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Abstract

The development of pancreatic ductal adenocarcinoma (PDAC) is heavily influenced by local

stromal tissues, or desmoplasia. Biomimetic hydrogels capable of mimicking tumor niches are

particularly useful for discovering the role of independent matrix cues on cancer cell development.

Here, we report a photo-curable and bio-orthogonal thiol-ene (i.e., cross-linked by mutually

reactive norbornene and thiol groups via photoinitiation) hydrogel platform for studying the

growth, morphogenesis, drug resistance, and cancer stem cell marker expression in PDAC cells

cultured in 3D. The hydrogels were prepared from multi-arm poly(ethylene glycol)-norbornene

cross-linked with protease sensitive peptide to permit cell-mediated matrix remodeling. Collagen 1

fibrils were incorporated into the covalent network while cytokines (e.g., EGF and TGF-β1) were

supplemented in the culture media for controlling cell fate. We found that the presence of collagen

1 enhanced cell proliferation and Yes-associated protein (YAP) translocation to cell nuclei.

Cytokines and collagen 1 synergistically up-regulated MT1-MMP expression and induced cell

spreading, suggestive of epithelial-mesenchymal transition (EMT) in the encapsulated cells.

Furthermore, PDAC cells cultured in 3D developed chemo-resistance even in the absence of

collagen 1 and cytokines. This phenotype is likely a consequence of the enrichment of pancreatic

cancer stem cells that expressed high levels of CD24, sonic hedgehog (SHH), and vascular

endothelial growth factor (VEGF).
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1. Introduction

Pancreatic cancer is the fourth leading cause of all cancer-related deaths in the US with more

than 43,000 new cases and 37,000 deaths in 2012 [1]. Pancreatic ductal adenocarcinoma

(PDAC) accounts for more than 80% of all pancreatic cancers, which are difficult to

diagnose at an early stage [2]. The late diagnosis and poor prognosis in PDAC lead to

limited treatment options and extremely low survival rate [3]. Chemotherapies are generally

not effective because PDAC patients quickly develop chemo-resistance by mechanisms that

remain elusive [4,5]. Increasing evidence has suggested that the clinical complications

associated with PDAC cells are contributed by a subset of cancer cell populations, namely

pancreatic cancer stem cells (PCSCs) [6]. Sharing many characteristics with normal stem

cells, cancer stem cells not only self-renew, but also differentiate into mature cancer cells. In

addition, these cancer stem cells are prone to metastasize and to resist drug-induced

apoptosis [7-9]. Although only 1-5% of total PDAC cell population is characterized as

PCSCs [10], this cell population is enriched after drug treatment. PCSCs are characterized

by the expression of surface markers CD24, CD44, CD133, and epithelial specific antigen

(ESA) [6]. These cells also express high levels of sonic hedgehog (SHH), which has been

associated with the resistance of PDAC cells to drug (e.g., gemcitabine) treatment [6,11].

While most of the in vitro PDAC and PCSC studies were conducted in conventional two-

dimensional (2D) tissue culture plastics (TCP), increasing evidence has suggested that cells

behave in a more pathophysiological relevant manner when cultured in a three-dimensional

(3D) niche [12-16]. 3D matrices derived from animal-based products (e.g., Matrigel,

collagen gel, etc.) often possess ill-defined compositions and weak mechanical properties.

Furthermore, it may be difficult to study the influence of a specific matrix cue on PDAC cell

fate using animal models. We hypothesized that a semi-synthetic microenvironment capable

of mimicking aspects of pancreatic desmoplasia (i.e., malignant stromal tissues containing

high amount of collagen 1, myofibroblastic pancreatic stellate cells, and immune cells)

could be used to study how changes in matrix compositions affect PDAC cell behaviors. We

have previously shown that hydrogels prepared from norbornene-functionalized 4-arm

poly(ethylene glycol) (e.g., PEG4NB) and protease-sensitive peptides supported the growth

and morphogenesis of PDAC cells (PANC-1) in 3D [13]. We have also shown that the

susceptibility of PANC-1 cells to a peptide drug (NYQQN) in 3D culture is matrix stiffness-

dependent [14]. Although these studies shed light on the utility of PEG-based hydrogels on

PDAC research in vitro, we have not evaluated the synergistic influences of various

extracellular matrix (ECM) cues presenting in the desmoplasia on the growth, epithelial-

mesenchymal transition (EMT), and drug resistance in PDAC cells cultured in 3D.

To bridge this knowledge gap and to reveal the potential enrichment of PCSCs in 3D

culture, we systematically investigate the effects of cell culture platforms on PDAC cell fate
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processes. We used COLO-357 cells in this study as this cell type is highly sensitive to

cytokine (e.g., TGF-β1) and chemotherapeutic treatment (e.g., gemcitabine). To study the

influence of matrix cues on PDAC cell behaviors, we utilized a modular synthetic hydrogel

platform prepared from a light-mediated orthogonal thiol-norbornene photochemistry

[13,14,17]. We evaluated the cytocompatibility of this desmoplasia-mimetic hydrogel

system on in situ encapsulation of PDAC cells. We also examined the synergistic influence

of matrix components (e.g., collagen 1 and cytokines) on PDAC cell proliferation and EMT

in 3D. Finally, we studied the impact of culture context on chemo-resistance and enrichment

of PCSC-like cells in 3D.

2. Materials and Methods

2.1. Materials

4-arm poly(ethylene glycol)-amine (20 kDa) was purchased from JenKem Technology USA.

