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BRANCHING RULES FOR QUANTUM TOROIDAL gln

B. FEIGIN, M. JIMBO, T. MIWA, AND E. MUKHIN

Abstract. We construct an analog of the subalgebra Ugl(n) ⊗ Ugl(m) ⊂ Ugl(m + n) in the
setting of quantum toroidal algebras and study the restrictions of various representations to
this subalgebra.

1. Introduction

1.1. Motivation: the AGT conjecture. The quantum toroidal algebra, [GKV], associated
with a semi-simple Lie algebra g is the quantum version of the universal enveloping algebra of
the Lie algebra of currents C∗ × C∗ → g.

In this paper we consider only the case g = gln, n ≥ 1. The corresponding toroidal algebra
En = En(q1, q2, q3), see Section 2.1, depends on three deformation parameters q1, q2, q3 such that
q1q2q3 = 1. The algebra En(q1, q2, q3) has two central elements which we denote by qc and κ.
In all representations appearing in this paper, one of the central elements, qc, always acts by
1. In the limit q2 → 1, the algebra En becomes the universal central extension of the universal
enveloping algebra of the Lie algebra Mn⊗C[Z±1, D±1], see Section 3.7. Here Mn is the algebra
of n×n matrices, and C[Z±1, D±1] is the algebra of functions on the one-dimensional quantum
torus: ZD = qn1DZ. The Lie algebra structure is given by the standard formula [a, b] = ab−ba.

The algebra En has another important so-called conformal limit. This limit is more subtle
and it is obtained by setting q1 = εσ1, q2 = εσ2, q3 = εσ3 with σ1 + σ2 + σ3 = 0, κ = εk,
and sending ε → 1. This limit is called conformal, because the limiting algebra has a vertex
operator algebra (conformal algebra) structure. The limiting algebra depends on σ1/σ2 and
k. Note that the algebra obtained via the conformal limit for special values of parameters is
smaller than En.

The conformal limit is important for the study of the AGT conjecture. The AGT conjecture,
[AGT], claims that when parameters of the 4-dimensional topological super Yang-Mills field
theory go to an appropriate limit, the theory becomes deeply connected to a 2-dimensional
conformal field theory. At the same time the algebra En(q1, q2, q3) acts by correspondences
in the space of the K-theory of the moduli spaces of instantons related to the 4-dimensional
topological super Yang-Mills field theory and the conformal limit of En(q1, q2, q3) describes the
relevant conformal field theory.

1.2. Motivation: the coset constructions. Consider a pair of affine Lie algebras: ĝlN and

its subalgebra ĝlN−n ⊂ ĝlN both with level k. The well-known coset construction of conformal

field theory gives a new vertex operator algebra for this pair, which we denote Ck(ĝlN , ĝlN−n).
The coset algebras naturally appear in the problem of decompositions of representations. Con-

sider a restriction of an integrable representation π of ĝlN with level k to the subalgebra ĝlN−n.
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Then we have the decomposition π = ⊕α Wα ⊗ Rα, where Rα are irreducible representa-

tions of ĝlN−n, and spaces of multiplicities Wα are irreducible representations of the algebra

Ck(ĝlN , ĝlN−n).
The problem of decomposition of UglN module after restriction to UglN−n is closely related to

the problem of finding the commutant of the subalgebra UglN−n in UglN . This commutant can
be described explicitly, and it is closely related to the Yangian of gln, see [O1], [O2]. Namely,
the commutant is a factor of the Yangian and the Yangian can be viewed as the analytic
continuation of the commutant with respect to the variable N . To get generators and relations

of the coset algebra Ck(ĝlN , ĝlN−n) one has to study the commutant in the affine setting.

Clearly, Ck(ĝlN , ĝlN−n) contains the subalgebra ĝln with level k generated by Eij(z) =∑
s∈Z(Eij ⊗ ts)z−s, where i, j = N − n + 1, . . . , N . It also contains the quadratic currents

E
(2)
ij (z) =

∑N−n
α=1 : Eiα(z)Eαj(z) : with i, j = N−n+1, . . . , N . In fact, the algebra Ck(ĝlN , ĝlN−n)

is generated by Eij(z) and E
(2)
ij (z). But in the operator product of the currents Eij(z) with

Eij(w) one can find cubic currents E
(3)
ij (z), then quartic currents E

(4)
i,j (z) and so on. The coset

algebra Ck(ĝlN , ĝlN−n) is expected to be a factor of a quantization of the universal enveloping

algebra of the double current Lie algebra gln⊗C[z±1
1 , z2], and then the currents E

(m)
ij (z) should

correspond to the currents Eij(z1)z
m
2 .

The case of Ck(ĝlN , ĝlN−1) is the best studied and is known as the W -algebra associated to
glk. There exists a number of alternative constructions which produce the W -algebra, though
in almost all cases, a rigorous proof of the identification is missing.

For example, consider the algebra obtained by the quantum Drinfeld-Sokolov reduction of

ĝlM with level s, followed by the analytic continuation with respect to M [FF]. We follow
the standard notation and denote the result by WM, 1

s+M
. Then with this notation, we have

Ck(ĝlN , ĝlN−1) ≃ Wk,N+k+1
N+k+2

. This statement is non-trivial, the direct check is tedious and has

not been done yet.

