Π.

Is Interchangeability Possible? Understanding and Evaluating the Evidence-Based Implications for Quality & Safety

> Geno J. Merli, MD, FACP, FHM Professor of Medicine Chief Medical Officer Director Jefferson Center for Vascular Diseases Jefferson Medical College Thomas Jefferson University Hospital

Leading Causes of Death U.S.

Most Cardiovascular Deaths Related to Clotting and Bleeding

Anticoagulant Drugs

TFPI = tissue factor pathway inhibitor; TAFI = thrombin-activatable fibrinolysis inhibitor-1; PAI-1 = plasminogen activator inhibitor-1

	\mathbf{v}	
Infection	Cardiovascular +	Thrombosis ↓
Bacterial	HBP	DVT
Viral	Cholesterol	PE
Fungal	Arrhythmias	ACS
		Stroke
		AFIB

Venogram

Compression Ultrasound

Spiral CT

Left Atrial Thrombus Atrial Fibrillation

Caplan. Stroke. Ciba-Geigy Clinical Symposia. 1988;40(4):6.

J Am Coll Cardiol. 2001;37:691.

Total Hip Replacement

Total Hip Replacement

Fractured Hip

Thrombogenicity of Prosthetic Cardiac Valves

Caged Ball Starr-Edwards -----

Caged-Ball (Starr-Edwards) Valve

Bileaflet-Tilting-Disk

Single-Tilting-Disk (Medtronic-Hall) Valve

Porcine (Carpentier-Edwards) **Bioprosthesis**

Single Tilting Disc

Porcine Heterograft **Carpentier-Edwards**

Heit JA. J Thromb Thrombolysis. 2001;12:81-87.

Safety Considerations Anticoagulant Drugs

- Bleeding
- Allergic Reactions
- Thrombocytopenia
- Skin Necrosis
- Liver Toxicity
- Vascular Reactions
- Rebound Thrombosis
- Anticoagulant Resistance
- Drug Interactions
- Population Variations (gender, age, ethnicity)

Generic Drug

A generic drug is identical, or bioequivalent to a brand name drug in

- Dosage form
- Safety
- Strength
- Route of administration
- Quality
- Performance characteristics
 - Intended use

Traditional Generics

- Similar efficacy is assumed
- Safety is not monitored after introduction
- Interchangeable
- Economic advantages
- Clinicians thought to have a preference not necessarily based on medical literature
- Mandatory changes made by Pharmacy Benefit Managers (ie, Blue Cross, Humana, Aetna, etc)

Genazzani A. *Biodrugs.* 2007 Declerck P. *Drug Safety.* 2007

Oral Anticoagulants

- Warfarin (Coumadin®) and its derivatives [phenprocoumon (Sintrom®); acenocoumarol (Marcumar®)] have been used for over 50 years.
- Generics warfarins available since 1997
- 6 generic warfarins FDA rated bioequivalent to warfarin:
 - Barr Laboratories
 - Apothecon
 - Genpharm
 - Sandoz
 - USL Pharm
 - Taro Pharmaceuticals

Oral Anticoagulants

- A narrow therapeutic index (range between effective and toxic doses)
- Non-linear pharmacokinetics
- Small changes in dose can result in considerable changes in the anticoagulant response

Key Points Generic Warfarin

Warfarin has a narrow therapeutic index and a varying pharmacodynamic response.

- <u>Close monitoring is needed</u> when patients are switched from brand name to generic product, or *vice versa*, or from one generic to another generic to avoid under-dosing or over-dosing.
- The generic interchange of warfarin should be avoided in elderly patients, and patients with liver disease and gastric resection.
- All anticoagulants are critical drugs. In the case of warfarin, small changes can result in large pharmacodynamic variations.