Reagents and chemicals for peptide synthesis were were acquired from Anaspec or

Chempep. Bovine type I collagen was purchased from Amsbio. AlamarBlue reagents were

purchased from AbD Serotec. Live/Dead staining kit for mammalian cells and DAPI stain

were obtained from Invitrogen. Gemcitabine was purchased from TSZ CHEM. YAP rabbit

mAb, E-cadherin rabbit mAb, vimentin rabbit mAb, anti-rabbit IgG, anti-mouse IgG HRP-

linked, and Alexa Fluor® 488-labeled anti-mouse IgG F(ab’)2 antibodies were obtained

from Cell Signaling Technology. hVEGF ELISA kit was purchased from PeproTech. HPLC

grade acetonitrile and water were acquired from Fisher Scientific and VWR International,

respectively. All other chemicals were purchased from Sigma-Aldrich unless noted

otherwise.

2.2. Macromer, photoinitiator, and peptide syntheses

PEG-tetra-norbornene (PEG4NB) was synthesized according to an established protocol [18].

Briefly, 4-arm PEG-NH2 was dried in a vacuum oven overnight and dissolved

dimethylformamide (DMF). 5-norbornene-2-carboxylic acid (5 eq. of amine group on PEG)

was activated by 2-(1h-benzotriazol-1-yl)-1,1,3,3-tetramethyluronoium hexafluorphosphate

(HBTU, 5.5 eq.) and hydroxybenzotriazole (HOBt, 5.5 eq.) in DMF for 3 min at room

temperature. Next, N,N-diisopropylethylamine (DIEA, 6 eq.) was added into the solution

and stirred for 5 min. The 4-arm PEG-NH2 solution was added to the activated norbornene

acid solution. All reactions were performed under nitrogen. After 12 h reaction, the product

was filtered and precipitated in cold ethyl ether, dried in a vacuum desiccator, and dialyzed

against ddH2O for 3 days. The degree of functionalization (80–90%) was determined

using 1H NMR (Avance III 500, Brüker) (Fig. S1). Photoinitiator lithium arylphosphinate

(LAP) was synthesized according to a published protocol without modification [19].

MT1-MMP sensitive linker (KCGPLGLYAGCK) was synthesized using Fmoc-Rink-Amide

HBMA resin in a microwave-assisted peptide synthesizer (CEM Discover SPS) following

standard HOBt/HBTU coupling chemistry. Peptide cleavage was also performed in the

microwave peptide synthesizer (38 °C, 20 W, 30 min) using a cleavage cocktail containing

95% trifluoroacetic acid (TFA), 2.5% water, and 2.5% triisopropylsilane (TIS) in the

presence of 5% (w/v) phenol. Crude peptide was precipitated in cold ethyl ether, dried
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overnight in a vacuum desiccator, purified using HPLC (PerkinElmer Flexar System), and

characterized by mass spectrometry (Agilent Technologies) (Fig. S2). Purified peptides were

lyophilized and stored in −20 °C. The concentration of thiol groups on purified cysteine-

containing peptides was quantified using Ellman’s reagent (Pierce).

2.3. Collagen-FAM conjugation

To prepare fluorescently labeled collagen 1 for visualizing collagen distribution in

hydrogels, bovine type 1 collagen was diluted in PBS at a working concentration of 2

mg/mL. 5(6)-Carboxyfluorescein succinimidyl ester (5(6)-FAM-SE, from Anaspec) was

dissolved in dimethyl sulfoxide (DMSO) and diluted 100-fold to yield a working

concentration of 1 mg/mL. pH of the mixture was adjusted to 7.5 using 7.5% (w/v) of

sodium bicarbonate aqueous solution. The mixture was protected from light and incubated

on ice for 2 h. The product was used without further purification.

2.4. Cell culture and encapsulation

COLO-357 cells were maintained in high glucose Dulbecco’s modified eagle medium

(DMEM, HyClone) containing 10% of fetal bovine serum (FBS) (Gibco) and penicillin

streptomycin (Gibco, 50 U/mL penicillin, 50 U/mL streptomycin). Prior to cell

encapsulation, pre-polymer solutions containing PEG4NB, dithiol cross-linker (DTT or

MT1-MMP-sensitive peptide), and 1 mM of LAP were prepared according to the hydrogel

formulations shown in Table S1. COLO-357 cells were trypsinized and suspended in a

prepolymer solution at 2×106 cells/mL. 25 μL of pre-polymer solution was placed in a 1 mL

disposable syringe with a cut-open tip. The sample was exposed to 365 nm light at 5

mW/cm2 for 2 min (Fig. 1A-D).

2.5. Characterization of cell-laden hydrogel

Shear moduli of the cell-laden hydrogels were measured on a digital rheometer (Bohlin

CVO 100). To prepare flat gels for rheomety analysis, cell-laden hydrogels were prepared

between two glass slides separated by 1 mm thick spacers. Circular discs were punched out

from the hydrogel slab using a biopsy punch (diameter 8 mm). Shear moduli of the cell-

laden hydrogels were measured at 1- and 10-day post-encapsulation. To visualize cell

morphology and collagen distribution, cell-laden hydrogels were collected 1- and 10-day

post-encapsulation and fixed with 4% paraformaldehyde solution for 20 min at RT, followed

by washing and permeabilization with 1 mg/mL sapponin. The hydrogels were incubated

with 100 nM rhodamine phalloidin (Cytoskeleton Inc.) solution for 2 h at RT and counter-

stained with DAPI. Confocal images of the stained samples were obtained using an

Olympus Fluoview FV100 laser scanning microscope. To identify proliferating cells, 10 nM

of EdU reagent (Click-IT® EdU staining kit) was added into the culture media 9 days post-

encapsulation, followed by incubation at 37 °C for 24 hr. The cell-laden gels were collected

and rinsed with PBS twice, fixed with 4% paraformaldehyde solution for 20 min, and

permeabilized with 0.5% Triton X-100 for 20 min. The gels were washed with PBS twice

and immersed in EdU reaction cocktail prepared following manufacturer’s instruction. The

gels were counter-stained with DAPI for 1 h and the stained gels were imaged by confocal

microscopy.
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Cell viability in 2D was determined by MTT assay. COLO-357 cells seeded in 96-well plate

at 10,000 cells/well were cultured for 1 day, followed by treatment of cells with

gemcitabine-containing media (10−1~105 nM) for 4 days (media change every 2 days). After

the incubation, the old media were removed and each well was rinsed with PBS. Then, 10