There exists a dual coset construction of the algebra Ck(ĝlN , ĝlN−1), where one takes ĝlk

of level 1 times ĝlk of arbitrary level and considers the coset with respect to the diagonal

embedding of ĝlk.

There is an additional puzzling observation that the algebra Ck(ĝlN , ĝlN−1) is isomorphic
to the W -algebra constructed by the Drinfeld-Sokolov reduction from the Lie superalgebra

ĝl(N |N − 1).

The algebra Ck(ĝlN , ĝlN−n) depends on two parameters N, k, where k is the level of ĝlN .
The parameter k is a complex number, while N is natural. However, the structure constant in

Ck(ĝlN , ĝlN−n) depends on N algebraically. Therefore, we can make the analytic continuation
with respect to N , then N becomes an arbitrary complex number. The quantum toroidal
algebra En(q1, q2, q3) is a quantization of the resulting algebra. Moreover, the conformal limit

of algebra En(q1, q2, q3) coincides with Ck(ĝlN , ĝlN−n).
In particular, the algebra corresponding to the W -algebra, E1(q1, q2, q3), is the quantum

toroidal algebra which has been most extensively studied. It is known as elliptic Hall algebra
[BS], [S], [SV2], (q, γ) analog of W1+∞, [M07], an elliptic deformation of the W algebra of type
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gl, Ding-Iohara algebra, [FHHSY], spherical Cherednik DAHA [SV1], quantum continuous gl∞,
[FFJMM1], [FFJMM2].

The coset construction has a quantum group version. Consider the quantum affine algebra

Uq(ĝlN ) with the subalgebra Uq(ĝlN−1). Then the problem is to find the commutant of Uq(ĝlN−1)

in Uq(ĝlN). This is a non-trivial question which we suggest to solve using the quantum toroidal
algebras.

Namely, one expects that there is an evaluation map EN(q1, q2, q3) → Uq(ĝlN ) where q
2 = q2

and the level of ĝlN depends on q1 and κ. Then on the level of quantum toroidal algebras, we

find a homomorphism of algebras ϕ : E1 ⊗ EN−1 → ẼN where ẼN is a suitable completion of
EN . In the Lie algebra limit q2 → 1 the map ϕ becomes very simple: it is just the map coming
from the embedding

M1 ⊗ C[Z±1, D±1]⊕MN−1 ⊗ C[Z±1, D±1] → MN ⊗ C[Z±1, D±1].

Note that on the other hand the conformal limit of ϕ is rather non-trivial.
Combining ϕ with the evaluation map, we obtain

E1 ⊗ EN−1 → Uq(ĝlN ).

The image of the subalgebra 1⊗ EN−1 is Uq(ĝlN−1) and E1 ⊗ 1 is mapped to the commutant of

Uq(ĝlN−1) in Uq(ĝlN). Actually, we believe that the map of algebra E1 ⊗ 1 to the commutant
is surjective, but we do not discuss this fact in the present paper. Instead we concentrate on a
family of irreducible representations of the algebra EN and study the restriction on the product
E1⊗EN−1. In all cases we consider, the multiplicities of irreducible representations of E1⊗EN−1

appearing in irreducible representations of EN are one.

1.3. Motivation: geometry. The simplest integrable representation of En is called the Fock
module, [VV2], [STU], [FJMM1], [FJMM2], [S]. The Fock module appears in geometry in the
following way. Consider the Hilbert scheme Hd of ideals of codimension d in C[z1, z2]. The
plane C2 is equipped with an action of the torus C∗ ×C∗ via α× β : (z1, z2) 7→ (αz1, βz2) and
of the cyclic group Zp of order p via ζ(z1, z2) = (ζz1, ζ

−1z2), where ζ ∈ C∗ is a root of unity of
order p. These actions induce the corresponding actions in Hd.

Let H
(p)
d be the manifold of the fixed points of Zp in Hd. The manifold H

(p)
d is smooth

but not connected. It is known that the quantum toroidal algebra Ep(q1, q2, q3) acts in the

equivariant K-theory space F = ⊕∞
d=0K(H

(p)
d ), where q1, q2 are the equivariant parameters, by

correspondences, see [N], [FT]. This representation of Ep is isomorphic to the Fock module.
Moreover, geometrically one observes the following remarkable phenomenon.

A basis in F is given by fixed points of C∗ ×C∗ action. This basis consists of eigenvectors of

the Cartan subalgebra of Ep. If J ∈ H
(p)
d then J ⊂ C[z1, z2] is a homogeneous ideal such that

the quotient C[z1, z2]/J is a d-dimensional representation of Zp. Irreducible representations of

Zp are all one dimensional, denote them ν0, ν1, . . . , νp−1. We call J ∈ H
(p)
d of type (a0, . . . , ap−1)

if C[z1, z2]/J = ⊕p−1
i=0 aiνi. Note that a0 + · · · + ap−1 = d. Denote Ha0,...,ap−1 ⊂ H

(p)
d the set of

ideals of type (a0, . . . , ap−1).