Biosimilar or Follow-On Biologics

Glycosylated Proteins

Polynucleotides

cutosine

thymine (in DNA)

Unfractionated Heparin (UFH)

Contaminated Unfractionated Heparin

Low Molecular Weight Heparins

Agent	Method of Preparation
Dalteparin	Nitrous acid depolymerization
Enoxaparin	Benzylation followed by alkaline depolymerization
Tinzaparin	Enzymatic depolymerization with heparinase
Pentasaccharide	Synthetic analog

VTE Medically-ill

Trial	RRR	Thromboprophylaxis Patients with VTE (%)	
PRIME ¹ P<0.001 for equivalence	86%	UFH (Q8hrs) Enoxaparin	1.4 % 0.2 %
THE-PRINCE ² <i>P</i> =0.015 for equivalence	19%	UFH (Q8hrs) Enoxaparin	10.4 % 8.4 %

¹Lechler E, et al. Haemostasis 1996;26 Suppl 2:49-56. ²Kleber FX, et al. Am Heart J 2003;145:614-21.

Low-Molecular-Weight Heparin (LMWH) Clear Benefits over Placebo

Study	RRR	Thromboprophylaxis	Patients with VTE (%)
MEDENOX ¹	63%	Placebo	14.9*
<i>P</i> <0.001		Enoxaparin 40mg	5.5
PREVENT ²	45%	Placebo	5.0
<i>P</i> =0.0015		Dalteparin	2.8
ARTEMIS ³	47%	Placebo Fondaparinux	10.5 ⁺ 5.6

¹Samama MM, et al. N Engl J Med 1999;341:793-800
² Leizorovicz A, et al. Circulation 2004;110:874-879
³Cohen AT, et al. J Thromb Haemost 2003;1 Suppl 1:P2046

*VTE at day 14; †VTE at day 15

RRR = relative risk reduction

Major Bleeding

Samama MM, et al. N Engl J Med 1999;341:793-800. Leizorovicz A, et al. Circulation 2004;110:874-879 Cohen AT, et al. J Thromb Haemost 2003;1 Suppl 1:P2046.

Is VTE Prophylaxis Effective?

Meta-Analysis

Anticoagulant VTE prophylaxis in 19,958 at-risk hospitalized medical patients in 9 studies

- 62% reduction in fatal PE [RR 0.38; CI 0.21-0.69]
- 57% reduction in fatal or nonfatal PE [RR 0.43; Cl 0.26-0.71]
- **53% reduction in DVT [RR 0.47; CI 0.22-1.00]**
- Nonsignificant increase in bleeding [RR 1.32; CI 0.73-2.37]

Recurrent VTE: 1st 24 Hours

Subtherapeutic Therapeutic Supratherapeutic

Recurrent VTE

Hull RD, et al. Arch Intern Med. 1997;157:2562-2568.

Outcomes UFH Standard vs Weight-Based Dosing

Outcomes	Standard UFH	Weight-based UFH	<i>P</i> Value
1st aPTT > 1.5*	32%	86%	< 0.001
aPTT > 1.5 in 24 hrs	77%	97%	0.002
aPTT therapeutic in 24 hrs	75%	89%	0.08
Minor bleeding	2/52	2/63	1
Major bleeding	1/52	0	0.45
RVTE	8/32 (25%)	2/41 (5%)	0.02

*aPTT > 1.5 times control

Raschke RA, et al. Ann Intern Med. 1993;119:874-881.

Standard and Weight-Based UFH

- Bolus 5000 units then
- Infusion 1300 units per hour
- Target aPTT therapeutic range of the hospital
- Check aPTT in 6 hours and adjust upward or downward by 200 units
 - <u>aPTT should be checked every</u> <u>6 hours for the first 24 hours</u> then
 - Daily or more frequently as indicated by the need to achieve the therapeutic range
 - Check platelet count baseline then every 2 to 3 days from day 4 thru 14
 - Initiate warfarin 5 mg on day 1
 - Continue unfractionated heparin until the INR is between 2 and 3 for 2 consecutive days