μL of 5 mg/mL MTT solution was diluted in 100 μL of culture medium and added to the

cells for 4 h. The purple formazan crystal formed was dissolved by dimethyl sulfoxide,

followed by quantifying the absorbance at 540 nm. Cell morphology was observed using

Live/Dead staining and confocal imaging. Cell-laden hydrogels were incubated in Live/

Dead staining solution for 1 h at room temperature with gentle shaking. Z-stack images (100

μm thick, 10 μm per slice) of at least four random fields were acquired by using the confocal

microscope. Initial cell viability was obtained by counting live and dead cells from 12

randomly selected z-stack live/dead images. The live cell number was divided by total cell

count to obtain initial cell viability. Cell cluster diameters were measured 10-day post-

encapsulation. For non-spherical clusters, the distance along the longest axis in a cluster was

measured instead of diameter.

2.6. RNA isolation, reverse transcription PCR and real-time PCR

For RNA extraction, gels were collected in DNase/RNase-free microtubes, flash frozen with

liquid nitrogen, and stored at −80 °C until use. RNA extraction was performed using a

combination of guanidinium thiocyanate-phenol-chloroform extraction [20] and NucleoSpin

RNA II kit (Clontech). In brief, frozen gels were homogenized in 900 μL of QIAzol

(Qiagen) as the samples thaw and incubated at room temperature for 5 min. The samples

were filtered through NucleoSpin Filters to clear lysates before the addition of 180 μL of 1-

bromo-3-chloropropane (BCP, Sigma). The mixtures were vortexed for 15 s and incubated

at room temperature for 3 min before centrifuging at 13800 g for 15 min at 4 °C for

aqueous/organic phase separation. Subsequently, the colorless aqueous layers (~600 μL)

were transferred to clean DNase/RNase-free microtubes, followed by the addition of equal

volume of RNase-free 70% ethanol, and vortexed for 20 s. The mixtures were then added to

NucleoSpin RNA columns, and RNA isolation was performed by following the

manufacturer’s protocol. The final total RNA products were eluted in 30 μL of DNase/

RNase-free water, and the yield was quantified by UV spectrometry. Aliquots of RNA

samples were stored at −80 °C until use. In a reverse transcription reaction, 250-500 ng of

the isolated total RNA were converted into single-stranded cDNA using the PrimeScript RT

reagent kit (Clontech). Quantitative real-time PCR was performed by using SYBR Premix

Ex Taq II kit (Clontech) on an Applied Biosystems 7500 fast real-time PCR machine as

described in the manufacturer’s protocol. The samples were run at 95 °C for 30 s, followed

by 45 cycles of 95 °C for 5 s, 55 °C for 30 s, and 72 °C for 30 s. The amplification/SYBR

signals were detected at the end of each cycle when 30 s at 72 °C was completed. The

relative quantity of each gene was normalized to the GAPDH internal control and evaluated

by using the 2−ΔΔCT method. Forward and reverse primers were listed in Table S2.

2.7. Western blot

Total protein from the encapsulated cells was extracted by homogenizing cell-laden

hydrogels using a pellet mixer and lysed with RIPA buffer containing halt protease inhibitor

(10 μg/mL), 5 mM EDTA, and 20 μM of phenylmethylsulfonyl fluoride (PMSF). Protein
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extract was cleared by centrifugation at 8,000 rpm for 10 min at 4 °C and concentrated using

a centrifugal filter unit (VWR) at 12,000 rpm for 20 min at 4 °C. Total protein concentration

was determined by micro-BCA protein quantification kit (Pierce), separated by SDS-PAGE,

and transferred to PVDF transfer membrane using a Trans-Blot Turbo Transfer System

(BioRad). The blots were blocked overnight with 5% nonfat milk in TBS solution (PBS

containing 0.05% Tween 20) at 4 °C, followed by incubation in primary antibody (rabbit

anti-β-vimentin 1:400, rabbit anti-E-cadherin 1:400, or mouse anti-β-actin 1:450) and HRP-

conjugated secondary antibody (Anti-rabbit IgG, Anti-mouse IgG, 1:800) for 1 h each at

room temperature. The blots were washed with TBS solution for 1 h and treated with a

chemiluminescence detection kit (SuperSignal West Pico Detection Kit, Thermo Scientific).

Immunoblotting images were obtained using a chemiluminescence imaging system

(LAS3000, Fuji Film).