Then Ha0,...,ap−1 are exactly the connected components of H
(p)
d , and we have the geometric

description of the weight decomposition of the Fock module: F = ⊕K(Ha1,...,ap−1).
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The algebra Ep has a large group of automorphisms which is a toroidal version of Lusztig
braid group, see [M99]. In particular, this group contains the root lattice of slp, which consists
of the extensions of the affine translations to Ep. This lattice is isomorphic to Zp−1 and it also
acts in the Fock module F. Geometric description of the action of the braid group is non-trivial,
but one can observe the following stabilization of manifolds.

The group Zp−1 acts in the set of weights {(a0, . . . , ap−1)}. Fix some A = (a0, . . . , ap−1)

and let T ∈ Zp−1 be a generic element. Consider the sequence of manifolds Ms = H
(p)
T sA,

s = 0, 1, 2, . . . . According to [N], for s large enough the manifolds Ms are all isomorphic and
have a simple geometric description which can be described as follows. Consider the quotient
(C × C)/Zp. It has the Kleinian singularity at the origin. Resolve this singularity and call
the result Xp. Then Xp is a 2-dimensional smooth manifold with a natural action of the torus
C∗ × C∗.

For s large enough the manifolds Ms is isomorphic to a connected component of the Hilbert
scheme of torsion free sheaves on Xp. The choice of the connected component corresponds to
the choice of (a0, . . . , ap−1).

On the other hand, the manifold Xp has p fixed points with respect to C∗ × C∗. Therefore,
on the Hilbert scheme of Xp we have p commuting actions of E1. The i-th action is given by
correspondences with support in the i-th point. Thus, in this limit of the Fock module, we
observe an action of E⊗p

1 . One of the goals of this paper is to give a representation-theoretic
explanation of this phenomenon.

Namely, the Cartan subalgebra of Ep is a commutative algebra generated by {K±
i (z)}. The

fixed points are eigenvectors with respect to the operators K±
i (z). Consider the operators

T sK±
i (z), s = 0, 1, 2, . . . , acting in the Fock module. For v ∈ F, we have T sK±

i (z) · v =
T s ◦K±

i (z) ◦ T
−sv. For each v ∈ F, for large enough s, the vector T sK±

i (z) · v does not depend
on s. The joint spectrum of the Cartan subalgebra is simple, so in the limit s→ ∞, we obtain
a basis of the Fock module.

In addition, we construct an embedding E
⊗p
1 → Ẽp. Then the action of this subalgebra in

the above basis recovers the geometric action.

1.4. The plan of the paper and the main results. Here is the outline of the paper.
We denote En the quantum toroidal algebra of type gln.
Section 2 collects notation and basic facts about En. We discuss the defining relations

in Section 2.1, automorphisms in Section 2.4, representation theory in Section 2.5. In the
literature, the cases n ≥ 3 and n = 1 usually appear separately, while n = 2 is often omitted.
We manage to write all formulas in a uniform way.

Section 3 contains the construction and the properties of Em inside a suitable completion of
En, m < n. The main construction is described in Section 3.1, it defines fused currents via
a quantum version of the operator product expansion. Then we prove our first main results,
Theorem 3.1, see Section 3.4 and Theorem 3.4, see Section 3.6. Theorem 3.1 establishes that
the fused currents do satisfy the relations of the quantum toroidal glm, and Theorem 3.4 proves
that the upper left corner and the bottom right corner subalgebras En and Em commute within
Em+n. Our main method is the study of correlation functions, we develop the techniques in
Section 3.3. In Section 3.7 we describe the Lie algebra limit of En and the meaning of our
construction in this limit.
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Section 4 is devoted to the study of the modules over Em+n after restriction to Em ⊗ En.
We write the formulas mainly in the case of n = 1. We give all details in the case of the
Fock module and n = 1 to explain the approach and the logic of the proofs, see Section 4.1.
Then we proceed to tensor products of Fock modules and their irreducible submodules. The
main results are Theorem 4.9, Theorem 4.11 and Theorem 4.12. These theorems explicitly
describe decompositions of various modules. We conclude with a conjectural formula for the
decomposition of the so called Macmahon module.

2. Quantum toroidal algebras

In this section we introduce our notation concerning the quantum toroidal algebra of type
gln. We also recall its basic features relevant to the present text.

2.1. Generators and relations. Let n be a natural number. We shall write a ≡ b for
a ≡ b mod n. Let (ai,j)

n−1
i,j=0 be the Cartan matrix of type A

(1)
n−1, and let (mi,j)

n−1
i,j=0 be a skew-

symmetric matrix defined by mi+1,i = 1 and mi,j = 0 if i 6≡ j± 1, where the suffix is to be read
modulo n.

Fix non-zero complex numbers d, q. Throughout the text we shall use the parameters

q1 = dq−1, q2 = q2, q3 = d−1q−1 ,

so that q1q2q3 = 1. We assume further that for n1, n2, n3 ∈ Z

qn1
1 q

n2
2 q

n3
3 = 1 holds only if n1 = n2 = n3.