- Bolus 80 IU/kg then
- Infusion 18 IU/kg/hr
- Target aPTT therapeutic range of the hospital
- Check aPTT in 6 hours and adjust via the schedule
- Check platelet count baseline then every 2 to 3 days from day 4 thru 14
- Initiate warfarin 5 mg on day 1
- Continue unfractionated heparin until the INR is between 2 and 3 for 2 consecutive days

Unfractionated Heparin Subcutaneous Dosing

FIDO Investigators [1C] Initial Dose 333 U/kg, SC Maintenance 250 U/kg, SC, Q12hrs No monitoring

Pini Method [1C]

- 250 u / kg, Q12hrs
- Adjust dose 6 hours after the AM dose and adjust upward or downward based on aPTT of 1.5 x baseline aPTT

Kearon C, et al JAMA 2006;296:935-942 Kearon C, et al Chest 2008;133:454S-545S

Venographic Assessment Efficacy and Safety LMWH vs UFH

Simonneau G, et al. Arch Intern Med. 1993;153:1541-1546.

Venographic Assessment Efficacy and Safety LMWH vs UFH

Lindmarker P, Holmstrom M. J Intern Med. 1996;240:395-401.

Clinical Outcomes Efficacy and Safety LMWH vs UFH

Hull RD, et al. N Engl J Med. 1992;326:975-982.

Clinical Outcomes Efficacy and Safety LMWH vs UFH

Merli G, et al. Ann Intern Med. 2001;134:191-202.

ACCP Guidelines

Initial treatment with LMWH, subcutaneously once or twice daily as an outpatient [1C] or as an inpatient [1A] rather than UFH.

Dalteparin

- 200 IU/kg, Qday
- Enoxaparin
 - 1 mg/kg, Q12hrs or
 - 1.5 mg/kg, Qday
- **Tinzaparin**
 - 175 IU/kg, Qday
- Fondaparinux
 - < 50 kg 5mg, Qday</p>
 - 50-100 kg 7.5 mg, Qday
 - > 100 kg 10 mg, Qday

Kearon C, et al Chest 2008;133:454S-545S Merli GJ. Am J Med. 2008;121:S2-S9

Acute Coronary Syndrome

- 5.3 million ER visits due to chest pain
- 1.4 million hospitalizations per year
- 15% of (UA/NSTEMI) patients die or have recurrent MI within 30 days
- 41% of UA/NSTEMI patients die, have a recurrent MI or experience severe ischemia requiring
 - Hospitalization within 2 weeks of initial presentation
- 85% of patients presenting with UA/NSTEMI go to the catheterization laboratory

Acute Coronary Syndrome

Brunwald E, et al JACC 2002;40:1366-1374

Efficacy and Safety of Subcutaneous Enoxaparin in Non-Q-wave Coronary Events (ESSENCE)

Cohen M et al. NEJM 1997;337:447-52.

ESSENCE: Results up to 30 days				
Endpoints	UFH (N=1,564)	Enoxaparin (N=1,607)	р	
14 days Death, MI, recurrent angina	19.8%	5 16.6%	0.019	
Death, MI 30 days	6.1%	4.9%	0.130	
Death, MI, recurrent angina	23.3%	19.8%	0.016	
Death, MI Revascularizatior	7.7% a <u>32.2%</u>	6.2% 27.1%	0.080 0.001	

Cohen M et al. NEJM 1997;337:447-52.

ESSENCE: Results

Endpoints	UFH (N=1,564)	Enoxaparin (N=1,607)	р
30 days			
Major bleedir	ng 7.0%	6.5%	NS
Any bleeding	14.2%	18.4%	0.001

ESSENCE: One-year follow-up

Goodman SG et al. JACC 2000;36:693-8.

Incidence of HIT UFH vs Enoxaparin — THR Patients

Improved Definition of HIT*

*≥50% platelet count fall from the postoperative peak.

Warkentin TE et al. Arch Intern Med. 2003;163:2518-2524.