2.8. Immunofluorescence staining and confocal microscopy

YAP and CD24 expression in the encapsulated cells was visualized by immunofluorescence

staining and confocal microscopy. Cell-laden hydrogels were fixed in 4% paraformaldehyde

at room temperature for 20 min with gentle shaking. Samples were then rinsed with PBS and

the encapsulated cells were permeabilized with 1 mg/mL of saponin in PBS at room

temperature for 20 min with gentle shaking. The samples were then washed with PBS and

blocked with 1% BSA solution overnight at 4 °C, followed by overnight incubation with

rabbit anti-YAP (1:100) or mouse-anti-CD24 (Santa Cruz Biotech, 1:100) at 4 °C. After 3

washes with PBS, the samples were incubated with 1:100 diluted goat anti-Rabbit IgG (H

+L)-FITC (from KPL) or Alexa Fluor® 488-labeled goat anti-mouse IgG F(ab’)2 overnight

at 4 °C. The samples were rinsed with PBS and counter-stained with DAPI for 1 h. The cells

were visualized and imaged by confocal microscopy.

2.9. Gemcitabine resistance, cell viability, and apoptosis assays

To evaluate the responsiveness of COLO-357 cells to gemcitabine treatment, cells were

seeded into a 96-well plate at 5~40×103 cells/well and incubated for one day. 1 μM of

gemcitabine was added to the cells for 4 days with media change every 2 days. The

metabolic activity of drug-treated cells was measured by AlamarBlue assay with 2 h

incubation time. To assess drug resistance of cells in 3D, the encapsulated cells were treated

with 1 μM of gemcitabine on day-10 post-encapsulation for 4 additional days. Metabolic

activity and morphology of the cells were assessed by AlamarBlue reagent and Live/dead

staining, respectively. Cell apoptosis was assessed by caspase 3/7 activity assay using cells

recovered from the cell-laden hydrogels. Gels were eroded with 1 mg/mL of α-

chymotrypsin for 15 min to liberate cell spheroids, which were dissociated into single cells

using 1× trypsin solution. The harvested cells were re-suspended in PBS and transferred to a

96-well plate (2×104 cells/well). 100 μL of Caspase-Glo® reagent (Promega) was added to

the cells for 1 h and the luminescence was measured by a microplate reader (Synergy HT,

BioTek).

2.10. Flow cytometry

Single cells harvested from 2D culture or hydrogels (see section 2.9) were fixed by 4%

paraformaldehyde for 20 min before the permeabilization by 1 mg/mL of saponin for 20
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min. After washed by PBS, cells were blocked with1% BSA for 1 hr, and immuno-stained

by mouse-anti-CD24 (Santa Cruz, 1:100) and rat-anti-CD44 (Thermo Scientific, 1:100)

antibodies for 2 h. After three PBS washes, cells were incubated with Alexa Fluor® 488-

labeled goat anti-mouse IgG F(ab’)2 (Cell signaling, 1:100) and PE conjugated goat anti-rat

IgG-R (Santa Cruz, 1:100) for 30 min. After washing with PBS twice, the immuno-stained

cells were analyzed by flow cytometry using BD FACSCalibur (BD Biosciences).

2.11 SHH and VEGF enzyme-linked immunosorbent assay (ELISA)

The secretion of SHH and VEGF from encapsulated cells was analyzed by using SHH and

VEGF ELISA assay kits (obtained from Sigma-Aldrich and PeproTech, respectively)

following manufacturers’ instructions.

2.12 Statistics

All experiments were conducted independently for at least three times, and the results were

presented as mean ± SEM. Each condition or gel formulation used in each experiment

contained at least three gel samples. Statistical significance was determined using one-way

ANOVA test. Difference was considered statistically significant when p < 0.05.

3. Results

3.1. Desmoplasia-mimetic hydrogels for culturing PDAC cells in 3D

To prepare desmoplasia-mimetic hydrogels, poly(ethylene glycol)-tetra-norbornene

(PEG4NB, Fig. 1A and Fig. S1) was cross-linked by a bis-cysteine terminated peptide

substrate (sequence: KCGPLG*LYAGCK [21], *protease cleavage site. Fig. 1B and Fig.

S2). A PEG-based macromer was preferred because of its hydrophilic, non-fouling, and

cytocompatible property [22]. Further, the peptide cross-linker has high specificity for

membrane type 1-matrix metalloproteinase (MT1-MMP). The use of this peptide linker

permits cell invasion into neighboring matrix caused by membrane-tethered protease

activity. Type 1 collagen (Col1), the major matrix component in the pancreatic desmoplasia

[23-25], was physically entrapped in some hydrogels during light-induced orthogonal thiol-

ene gelation and cell encapsulation (Fig. 1C-D). The entrapment of Col1 allows controlled

cell-matrix binding independent of other matrix biophysical properties. The orthogonal

thiol-ene hydrogels exhibited high cytocompatibility for in situ encapsulation of COLO-357

cells, a Smad4-positive PDAC cell line highly responsive to transforming growth factor-β

(TGF-β1) [15,26]. High percentages of live cells (> 90%) were found in all live/dead

staining images of cell-laden protease-sensitive hydrogels (Fig. 1E) and bio-inert hydrogels

cross-linked by dithiothreitol (DTT) (Fig. S3). The incorporation of Col1 (FAM-labeled,

green in Fig. 1F) in hydrogels promoted the formation of larger multi-cell clusters 10-day

post-encapsulation (Fig. 1G and Fig. S4A). The increased cell cluster size may be a result of

enhanced cell-Col1 interactions (Fig. 1H).

