus speci-
ficity). The area under each curve represents
the overall accuracy of that model and is eval-
uated by the C-statistic. The 95% confidence in-
terval of the C-statistic for each application of
the population model is compared with the
confidence interval of the C-statistic for the re-
spective disease model. The results are shown
in Table 2.

The accuracy of the diabetes model at the
95% confidence level, C � 0.786 (CI � 0.779–
0.794) was significantly higher than that of the
total population model applied to the diabetic
cohort, C � 0.767 (CI � 0.759–0.775). The accu-
racy of the asthma model, C � 0.835 (CI �
0.825–0.844), was not significantly different
from that of the total population model applied
to the asthmatic cohort, C � 0.844 (CI �
0.835–0.853). In contrast, the accuracy of the
cardiac model, C � 0.651 (CI � 0.620–0.683),
was significantly lower than that of the total
population model applied to the cardiac cohort,
C � 0.726 (CI � 0.697–0.756).

The analyses reported above used the 15%
screening threshold, ie, prospectively identify-
ing the top 15% of members in terms of med-
ical costs in the following year. A more fine-
grained analysis of the performance of the
models at this screening threshold shows that:
for persons with diabetes, the total population
model (sensitivity � 0.422, specificity � 0.898)
performed worse than the diabetes model (sen-
sitivity � 0.475, specificity � 0.907), paralleling

CRAWFORD ET AL.282

TABLE 2. MODEL PERFORMANCE COMPARISON: POPULATION MODEL VERSUS DISEASE MODELS

Population model accuracy, Disease-specific model accuracy,
Disease C, 95% CI C, 95% CI

Diabetes C � 0.767 C � 0.786
(n � 33,908) CI � 0.579–0.775 CI � 0.779–0.794

Asthma C � 0.844 C � 0.835
(n � 19,264) CI � 0.835–0.853 CI � 0.825–0.844

Cardiac C � 0.726 C � 0.651
(n � 2,605) CI � 0.697–0.756 CI � 0.620–0.683



the results reported above based on C-statis-
tics; for persons with asthma, the total popula-
tion model (sensitivity � 0.535, specificity �
0.918) and the asthma model (sensitivity �
0.530, specificity � 0.917) were virtually iden-
tical, paralleling the C-statistic analyses; and,
for cardiac patients the total population model
(sensitivity � 0.361, specificity � 0.888) per-
formed better than the cardiac model (sensi-
tivity � 0.302, specificity � 0.877), once again
in accordance with the C-statistic analyses.

To summarize, comparing model perfor-
mance based on the C-statistic demonstrated
that the diabetes model performed better than
the total population model, the asthma model
approximated the total population model in
performance, and the cardiac model performed
worse than the total population model.

Table 3 shows the results of sensitivity analy-
ses where the threshold percentage at which

members were defined as having high medical
costs was varied from 1% up to 30%. These
comprehensive sensitivity analyses demon-
strate the consistency of the patterns reported
above, regardless of the threshold percentage
selected. The diabetes-specific model is supe-
rior to the population model throughout the
entire range of screening thresholds. Its ad-
vantage in both sensitivity and specificity in-
creases between the 1% and 10% thresholds,
plateaus between 10% and 20%, and dimin-
ishes somewhat between 20% and 30%, but its
superiority is still substantial at the 30% thresh-
old; the diabetes model advantage in sensitiv-
ity always exceeds 0.03, and its advantage in
specificity always exceeds 0.006. The close sim-
ilarity between the population model and the
asthma-specific model persists across the range
of screening thresholds; while there is some
fluctuation in the difference in sensitivity, that
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TABLE 3. SENSITIVITY/SPECIFICITY COMPARISON: POPULATION MODEL

VERSUS DISEASE MODELS, BY SCREENING THRESHOLD

Total population Diabetes specific

Screening threshold Sensitivity Specificity Sensitivity Specificity

0.01 0.059 0.999 0.059 0.999
0.05 0.203 0.977 0.234 0.983
0.10 0.323 0.939 0.374 0.948
0.15 0.422 0.898 0.475 0.907
0.20 0.502 0.853 0.552 0.862
0.30 0.636 0.759 0.669 0.765