HIT: LMWH vs UFH

Meta-analysis of 5 Studies*1,2

Study or Subcategory

OR (random) 95% CI

*Included surgical patients. [†]Three studies compared enoxaparin with UFH.

1. Warkentin TE. *Blood*. 2005;106:2600. 2. Martel N et al. *Blood*. 2005;106:2710-2715.

Physicochemical Equivalence

Biochemical Equivalence

LMWHs GENERIC EQUIVALENCE

Pharmacologic Equivalence Clinical Equivalence

Physicochemical Equivalence

Biochernical Equivenence

LMWHs GENERIC EQUIVALENCE

Pharmacologic Equivalence Clinical Equivalence

CURRENT PERSPECTIVE ON GENERIC LMWHS

- The regulatory bodies, US FDA and EMEA, may allow the generic versions of LMWHs and apply the same guidelines as for other biologicals.
- Additional requirements to provide supplementary chemical and biological data to support the filing may be needed. Some stipulations from the Citizens Petition may be considered.
 - Clinical trials may or may not be required for specific products for approved indications depending upon the filing material review.

Issues with Biosimilars

Variable potency and response

Immunogenicty (glycosylation, contamination, changes to 3D structure)

Immune system is able to detect small changes in protein structure between an introduced molecule versus the original Is Chemical Characterization of Branded LMWH Sufficient to Satisfy Assure Pharmacodynamics Equivalence?

No: LMWHs are hybrid products of biologic origin with chemical modifications. The starting material is more important to characterize for product consistency.

BioSimilar Drugs

- Derived from living cells, therefore they can not be copied or duplicated
- Two biologics can result in significantly different immune responses
- Lack of scientific evidence to guarantee a safe interchange between biologics
 - Difficulties exist in:
 - Molecular characterization
 - Depth of knowledge in regard to mechanism of action

Genazzani A. *Biodrugs.* 2007 Declerck P. *Drug Safety* 2007

Immunogenicity of BioSimilars

- Generally proteins isolated from human tissues or serum are less immunogenic than non-human proteins
- Immune system is able to detect small changes in protein structure between an introduced molecule versus the original
- Methods used to detect formation of antibodies:
 - **Difficulties with measurement**
 - Inability to compare different studies

Schellekens H. *Clin Ther*. 2002 Kessler M, et al. *Nephrol Dial Transplant*. 2006

Immunogenicity of Biosimilars Clinical Consequences

- Severe allergic or anaphylactic reaction
- Immune response to therapeutic protein may reduce efficacy
- Immune response leading to autoimmunity to patients own endogenous proteins
 - Main focus is the questionable efficacy of protein and non-protein products that are being manufactured
 - Manufacturing process in some cases have been able to address these concerns

Schellekens H. *Clin Ther*. 2002 Kessler M, et al. *Nephrol Dial Transplant*. 2006

Political Statement	Scientific Fact
Biosimilar designed to be identical to parent product	Biosimilars may be similar but not identical
Parent product composition varies batch or lot	Batch-to-batch variability is a characteristic of all biologics Variability is unique to each product
	Limits of acceptable variability defined by clinical experience
Laboratory data predicts biosimilar efficacy and safety in clinical settings	Laboratory testing not sufficient Clinical data on efficacy, safety, and immunogenicity needed
MFG process changes frequently for parent product without supporting studies	FDA requires clinical data on MFG MFG changes are supported by data

Henry Waxman

Waxman Biosimilars Bill

- Biosimilarity based on chemical, physical, biologic and other non-clinical laboratory studies.
- One or more clinical studies are required to demonstrate safety, purity and potency.
- Demonstration on similarity in one indication can be used to support claims of similarity in other indications.
- Requested indications must be approved for the reference product.
- Route, dosage and strength must be the same as that of the reference product.