3.2. Effect of collagen 1 on PDAC cell proliferation, Hippo pathway inhibition, and gel
property

Recent studies have revealed the negative effect of Hippo pathway activation on cell

proliferation [27-29]. In the current study, we found that only about 44% of the encapsulated
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cells were actively proliferating (EdU+) in the absence of Col1 in the gels, whereas more

than 60% of the cells were EdU+ in the presence of Col1 (Fig. 2A, Table S3). The

enhancement in cell proliferation in the presence of Col1 was also confirmed by total cell

counts following gel erosion and cell recovery using exogenous chymotrypsin treatment

(Fig. S4B) [30]. AlamarBlue assay results showed that metabolic activity of the

encapsulated cells was higher in the presence of Col1, but in both systems (−Col1 and

+Col1) cell metabolic activity reached maximum after 7 days of in vitro culture (Fig. S4C),

suggesting that the cells reached homeostasis within the 3D hydrogels. Although cell

metabolic activity dropped slightly from day 7 to day 10, no significant cell death was

observed in live/dead staining (data not shown). The presence of Col1 also caused

translocation of yes-associated protein (YAP) from cytoplasm (Fig. 2B) to cell nuclei (Fig.

2C), suggesting the activation (i.e., dephosphorylation) of YAP and inhibition of Hippo

pathway in the encapsulated COLO-357 cells. To understand the influence of increased cell

cluster size on mechanical property of the cell-laden thiol-ene hydrogels, we measured

elastic moduli of the hydrogels over time. Initially, both hydrogels (−Col1 and +Col1)

showed similar elastic moduli (G’ ~ 2 kPa) 1-day post-encapsulation. In the presence of

Col1, however, gel modulus degreased significantly after 10 days of culture (Fig. S6). This

result could potentially be attributed to increased cellular activity, which enhanced peptide

linker cleavage and consequently reduced bulk gel mechanical properties.

3.3. Effect of cytokines on PDAC cell morphology in 3D

The progression of PDAC has been associated with autocrine and/or paracrine effects of

cytokines, such as TGF-β1 and EGF [15,31]. To evaluate the potential effects of these

cytokines on PDAC cell fate in 3D, COLO-357 cells were encapsulated in MT1-MMP

sensitive hydrogels in the absence or presence of Col1. Cell-laden hydrogels were

maintained in culture media containing recombinant TGF-β1 (0.5 nM) and EGF (1 nM).

Live/dead staining and confocal microscopy images showed that COLO-357 cells formed

compact cell clusters in −Col1 hydrogels after 10 days (Fig. 3A, left); however, these cell

clusters appeared to be smaller than those formed in the same type of gels (−Col1) without

cytokine treatment (Fig. 1G, left). Interestingly, in +Col1 hydrogels treated with TGF-β1 and

EGF, the shape of the cell clusters became highly irregular (Fig. 3A, right), suggesting the

enhancement in either cancer cell proliferation or spreading, or both. The addition of

cytokines also increased metabolic activity of the encapsulated cells in both types of

hydrogels (Fig. S7, compared with Fig. S4C) and the enhancement did not taper off after 10

days of culture. To further elucidate the cause of these irregular cell shapes, we stained the

encapsulated cells with Click-iT® EdU Alexa Fluor® 488 staining kit. Results showed that

the spreading/invading cell phenotype in the presence of both cytokines and Col1 was not

due to increased cell proliferation because the number of EdU+ cells decreased markedly

(~24 ± 1%, Fig. 3B, Table S3) when compared with the results shown in Fig. 2A where no

cytokines were added. Furthermore, staining images revealed that EdU+ cells were

randomly scattered in any given cell cluster after cytokine treatment (Fig. 3B right), whereas

only the peripheral cells of the clusters were stained EdU+ in the absence of cytokines (Fig.

S5).
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Since the thiol-ene hydrogels used in this study were cross-linked by a peptide linker highly

sensitive to MT1-MMP, the only route by which these cells invaded into their neighboring

matrix is through increased MT1-MMP expression and matrix cleavage. Therefore, we

examined MT1-MMP mRNA level in the encapsulated cells using quantitative real-time

PCR. Results showed that MT1-MMP mRNA level was significantly increased in cells

treated with cytokines (Fig. 3C), suggesting that EGF and TGF-β1 are necessary and

sufficient in up-regulating the expression of MT1-MMP in cells encapsulated in these

hydrogels. On the other hand, Col1 by itself did not increase MT1-MMP mRNA level but

showed synergistic effect with EGF and TGF-β1 in up-regulating MT1-MMP expression

(Fig. 3C).

3.4. Effect of collagen and cytokines on EMT in PDAC cells cultured in 3D

We reasoned that the increased MT1-MMP expression in the encapsulated cells has a

positive correlation with the degree of epithelial-mesenchymal transition (EMT). To verify

this, we evaluated the expression of markers specific to epithelial and mesenchymal tissues

(Fig. 4A). We found that COLO-357 cells cultured in 3D hydrogel, when compared with 2D

culture (level set as 1-fold), expressed a higher level of vimentin (VIM). Treatment with

cytokines increased the expression of mesenchymal markers, VIM and N-cadherin (CDH2),

but did not change the expression of Snail-1 (SNAI1) and an epithelial maker, E-cadherin

(CDH1). The influence of Col1 was only apparent in the expression of SNAI1. We also

examined selected EMT marker expressions in the protein level using Western Blot (Fig.

4B). While VIM protein expression was un-detectable without cytokine treatment

(regardless of 2D or 3D culture), its expression was up-regulated when cytokines were

added in the culture media. Increased VIM protein expression was accompanied with a

decrease in the levels of an epithelial marker, E-cadherin (E-Cad), and the addition of Col1

potentiated this trend.

3.5. Chemo-resistance of PDAC cells in 3D

PDAC cells are prone to develop chemo-resistance by mechanisms that are still elusive. We

found that COLO-357 cells cultured on 2D TCP are sensitive to gemcitabine (Gem), a

chemotherapeutic agent commonly used to treat PDAC [3], with a LD50 of 6×10−3 μM (Fig.