Total population Asthma specific

Screening threshold Sensitivity Specificity Sensitivity Specificity

0.01 0.064 1.000 0.060 0.999
0.05 0.256 0.986 0.260 0.987
0.10 0.416 0.956 0.420 0.956
0.15 0.535 0.918 0.530 0.917
0.20 0.623 0.875 0.611 0.873
0.30 0.744 0.778 0.736 0.777

Total population Cardiac specific

Screening threshold Sensitivity Specificity Sensitivity Specificity

0.01 0.038 0.995 0.046 0.996
0.05 0.169 0.971 0.153 0.968
0.10 0.269 0.930 0.233 0.924
0.15 0.361 0.888 0.302 0.877
0.20 0.427 0.840 0.358 0.828
0.30 0.568 0.748 0.463 0.729



difference never exceeds 0.012; and the differ-
ence in specificity never exceeds 0.002. On the
other hand, the disadvantage of the cardiac
model compared to the population model, par-
ticularly in sensitivity, becomes progressively
greater as the threshold increases: the cardiac
model disadvantage in sensitivity increases to
a maximum of 0.105 at the 30% threshold, and
its disadvantage in specificity increases to a
maximum of 0.019 at the 30% threshold. Given
all of these sensitivity analysis findings, it is
reasonable to conclude that the findings based
on the 15% screening threshold are not an ar-
tifact of the threshold choice but are generaliz-
able to a wide range of plausible thresholds.

DISCUSSION

The primary aim of this study was to com-
pare the relative accuracy, or effectiveness, of
a total population neural network model with
each of three disease-specific neural network
models in predicting which health plan mem-
bers will incur high costs. The working hy-
pothesis was that the disease-specific models
would outperform the total population model.
The most striking finding is that of the vari-
able effectiveness of the disease models. When
the disease models were compared with the
total population model, the diabetes model
was more effective than the total population
model applied to persons with diabetes, the
asthma model was roughly equivalent, and
the cardiac model was less effective than the
total population model applied to the cardiac
cohort. If these results are substantiated by
further analyses, they may imply that the
choice of approach should be treated as an em-
pirical question to be answered specifically for
each disease.

Evaluating these results in light of the DM,
predictive modeling, and medical informatics
literature is difficult, given little comparable
evidence. C-statistics reported in the literature
have generally ranged from 0.5 to 0.9. How-
ever, valid comparisons of C-statistics require
greater similarities in designs and data than can
be found in the few published studies. Further
research employing more standardized designs
is needed to address these issues.

Still, it is noteworthy that the sets of signifi-
cant predictive factors identified in each of the
four models are very similar to those identified
in the literature. Typically, prior costs are
highly effective predictors of future costs; cost
factors taken collectively—including total med-
ical costs, factors which decompose total costs
into components (eg, inpatient costs), and
changes over time in these factors—represent
the most common class of predictors. Inten-
sity/complexity of utilization factors (eg, num-
ber of hospitalizations, specialist visits, emer-
gency room visits) and changes therein
represent the second most common class of
predictors. Symptom factors taken together
represent a smaller but important source of
predictors, ranging from five symptoms in the
total population model to a diagnosis of asthma
alone in the asthma model. Finally, age stands
alone among the demographic factors as an ef-
fective predictor. Its generality of effectiveness
is impressive: it has the third highest impor-
tance statistic in the asthma and cardiac mod-
els, the fifth highest in the total population
model, and the ninth highest in the diabetes
model.

Looking at the effectiveness of the predictive
factors in a more granular way, total medical
costs in the prior year was generally the most
powerful predictor of high costs; total medical
costs had the highest importance in all but the
cardiac model, where it had the second high-
est importance. Total physician cost was the
second most powerful predictor in the four
models; it had the highest importance in the
cardiac model and the second highest impor-
tance in the other three models. The third most
powerful predictor was age; it was the only
powerful demographic predictor, as noted
above, and had high importance in all four
models.

Five other factors were important predictors
in three out of the four models: outpatient costs,
prescription drug costs, number of prescrip-
tion drug claims, number of unique diagnosis
codes, and number of procedure codes.

The matrix of effects of symptoms on costs
is relatively sparse in that no symptom factor
has a high importance rating in more than
two of the models, and many of the symptom
factors with the highest importance statistics
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are somewhat tautological. Hypertension and
coronary artery disease are highly important
factors predicting high medical costs in the
cardiac model. Similarly, diabetes symptoms
are highly important in predicting high costs
in the diabetic cohort. The fact that asthma
symptoms is the only symptom factor pre-
dicting high medical costs among persons
with asthma highlights the absence of other
symptom factors. At the same time, all of
these symptom factors except asthma—hy-
pertension, CAD, and diabetes—have high
importance ratings in the total population
model.