In particular, none of the qi is a root of unity.
The quantum toroidal algebra of type gln, which we denote En, is an associative unital C-

algebra defined by generators and relations to be given below.
The algebra En has generators

Ei,k, Fi,k, Hi,r, K
±1
i , q±c (i ∈ Z/nZ, k ∈ Z, r ∈ Z/{0}).

In order to write down the defining relations, introduce the generating series

Ei(z) =
∑

k∈Z

Ei,kz
−k, Fi(z) =

∑

k∈Z

Fi,kz
−k, K±

i (z) = K±1
i exp(±(q − q−1)

∞∑

r=1

Hi,±rz
∓r) .

Define further gi,j(z, w) by

n ≥ 3 : gi,j(z, w) =





z − q2w (i ≡ j),

z − q1w (i ≡ j − 1),

z − q3w (i ≡ j + 1),

z − w (i 6≡ j, j ± 1).

n = 2 : gi,j(z, w) =

{
z − q2w (i ≡ j),

(z − q1w)(z − q3w) (i 6≡ j).

n = 1 : g0,0(z, w) = (z − q1w)(z − q2w)(z − q3w).
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and

di,j =





d∓1 (i ≡ j ∓ 1, n ≥ 3),

−1 (i 6≡ j, n = 2),

1 (otherwise).

Notation being as above, the defining relations for En
1 are as follows:

KiK
−1
i = K−1

i Ki = 1,

q±c are central, qcq−c = q−cqc = 1 ,

K±
i (z)K

±
j (w) = K±

j (w)K
±
i (z),

gi,j(q
−cz, w)

gi,j(qcz, w)
K−

i (z)K
+
j (w) =

gj,i(w, q
−cz)

gj,i(w, qcz)
K+

j (w)K
−
i (z),

di,jgi,j(z, w)K
±
i (q

(1∓1)c/2z)Ej(w) + gj,i(w, z)Ej(w)K
±
i (q

(1∓1)c/2z) = 0,

dj,igj,i(w, z)K
±
i (q

(1±1)c/2z)Fj(w) + gi,j(z, w)Fj(w)K
±
i (q

(1±1)c/2z) = 0 ,

[Ei(z), Fj(w)] =
δi,j

q − q−1
(δ
(
qc
w

z

)
K+

i (z)− δ
(
qc
z

w

)
K−

i (w)),

di,jgi,j(z, w)Ei(z)Ej(w) + gj,i(w, z)Ej(w)Ei(z) = 0,

dj,igj,i(w, z)Fi(z)Fj(w) + gi,j(z, w)Fj(w)Fi(z) = 0.

In addition we impose the Serre relations as follows. We use the notation [A,B]p = AB−pBA.

For n ≥ 3,

[Ei(z), Ej(w)] = 0, [Fi(z), Fj(w)] = 0 (i 6= j, j ± 1),

Symz1,z2[Ei(z1), [Ei(z2), Ei±1(w)]q]q−1 = 0 ,

Symz1,z2[Fi(z1), [Fi(z2), Fi±1(w)]q]q−1 = 0 .

For n = 2, i 6≡ j,

Sym
z1,z2,z3

[
Ei(z1),

[
Ei(z2),

[
Ei(z3), Ej(w)

]
q2

]]
q−2 = 0 ,(2.1)

Sym
z1,z2,z3

[
Fi(z1),

[
Fi(z2),

[
Fi(z3), Fj(w)

]
q2

]]
q−2 = 0 .(2.2)

For n = 1,

Sym
z1,z2,z3

z2z
−1
3 [E0(z1), [E0(z2), E0(z3)]] = 0 ,

Sym
z1,z2,z3

z2z
−1
3 [F0(z1), [F0(z2), F0(z3)]] = 0 .

1 We have slightly changed the notation from [FJMM2]. The generators K±

i (z), Hi,r here correspond to

K±

i (q−c/2z), qrc/2Hi,r there respectively. For n = 1, see Remark 2 in Section 2.2
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In the above, Symz1,··· ,zs stands for the symmetrization in z1, · · · , zs.

2.2. Some technical points. In this subsection we give a few remarks about the relations in
En, which are important for this work.

It is convenient to rewrite the relations involving K±
i (z) in terms of the generators {Hi,r}.

Let [x] = (qx − q−x)/(q − q−1).
First of all, we have

KiEj(z)K
−1
i = qai,jEj(z), KiFj(z)K

−1
i = q−ai,jFj(z).

The other relations are as follows.
For n ≥ 3,

[Hi,r, Ej(z)] =
[rai,j]

r
d−rmi,jq(r−|r|)c/2 zrEj(z) ,

[Hi,r, Fj(z)] = −
[rai,j]

r
d−rmi,jq(r+|r|)c/2 zrFj(z) ,

[Hi,r, Hj,s] = δr+s,0
[rai,j]

r

qrc − q−rc

q − q−1
d−rmi,j .