S8). We further evaluated whether increasing cell-cell interaction confers chemoresistance

on COLO-357 cells cultured in 2D. As shown in Fig. 5A, cells cultured at various cell

densities on 2D TCP did not alter their susceptibility to gemcitabine treatment as 1 μM Gem

caused significant cell death regardless of cell seeding density. To investigate whether

culture platform (i.e., 2D TCP or 3D desmoplasia-mimetic hydrogels) played a role in the

development of chemo-resistance in PDAC cells, COLO-357 cells were encapsulated in

hydrogels and cultured in the presence of 1 μM of Gem. Surprisingly, under Gem treatment,

only slight reduction (< 20%) of cell metabolic activity (Fig. 5B) and limited cell death

(mostly on the surface of cell clusters, Fig. 6A) were observed in cells cultured in 3D

hydrogels. While Gem treatment induced slight reduction in cell cluster size, it did not alter

the spreading cell phenotype caused by EGF/TGF-β1 (Fig. 6A). The influence of Gem on

COLO-357 cells was also verified via caspase activity assay (Fig. 6B). There was a 6-fold

increase in the degree of cell apoptosis in 2D culture with Gem. By contrast, Gem treatment

induced less than 3-fold increase in caspase activity when the cells were cultured in 3D and
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without cytokine treatment. No enhancement in caspase activity was detected when the cells

were maintained in 3D hydrogels incorporated with Col1 and cytokines.

3.6. Enrichment of pancreatic cancer stem cell markers in 3D culture

Because cancer stem cells (CSC) are highly resistant to chemotherapy, we speculated that

most of the cells killed in the gemcitabine experiment above were mature cancer cells

whereas the cells that survived gemcitabine treatment were CSC-like cells. To evaluate this

possibility, we examined the expression of markers associated with pancreatic cancer stem

cells (PCSCs), including CD24, CD44, CD133, sonic hedgehog (SHH), and vascular

endothelial growth factor (VEGF) in COLO-357 cells encapsulated in desmoplasia-mimetic

hydrogels (Fig. 7). Strikingly, the expression of CD24 mRNA was increased 6-fold simply

by culturing cells in 3D and the treatment of encapsulated cells with cytokines (TGF-β1 and

EGF) further increased CD24 expression to 20-fold (Fig. 7A). While Col1 by itself did not

alter the expression of CD24, it synergistically increased CD24 expression with cytokines

(+T/E), evidenced by a 61-fold increase when both components were added to the culture

system. The enhancement in CD24 expression was also evidenced by immunofluorescence

staining using an anti-CD24 antibody (Fig. 7B). Flow cytometry results support the

observation of CD24 up-regulation in 3D hydrogels (Fig. 7C). Compared with cells cultured

in 2D, a higher percentage of cells were CD24+, and the addition of cytokines further

increased CD24+ cell population (Fig. 7C) in 3D. We also found that CD44 (Fig. 7D) and

CD133 (PROM1, Fig. 7E) were down regulated by 3D culture but their expressions were

restored and slightly up-regulated by the addition of cytokines. SHH, another PCSC marker,

was up-regulated at both mRNA (Fig. 8A) and protein (Fig. 8B) levels. Specifically, when

compared with 2D culture, COLO-357 cells in 3D (without cytokine treatment) exhibited

6.5-fold (−Col1) to 7.5-fold (+Col1) increase in SHH mRNA expression and 3.7-fold

(−Col1) to 4.4-fold (+Col1) increase in protein secretion. Strikingly, cytokine treatment led

to 54-fold up-regulation of SHH mRNA expression (Fig. 8A) and 16-fold increase in protein

secretion when the cells were cultured in hydrogels without Col1. Interestingly, the addition

of Col1 somewhat attenuated SHH mRNA expression and protein secretion in the presence

of cytokines (i.e., 25-fold increase in mRNA and 5-fold increase in protein level. Fig. 8A

and 8B). The amounts of VEGF secretion from COLO-357 cells were also significantly

increased when the cells were cultured in 3D, especially in the presence of TGF-β1 and EGF

(Fig. 8C).

4. Discussion

Three-dimensional cell culture matrices capable of deciphering multiple extracellular cues,

including, but not limited to, matrix stiffness, ECM proteins, and cytokines can facilitate the

understanding of cancer cell progression and its response to drug treatment. While Matrigel

and collagen gels are commercially available and commonly used as 3D matrices for

studying cancer cell biology in vitro, the properties of these animal-derived matrices are

difficult to control (e.g., weak stiffness, batch-dependent components). Consequently, the

use of animal-derived matrices for in vitro cell study is sub-optimal if one wishes to

understand the influence of a specific matrix cue on call fate process. On the contrary,

hydrogels cross-linked by orthogonal thiol-ene photochemistry, such as the system reported
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here, is appropriate and relevant for studying cancer cell biology in vitro and ex vivo. As

reported here, we adjusted the content of PEG4NB macromer in thiol-ene hydrogels so that

the gel shear moduli were at around 2 kPa (Young’s modulus ~6 kPa. Fig. S6), which is

within the stiffness range of solid pancreatic tumor tissue [32]. These PEG-based hydrogels

were hydrolytically stable but were sensitive to protease mediated matrix cleavage.

Specifically, the gels were cross-linked by peptide linkers sensitive to MT1-MMP, a

protease highly expressed on cell surface of many PDAC cells [33,34]. This feature allowed

us to observe cell invasion into the neighboring matrix due to up-regulation of MT1-MMP.