There are some parallels between the results
in this study and the results in the literature. A
study by Dove et al.8 sought to identify high-
risk members in a subpopulation of managed
care organization members with previously
low medical costs, employing techniques sim-
ilar to those reported herein (ie, multiple re-
gression analysis, a comparative study design,
and an ROC curve). Dove et al.7 reported the
area under the curve to be 0.73, and found pre-
dictors similar to those in the analyses pre-
sented herein: diabetes, cardiac, respiratory,
and psychiatric conditions (based on medica-
tions and diagnoses), “nonhospital, non-emer-
gency department, nonphysician medical claim
variable,” “composite prescription claim vari-
able: measure of prescription drug classes,”
and symptoms/comorbidities (truncated at
four).

Similarly, a study by Lieu et al24 aimed at
identifying children at high risk of developing
asthma rather than identifying individuals
with asthma or high medical costs in a broader
age range. Their study employed proportional-
hazard modeling and their findings regarding
predictors parallel the findings reported herein
in many respects: “having filled an oral steroid
prescription . . . having been hospitalized dur-
ing the prior 6 months, and not having a 
personal physician . . . were associated with 
increased risk of future hospitalization. . . .
Classification trees identified previous hospi-
talization and ED visits, 6 or more �-agonist in-
halers (units) during the prior 6 months, and
three or more physicians prescribing asthma
medication during the prior 6 months as pre-
dictors.”

The analyses reported herein entail a num-
ber of limitations:

• They focus solely on medical cost outcomes.
Other outcomes that might be examined in-
clude clinical outcomes and indicators of the
intensity/complexity of utilization (which
were actually employed herein as predictive
factors).

• The analyses included data from only one
DM program and on only three disease con-
ditions.

• A single modeling technique was em-
ployed—neural networks.

An intriguing study finding is the relatively
low accuracy of the cardiac model (C � 0.651)
relative to the total population model applied
to the cardiac cohort (C � 0.726) and relative 
to the other disease-specific models (asthma
model C � 0.835 and diabetes model C �
0.786). One explanation may lie in the relatively
small size of the cardiac cohort (n � 2,605) in
comparison with the diabetes (n � 33,908) and
asthma (n � 19,264) cohorts. Increasing enroll-
ments in the cardiac cohorts of DM programs
will permit future testing of this interpretation.
Another possible explanation lies in the fact
that the cardiac cohort combines members with
two conditions, CHF and CAD, increasing the
complexity of the cohort and, presumably, re-
ducing the potential for a single model to ac-
count simultaneously for the costs of members
with either condition.

There is clearly a need for further research to
address the questions of the comparative ef-
fectiveness of generic versus disease-specific
neural network models, and the variable effec-
tiveness of models of different diseases. Incor-
porating a broader array of disease condi-
tions—other chronic conditions such as cancer,
COPD, end stage renal disease, HIV/AIDS,
low back pain, and depression, as well as some
acute conditions such as high-risk pregnancy—
will also be of value.

Testing hypotheses about the variable effec-
tiveness of disease-specific models should in-
clude incorporating information about disease
progression, and measuring specific disease
markers longitudinally over a longer time
span, preferably longer than 3 years. In general,
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as DM program enrollments and enrollment
longevity increase, such data should become
more widely available.

CONCLUSION

This study compared the effectiveness of a
total population neural network model pre-
dicting high medical costs with three disease
specific models. The most striking finding of
this research is that the effectiveness of predic-
tive models varies by disease, ie, the diabetes
model appears to be more effective than the to-
tal population model, the asthma model ap-
pears roughly as effective, and the cardiac
model appears less effective than the total pop-
ulation model applied to the cardiac cohort. If
substantiated by further analyses, these results
suggest that DM program developers and ad-
ministrators should test multiple approaches—
both generic and disease-specific—before fi-
nalizing and implementing predictive models
in DM programs. Additionally, the predictive
power of a model seems to be directly related
to its sample size. Thus, as in applications of
statistical analyses in general, DM program de-
velopers and administrators should be cautious
in applying predictive models to small sam-
ples.
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