For n = 2,

[Hi,r, Ej(z)] = ai,j(r)z
rEj(z)q

(r−|r|)c/2 ,

[Hi,r, Fj(z)] = −ai,j(r)z
rFj(z)q

(r+|r|)c/2 ,

[Hi,r, Hj,s] = δr+s,0 ai,j(r)
qrc − q−rc

q − q−1
,

where ai,i(r) = [r](qr + q−r)/r, ai,j(r) = −[r](dr + d−r)/r (i 6= j).
For n = 1,

[H0,r, E0(z)] = zrb(r)E0(z)q
(r−|r|)c/2,

[H0,r, F0(z)] = −zrb(r)F0(z)q
(r+|r|)c/2,

[H0,r, H0,s] = δr+s,0 b(r)
qrc − q−rc

q − q−1
,

where b(r) = [r](qr + q−r − dr − d−r)/r.

The following elements of En are central,

κ = K0 · · ·Kn−1 , qc .

The algebra En is Zn × Z-graded by the degree assignment

degEi,k = (1i, k) , degFi,k = (−1i, k) , degHi,r = (0, r) ,(2.3)

degKi = deg qc = (0, 0),

where 1i = (0, · · · ,
i−th

1 , · · · , 0) ∈ Zn. For a homogeneous element x ∈ En with deg x =
(d0, · · · , dn−1, k), we set pdeg x =

∑n−1
i=0 di and call it the principal degree. We have

pdegEi,k = 1 , pdegFi,k = −1 , pdegHi,r = 0 .(2.4)



8 B. FEIGIN, M. JIMBO, T. MIWA, AND E. MUKHIN

In Section 4 we use the classical weight of a homogeneous element

cweight x =
n−1∑

i=1

(di − d0)αi(2.5)

where αi (i = 1, . . . , n− 1) are the sln roots.
The algebra En has also a formal coproduct

∆Ei(z) = Ei(z)⊗ 1 +K−
i (C1z)⊗ Ei(C1z) ,

∆Fi(z) = Fi(C2z)⊗K+
i (C2z) + 1⊗ Fi(z) ,

∆K+
i (z) = K+

i (z)⊗K+
i (C

−1
1 z) ,

∆K−
i (z) = K−

i (C
−1
2 z)⊗K−

i (z) ,

∆ qc = qc ⊗ qc ,

where we have set C1 = qc ⊗ 1 and C2 = 1⊗ qc. Since the right hand side contains an infinite
sum of generators, these formulas are not a coproduct in the usual sense. Nevertheless for a
certain class of modules they can be used to define a module structure on tensor products. For
the details see [FJMM1],[FJMM2].

In the sequel, when necessary we shall exhibit the dependence on qi explicitly and write En

as En(q1, q2, q3).

Remark 1. The definition of the quantum toroidal algebra with n ≥ 3 is due to [GKV]. Our
presentation of En (n ≥ 3) follows closely the one given in [TU].

To the authors’ knowledge, the algebra E1 has been introduced for the first time in [BS], where
it was termed the elliptic Hall algebra. Subsequently the same algebra has been rediscovered
by other authors. In [M07] it was called a (q, γ) analog of W1+∞, and in [FHHSY] it was called
Ding-Iohara algebra. In [FFJMM1], [FFJMM2] we called it “quantum continuous gl∞”.

Remark 2. In our previous paper [FJMM1] we have used an algebra which is an extension of
E1 by an additional central element. The correspondence of the notation in [FJMM1] and the
present paper is e(z) = (1/(1 − q1))E0(z), f(z) = −(q−1/(1 − q3))cF0(z), ψ

±(z) = cK±
0 (q

cz),
where c is an extra central element. In the generators e(z), f(z), ψ±(z), the defining relations
are completely symmetric in the parameters q1, q2, q3. Hence E1(qπ(1), qπ(2), qπ(3)) = E1(q1, q2, q3)
for any permutation π of {1, 2, 3}. In contrast, in the case n ≥ 2 the q1 ↔ q3 symmetry holds
true, the map is given by (2.9) below, but q2 plays a distinguished role.

Remark 3. We have not been able to find the Serre relations for E2 in the literature, except
[M01] where the special case d = q is treated. Our quartic relations are similar to that of [M01].

For E2 we also have cubic relations inspired by the consideration of ‘fused currents’ which
will be discussed in Section 3.1 and Theorem 3.1. These cubic relations are not discussed in
[M01]. As we show these cubic relations are equivalent to the quartic Serre relations (2.1), (2.2)
in the presence of quadratic relations.
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Lemma 2.1. In E2 we have the following cubic relations:

Sym
z1,z2

[
q1(z1 − q3w)(z2 − q3w)Ei(z1)Ei(z2)Ej(w)− (1 + q−1

2 )(z1 − q3w)(q1z2 − w)Ei(z1)Ej(w)Ei(z2)

+q3(q1z1 − w)(q1z2 − w)Ej(w)Ei(z1)Ei(z2)
]
= 0 ,

Sym
z1,z2

[
q3(q1z1 − w)(q1z2 − w)Fi(z1)Fi(z2)Fj(w)− (1 + q−1

2 )(q1z1 − w)(z2 − q3w)Fi(z1)Fj(w)Fi(z2)

+q1(z1 − q3w)(z2 − q3w)Fj(w)Fi(z1)Fi(z2)
]
= 0 ,

and the relations obtained by interchanging q1 with q3.