To further control cell behaviors, Col1 fibril and cytokines (TGF-β1 and EGF) were added

independently in gel matrix and culture medium, respectively. This design permitted the

manipulation of cancer cell behaviors in an orthogonally controlled manner, which

decouples the influence of various ECM cues. Although the presence of other proteases in

the cell culture media may cause nonspecific cleavage of the peptide cross-linker (or any

peptide/protein incorporated in any hydrogel), the evaluation of this effect is outside of the

scope of the current study.

We found that Col1 enhanced the proliferation and the formation of larger cell clusters of

encapsulated COLO-357 cells (Fig. 1). The observation is likely a result of enhanced cell-

collagen binding and integrin activation because Col1 contains many integrin-binding sites

(e.g., GFOGER, GLPGER, GASGER) [35-37]. It is worth noting that we did not extract

numerical data from confocal images about cell-Col1 interactions because such data would

be semi-quantitative at best. Furthermore, after 10-day post-encapsulation it was impossible

to distinguish individual cells in any given cell cluster unless images with higher

magnification (e.g., Fig. 1H, right) were taken. Practically it would require an unreasonable

amount of time on confocal image acquisitions and analysis. The observation of the

translocation of YAP to cell nuclei in the +Col1 hydrogels (Fig. 2C) suggests a possible

regulatory role of Col1 in inhibiting the Hippo pathway. To the best of our knowledge, the

inhibitory regulation of Col1 in the Hippo pathway has not been reported previously and the

results shown here warrant future investigation. The EdU staining results confirmed that

cytokines not only caused growth inhibition in 3D, but also attenuated the growth promoting

effect of Col1 (Fig. 3B). In fact, the addition of cytokines and Col1 induced significant EMT

in PDAC cells, evidenced by increased cell invasion into the neighboring matrix (Fig. 3A)

and increased MT1-MMP expression from the encapsulated cells (Fig. 3C). These results

suggest that the presence of EGF and TGF-β1 stimulates EMT in COLO-357 cells

encapsulated in desmoplasia-mimetic hydrogels and synergistically promotes cell spreading

with Col1 via MT1-MMP dependent pathway. Recent studies using collagen gels have

concluded that collagen promotes the expression of MT1-MMP and regulates the expression

of EMT markers [25,38]. Our results, however, showed that the up-regulation of MT1-MMP

and mesenchymal markers (e.g., vimentin) was not determined by collagen, but by culturing

cells in 3D (Fig. 4). These results reaffirm the unique utility of synthetic biomimetic

matrices on studying cancer cell biology in 3D.

In addition to tumor cell growth, invasion, and EMT, we also demonstrated that our

orthogonally cross-linked hydrogels are ideal for studying cancer cell drug resistance. We

used gemcitabine, a clinically prescribed anti-cancer therapeutic, to study PDAC cell
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responses to chemotherapy. Many studies have shown that COLO-357 cells were highly

susceptible to gemcitabine treatment in 2D culture [2,39,40]. Indeed, we found that,

regardless of cell seeding density, COLO-357 cells cultured in 2D had very low tolerance to

gemcitabine treatment (Fig. 5A, S8). On the other hand, the same cells encapsulated in 3D

remained largely viable and metabolically active under gemcitabine treatment at a

concentration (1 μM) that killed most cells in 2D. This indicates that 3D culture stimulates

the development of drug resistance. Using collagen gels, Dangi-Garimella et al. previously

concluded that collagen promotes gemcitabine resistance in PDAC cells [24]. In our study,

however, PDAC cells cultured in 3D hydrogels developed drug resistance spontaneously,

and the embedded Col1 did not render these cells more resistant to drug treatment (Fig. 5B,

6). These results suggest that cell-ECM interaction, 3D culture context, and the stimulation

of EGF and TGF-β1 together contribute to the development of chemo-resistance in PDAC

cells.

The behaviors of COLO-357 cells in desmoplasia-mimetic hydrogels suggest that these cells

might have adapted to exhibit characteristics that are different from their counterpart when

cultured on 2D TCP. We speculated that these altered cell behaviors (i.e., increased

proliferation, EMT, and drug resistance) were caused by the enrichment of certain cell

populations, such as pancreatic cancer stem cells (PCSCs). Indeed, when compared with 2D

culture, we found that the encapsulated COLO-357 cells expressed higher levels of PCSC

markers, especially CD24, SHH, and VEGF (Fig. 7, 8). The addition of TGF-β1/EGF further

increased the expression of these markers, as well as CD44 and CD133. CD44 is already

abundantly expressed in COLO-357 cells (Fig. S9). On the other hand, the expression of

CD24 has been implicated in the progression of PDAC [41]. Moreover, the increased

secretion of SHH and VEGF also indicated the enrichment of PCSC-like cells in 3D matrix.

SHH has been associated with PCSCs and drug resistance to chemotherapy [6,10,11], and

VEGF is an important marker during carcinogenesis and metastasis [42,43]. One of the

potential explanations of the increase of SHH and VEGF expression in 3D hydrogel is

hypoxia. Hypoxic conditions are known to occur in tumor tissues and to induce VEGF

secretion from cancer cells. Recent studies have also shown that hypoxic conditions activate

SHH expression and signaling [44,45]. While the cells encapsulated in our hydrogels were

mostly alive, they might experience certain degree of hypoxia in the cross-linked hydrogel

network. Although hypoxia is a common challenge facing 3D cell culture, regardless of the

material (collagen, Matrigel, PEG, etc.), the use of PEG-based matrices with defined

compositions permits the decoupling of various matrix cues on cell fate choice.