Waxman Biosimilars Bill

- Designation of interchangeability is possible, though not a requirement for biosimilarity.
- The official name of the biosimilar agent will be the same as that of the reference product.
 - Innovator biologic products will receive marketing exclusivity for 5 years from the date of approval.
 - Period may be extended 6 months if supplement application for new indication is approved (excluding use in pediatric subpopulation).
 - Period may be reduced by 3 months is annual gross sales in US exceed \$1 billion.

Rep. Anna Eshoo 14th Congressional District of California

Eshoo Biosimilars Bill

- Biosimilarity based on analytical studies to show product is highly similar to reference product notwithstanding minor differences in clinically inactive components.
- Clinical studies are required to demonstrate safety, purity and potency in each condition of use approved for the reference product.
 - Requested indications must be approved for the reference product.
 - Route, dosage and strength must be the same as that of the reference product.

Eshoo Biosimilars Bill

- Designation of interchangeability is possible, though not a requirement for biosimilarity.
- The official name of the biosimilar shall be unique so that it is distinguished from the reference product an any subsequent biosimilars.
- Guidance for licensure must be provided by the FDA.
 - FDA has the ability to not approve a given product or product class if the current science or experience precludes it.

Eshoo Biosimilars Bill

- Innovator biologic products will receive marketing exclusivity for 12 years from the date of approval.
 - Period may be extended to 14 years if supplement application for new indication is approved
 - Period may be increased by an additional 6 months if use in pediatric populations is approved.

Comparison of the Biosimilars Legislation Proposed by Representatives Waxman and Eshoo

	Waxman Bill	Eshoo Bill
Biosimilarity based on:	Chemical, physical, biologic and other	Analytical studies to show that product is
	non-clinical laboratory studies	highly similar to the reference
		notwithstanding minor differences in
		clinically inactive components
Animal studies	Not specifically mentioned	Yes; including assessment of toxicity
Clinical studies	Yes; one or more studies sufficient to	Yes; one or more studies (including
	demonstrate safety, purity and potency.	immunogenicity and PK/PD) to
	Applicant may use demonstration of	demonstrate safety, purity and potency in
	similarity or interchangeability in one	each condition of use approved for the
	indication to support claims in other	reference product.
	indications provided the same mechanism	
	of action is involved in all conditions	
Mechanism of action	Must be the same as that of the reference	Same as Waxman bill
	product	
Requested indications	Must be approved for the reference	Same as Waxman bill
	product	
PK/PD	Route, dosage, strength must be the same	Same as Waxman bill
	as the reference product	
Production	Appropriate facility must be used	Same as Waxman bill
Waiver of requirements		FDA Secretary has the discretion to waive
		any analytical, animal or immunogenicity
		requirements determined to be
		unnecessary.
Interchangeability	Possible to get such a designation, though	Same as Waxman bill
	not required for biosimilarity	
Product name	FDA Secretary shall designate the same	FDA Secretary shall ensure that each
	official name for the biosimilar as for the	biologic product approved under the bill
	reference drug	bears a unique name that distinguishes it
		fro the reference product and any
		subsequent biosimilars approved.

Comparison of the Biosimilars Legislation Proposed by Representatives Waxman and Eshoo

	Waxman Bill	Eshoo Bill
Guidance on requirements		FDA Secretary must issue guidance on
		requirements for licensure following a
		period of public comment/input.
		No products can be approved until such a
		time that final guidance has been issued.
		FDA Secretary may indicate in guidance
		that certain products or product classes
		will not be licensed because current
		science or experience does not allow it.
Marketing exclusivity for innovator	5 years from date of approval	12 years from the date of approval
products		
	May be extended by 6 months if a	If a supplement application for a new
	supplement application is approved for a	indication is approved during the initial 8
	new indication other than use in a	years following approval, the period of
	pediatric subpopulation	exclusivity is increased to 14 years.
	May be reduced by 3 months is annual	An additional 6 months is granted if use in
	gross sales in the US exceed \$1 billion.	pediatric or neonatal subpopulations is
		approved at any time during the period of
		exclusivity.