Proof. Starting from the special case of the quartic relation

[Ei,k, [Ei,k, [Ei,k, Ej,l]q2 ]]q−2 = 0 ,

we compute the commutator with Fi,±1−k. The result is

(1 + q−1
2 )[Ei,k, [Ei,k±1, Ej,l]q−2 ] = (q1 + q3)[[Ej,l±1, Ei,k]q−2 , Ei,k] .

Taking commutators with Hi,r we obtain

Symk1,k2

(
(1 + q−1

2 )[Ei,k1 , [Ei,k2±1, Ej,l]q−2]− (q1 + q3)[[Ej,l±1, Ei,k1]q−2 , Ei,k2]
)
= 0 ,

or in current form

Symz1,z2

(
(1 + q−1

2 )z±1
2 [Ei(z1), [Ei(z2), Ej(w)]q−2]− (q1 + q3)w

±1[[Ej(w), Ei(z1)]q−2 , Ei(z2)]
)
= 0 .

Modulo the quadratic relation Symz,w(z − q2w)Ei(z)Ei(w) = 0, these equations are equivalent
to the first identity in the lemma. �

In fact the quadratic relations

(z − q1w)(z − q3w)Ei(z)Ej(w) = (w − q1z)(w − q3z)Ej(w)Ei(z).

with i 6= j also follow from the quartic relations.

On the other hand, the quartic Serre relations , are consequences of the quadratic and cubic
relations, see the part of Section 3.3 concerning the Serre relations.

2.3. Horizontal and vertical subalgebras. In this subsection we describe subalgebras of En

isomorphic to the quantum affine algebras Uq(ŝln) and Uq(ĝln) for n ≥ 2.

The algebra Uq(ŝln) has a presentation in terms of the Chevalley generators {ei, fi, t
±1
i },

0 ≤ i ≤ n− 1, as follows.

titj = tjti, tit
−1
i = t−1

i ti = 1,

tiejt
−1
i = qai,jej , tifjt

−1
i = q−ai,jfj ,

[ei, fj] = δi,j
ti − t−1

i

q − q−1
,

[ei, ej] = 0, [fi, fj] = 0 (if ai,j = 0),

[ei, [ei, ej ]q−1]q = 0, [fi, [fi, fj]q]q−1 = 0 (if ai,j = −1) .
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When n = 2, the last line is to be replaced by

[ei, [ei, [ei, ej]q−2 ]1]q2 = 0, [fi, [fi, [fi, fj]q2 ]1]q−2 = 0 (i 6= j).

Alternatively, Uq(ŝln) has a presentation in terms of the Drinfeld generators {x±i,l, hi,r, k
±1
i , q±c},

1 ≤ i ≤ n− 1, l ∈ Z, r ∈ Z\{0} with the relations

kik
−1
i = k−1

i ki = 1, qcq−c = q−cqc = 1,

q±c are central, [ki, kj] = [ki, hj,r] = 0 ,

[hi,r, hj,s] = δr+s,0
[rai,j]

r

qrc − q−rc

q − q−1
,

kix
±
j,lk

−1
i = q±ai,jx±j,l, [hi,r, x

±
j,l] = ±

[rai,j ]

r
q(r∓|r|)c/2x±j,l+r,

[x+i,k, x
−
j,l] =

δi,j
q − q−1

(
q−lcφ+

i,k+l − q−kcφ−
i,k+l

)
,

[x±i,k+1, x
±
i,l]q±2 + [x±i,l+1, x

±
i,k]q±2 = 0,

[x±i,k, x
±
j,l] = 0 (if ai,j = 0),

[x±i,k+1, x
±
j,l]q∓1 + [x±j,l+1, x

±
i,k]q∓1 = 0 (if ai,j = −1),

Symk1,k2[x
±
i,k1
, [x±i,k2 , x

±
j,l]q−1]q = 0 (if ai,j = −1) .

In the above we have set
∑

±k≥0

φ±
i,kz

−k = k±1
i exp

(
±(q − q−1)

∑

±r>0

hi,rz
−r
)
.

We choose the correspondence of these two generators as follows.

ei = x+i,0, fi = x−i,0, ti = ki (1 ≤ i ≤ n− 1), t0t1 · · · tn−1 = qc,

e0 = qc(k1 · · ·kn−1)
−1[· · · [x−1,1, x

−
2,0]q, · · · , x

−
n−1,0]q ,

f0 = [x+n−1,0, · · · [x
+
2,0, x

+
1,−1]q−1 , · · · ]q−1k1 · · · kn−1q

−c .

In order to express the Drinfeld generators in terms of the Chevalley generators, it is useful to
have the formulas:

x−i,1 = (−1)i−1(t0 · · · ti−1ti+1, · · · tn−1)
−1[· · · [e0, en−1]q−1 · · · , ei+1]q−1, e1]q−1 · · · , ei−1]q−1 ,

hi,1 = (−1)i[· · · [e0, en−1]q−1 · · · , ei+1]q−1 , e1]q−1 · · · , ei−1]q−1 , ei]q−2,

x+i,−1 = (−1)i−1[fi−1, · · · [f1, [fi+1, · · · [fn−1, f0]q · · · ]qt0 · · · ti−1ti+1, · · · tn−1,

hi,−1 = (−1)i[fi, [fi−1, · · · [f1, [fi+1, · · · [fn−1, f0]q · · · ]q]q2 .