Through an autocrine and/or paracrine mechanism, the increase of SHH secretion might also

contribute to gemcitabine resistance and activated EMT in the encapsulated COLO-357

cells. Prior studies have shown that CD24+, CD44+, CD133+, and SHH are selection

markers for PCSCs [10,39]. Our results, however, showed that the expression levels of these

markers were differentially regulated, depending on the cell culture platform (2D vs. 3D; ±

Col1 or ± cytokines). While CD24 and SHH were significantly up-regulated in our 3D cell

culture, CD44 and CD133 expressions were reduced in 3D (Fig. 7). It is possible that PCSCs

express differential sets of markers depending on microenvironment stimuli, such as matrix

stiffness and context (i.e., 2D vs. 3D). It is also likely that our 3D hydrogels provide a more
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pathophysiological-relevant microenvironment that facilitates the selection of distinct sub-

populations of PCSC-like cells. The capability of our 3D hydrogel to up-regulate selective

PCSC makers such as CD24, SHH, and VEGF in COLO-357 cells provides a unique and

useful system for future PCSC research targeting specific signaling pathways.

5. Conclusion

We have established a desmoplasia-mimetic semi-synthetic hydrogel with orthogonally

controlled biophysical and biochemical properties for PDAC study in vitro. Current data

suggest that PDAC cell behaviors are regulated by a myriad of local microenvironment cues.

In particular, we found that collagen 1 promoted cell proliferation via nuclear translocation

of YAP and potential inhibition of the Hippo pathway. We also showed that the up-

regulation of MT1-MMP and mesenchymal markers was possible in the absence of Col1.

Furthermore, Col1 and cytokines synergistically promoted EMT in PDAC cells. The

encapsulated COLO-357 cells exhibited a high gemcitabine resistance, likely due to the

enrichment of PCSC-like cells in a 3D microenvironment. Utilizing this desmoplasia-

mimetic hydrogel platform, future work will focus on mechanistic understanding of

potential synergistic influence of matrix stiffness and integrin binding on activation/

inhibition of Hippo pathway and on evaluating the effects of matrix conditions on PCSC

drug resistance.
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Figure 1.
(A) Schematic of amide-linked PEG-tetra-norbornene (PEG4NB). (B) Bis-cysteine bearing

MT1-MMP sensitive peptide cross-linker. (C) Light-mediated thiol-ene reaction (R1: PEG,

R2: MT1-MMP sensitive linker). (D) Schematic of a COLO-357 cell encapsulated in the

desmoplasia-mimetic hydrogel network. (E) Day 1 Live/dead images of encapsulated cells

(Z-stack: 100 μm, live: green, dead: red). (F) Fluorescence-staining of encapsulated cells and

entrapped Col1 (two magnifications) at Day 1 post-encapsulation. (G) Day 10 Live/dead

staining images of encapsulated cells (Z-stack: 100 μm, live: green, dead: red). (H)

Fluorescence-staining of encapsulated cells and entrapped Col1 (two magnifications) at Day

10 post-encapsulation.
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Figure 2.
(A) Click-IT® EdU staining of proliferating COLO-357 cells in hydrogels without or with

Col1. (B and C) Immunofluorescence images of cell clusters encapsulated in hydrogels

formed without/with Col1 (B: −Col1, C: + Col1) 10-day post-encapsulation (YAP: green,

nuclei: blue). Arrows indicate co-localization of YAP and cell nuclei.
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Figure 3.
(A) Live/dead images of encapsulated cells in hydrogel formed without/with Col1 and in

presence of cytokines (TGF-β1/EGF) 10-day post-encapsulation (Z-stack: 100 μm, live:

green, dead: red). (B) Click-IT EdU staining images (left: Z-stack; right: single slice; EdU+:

green, DAPI: blue). (C) MT1-MMP mRNA expression in the encapsulated cells (1-fold:

mRNA levels in cells cultured in 2D. *** p<0.0001).
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Figure 4.
(A) mRNA expression levels of epithelial and mesenchymal markers in the absence or

presence of Col1 (1-fold: mRNA levels in cells cultured in 2D). (B) Western blot analysis of

EMT markers (Vim: vimentin. E-Cad: E-cadherin) in COLO-357 cells cultured in various

conditions as indicated (Col1: Collagen 1. T: TGFβ1. E: EGF).
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Figure 5.
(A) Metabolic activity of COLO-357 cells with or without 1 μM gemcitabine treatment (4

days) at various seeding densities in 2D TCP. (B) Metabolic activity of COLO-357 cells

encapsulated in hydrogels with indicated conditions (n = 3; *, p < 0.05; ***, p < 0.001).
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Figure 6.
(A) Live/dead images of COLO-357 cells encapsulated in hydrogels with indicated

conditions. (B) Caspase-3/7 activities of COLO-357 cells cultured in indicated conditions

with or without 1 μM gemcitabine treatment. Caspase activity without gemcitabine

treatment at respective group was set as 1-fold (n = 3, *** p < 0.001).
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Figure 7.
(A) CD24 expressions at the mRNA level. Expression levels were compared with the level

in cells cultured in 2D (level in 2D = 1-fold; n = 3; ***, p < 0.001). (B)

Immunofluorescence images of CD24 (CD24: green; nuclei: blue). (C) Flow cytometry

analysis of CD24 expression. (D) CD44 and (E) CD133 expressions at the mRNA levels.

(level in 2D = 1-fold; n = 3; ***, p < 0.001).
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Figure 8.
(A) SHH mRNA expression levels at 10 days post-encapsulation (the level in 10-day 2D

cultured cells were set as 1-fold; n = 3; ***, p < 0.001). Secretion of: (B) SHH and (C)

VEGF from cells cultured on 2D TCP or 3D hydrogels at day 10 post-encapsulation (n = 3.

*, **, *** = p < 0.05, 0.01, 0.001).
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