A characteristic feature of the algebra En is that for n ≥ 2 it admits two different embeddings

of Uq(ŝln),

h, v : Uq(ŝln) −→ En.

The embedding h is defined in terms of the Chevalley generators,

h : ei 7→ Ei,0, fi 7→ Fi,0, ti 7→ Ki (0 ≤ i ≤ n− 1).
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The embedding v is defined in terms of the Drinfeld generators,

v : x+i,k 7→ dikEi,k, x−i,k 7→ dikFi,k, ki 7→ Ki, hi,r 7→ dirHi,r, qc 7→ qc

(1 ≤ i ≤ n− 1, k ∈ Z, r ∈ Z\{0}).

We call h the horizontal embedding, and its image h
(
Uqŝln

)
the horizontal subalgebra of En.

Similarly we call v the vertical embedding, and its image v
(
Uq ŝln

)
the vertical subalgebra of En.

We denote the horizontal and vertical subalgebras by Uhor
q (ŝln) and U

ver
q (ŝln) respectively. Note

that if x ∈ Uhor
q (ĝln) then deg x ∈ Zn × {0}, and if x ∈ Uver

q (ĝln) then deg x ∈ {0} × Zn−1 ×Z.

Note also that En is generated by the union of Uhor
q (ŝln) and U

ver
q (ŝln).

As it is pointed out in [FJMM2], there are also Heisenberg subalgebras commuting with these
subalgebras. For each r 6= 0, let {ci,r}

n−1
i=0 be a non-trivial solution of the equation

n−1∑

i=0

ci,r[rai,j]d
−rmi,j = 0 (j = 1, . . . , n− 1).

Let aver be the subalgebra of En generated by Hver
r =

∑n−1
i=0 ci,rHi,r, r ∈ Z6=0. Clearly aver is

a Heisenberg subalgebra with central element qc which commutes with Uver
q ŝln. We call the

subalgebra generated by these two the vertical quantum affine gln and denote it by Uver
q (ĝln).

Similarly there exists a Heisenberg subalgebra ahor which commutes with Uhor
q ŝln. In terms

of the automorphism θ to be given in Theorem 2.2 below, we have ahor = θ−1
(
aver
)
.

We call the subalgebra generated by these two the horizontal quantum affine gln and denote

it by Uhor
q (ĝln). The central element κ = h(qc) belongs to the horizontal subalgebra, while

qc = v(qc) belongs to the vertical subalgebra.

2.4. Automorphisms. The algebra En(q1, q2, q3) allows for various symmetries.
First, there exist automorphisms of algebras

τ, sa, χj : En(q1, q2, q3) → En(q1, q2, q3) ,

where a ∈ C× and 0 ≤ j ≤ n− 1, such that

τ : Ei(z) 7→ Ei+1(z), Fi(z) 7→ Fi+1(z), K±
i (z) 7→ K±

i+1(z),(2.6)

sa : Ei(z) 7→ Ei(az), Fi(z) 7→ Fi(az), K±
i (z) 7→ K±

i (az) ,(2.7)

χj : Ei(z) 7→ Ei(z)z
−δi,j , Fi(z) 7→ Fi(z)z

δi,j , K±
i (z) 7→ q∓δi,jcK±

i (z) ,(2.8)

and such that all these maps send qc to itself.
We have τn = id.
In addition, there exists an isomorphism of algebras

ι : En(q1, q2, q3) → En(q3, q2, q1),

given by

ι : Ei(z) 7→ En−i(z), Fi(z) 7→ Fn−i(z), K±
i (z) 7→ K±

n−i(z) ,(2.9)

and ι(qc) = qc.
Of particular importance is the existence of an automorphism which exchanges the horizontal

subalgebra Uhor
q (ĝln) and the vertical subalgebra Uver

q (ĝln).
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Let σ, η′ be anti-automorphisms of Uq(ŝln) given by

σ : ei 7→ ei, fi 7→ fi, ti 7→ t−1
i ,

η′ : x±i,k 7→ x±i,−k, hi,r 7→ −qrchi,−r, ki 7→ k−1
i , qc 7→ qc.

Theorem 2.2. [M99],[M01] Let n ≥ 2. There exists a unique automorphism θ of En such

that2

θ ◦ v = h , θ ◦ h = v ◦ η′ ◦ σ .

We have θ(qc) = κ and θ(κ) = q−c.

Theorem 2.3. [BS],[M07] There exists a unique automorphism θ of E1 such that 3

E0,0 7→ −qcH0,−1 , F0,0 7→ a−1q−cH0,1 ,

H0,1 7→ E0,0 , H0,−1 7→ −aF0,0 ,

qc 7→ K0 , K0 7→ q−c,

where a = q(1− q1)(1− q3).

Remark. Actually, in the case of E2, the existence of θ has been proved only in the case q1 = 1
[M01]. It can be shown that with minor modifications the method of [M01] carries over to the
general case.

We shall write

x⊥ = θ−1(x) (x ∈ En).(2.10)

Then we have

E⊥
i,0 = Ei,0, F⊥

i,0 = Fi,0, K⊥
i = Ki (1 ≤ i ≤ n− 1),

(qc)⊥ = κ−1, κ⊥ = qc ,(2.11)

and for n ≥ 2

E⊥
0,0 = dκ−1qcK0[· · · [F1,1, F2,0]q, · · · , Fn−1,0]q ,

F⊥
0,0 = d−1κq−c[En−1,0, · · · , [E2,0, E1,−1]q−1, · · · ]q−1K−1

0 .

We also have

H⊥
i,1 = −(−d)−iκ−1[· · · [F0,0, Fn−1,0]q · · · , Fi+1,0]q, F1,0]q · · ·Fi−1,0]q, Fi,0]q2 ,

H⊥
i,−1 = −(−d)iκ[Ei,0, [Ei−1,0, · · · [E1,0, [Ei+1,0, · · · [En−1,0, E0,0]q−1 · · · ]q−1 ]q−2 ,

for i = 1, . . . , n− 1,

2Our θ here is ψ of [M99].
3Our θ is ψ of [M07] followed by the automorphism E0(z) 7→ q−cE0(z), F0(z) 7→ qcF0(z), K

±

0 (z) 7→ K±

0 (z),
qc 7→ qc. Unlike ψ, θ4 6= id.
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and for n ≥ 2 we have

F⊥
0,1 = (−d)−nF0,−1,

H⊥
0,1 = −(−d)−n+1κ−1[· · · [F1,1, F2,0]q · · ·Fn−1,0]q, F0,−1]q2 ,

E⊥
0,−1 = (−d)nE0,1,

H⊥
0,−1 = −(−d)n−1κ[E0,1, [En−1,0 · · · [E2,0, E1,−1]q−1 · · · ]q−1 ]q−2.

The following Lemma can be extracted from [M00]:

Lemma 2.4. If x ∈ En has degree (l, d1 + l, . . . , dn−1 + l, k) then x⊥ = θ−1(x) has degree

(−k, d1 − k, . . . , dn−1 − k, l).

In particular, the principal degrees of the ‘perpendicular generators’ are given by

pdegE⊥
i,k = −nk − nδi,0 + 1 , pdegF⊥

i,k = −nk + nδi,0 − 1 , pdegH⊥
i,k = −nk .(2.12)

Later on we shall use the formulas

θ(Hi,1) = (−d)−i[[· · · [[· · · [E0,0, En−1,0]q−1 , · · · , Ei+1,0]q−1 , E1,0]q−1 , · · · , Ei−1,0]q−1 , Ei,0]q−2 ,

(2.13)

θ(Hi,−1) = (−d)i[Fi,0, [Fi−1,0, · · · [F1,0, [Fi+1,0, · · · [Fn−1,0, F0,0]q · · · ]q]q · · · ]q]q2 ,

where 1 ≤ i ≤ n− 1;

θ(H0,1) = (−d)−n+1[[· · · [E1,1, E2,0]q−1 , · · · , En−1,0]q−1 , E0,−1]q−2 ,(2.14)

θ(H0,−1) = (−d)n−1[F0,1, [Fn−1,0, · · · , [F2,0, F1,−1]q · · · ]q]q2

We recall that for n = 1

θ(H0,1) = E0,0, θ(H0,−1) = −aF0,0 .

Let si, i = 0, . . . , n− 1, denote the Lusztig braid group automorphism of Uq

(
ŝln
)
,

si(ei) = −fiti, si(fi) = −t−1
i ei,

si(ej) =

{
[ei, ej]q−1 if n ≥ 3;
1
[2]
[ei, [ei, ej ]q−2] if n = 2,

si(fj) =

{
[fj, fi]q, if n ≥ 3;
1
[2]
[[fj , fi]q2, fi] if n = 2,

(j ≡ i± 1),

si(ej) = ej , si(fj) = fj (j 6≡ i, i± 1),

si(tj) = t
−ai,j
i tj .

Consider the automorphisms

Tn−1|0 = θ−1 ◦ χ0χ
−1
n−1 ◦ θ ,(2.15)

T = T n
n−1|0 .(2.16)

Since each χj (see (2.8)) preserves the vertical subalgebra, Tn−1|0, T preserve the horizontal
subalgebra. Note also that Tn−1|0, T restricted to ahor are identity operators.

We shall need the following result.

Lemma 2.5. We have

T−1 ◦ h = h ◦ (sn−1 · · · s1s0)
n−1.
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Proof. Set Yn = ζ0χ0χ
−1
n−1, where ζ0 is the automorphism of En given by E0(z) 7→ (−d)−nE0(z),

F0(z) 7→ (−d)nF0(z), leaving unchanged the rest of the generators. The lemma follows from
Proposition 2 of [M99] by choosing x = ϕ−1(Y−n

n ), and noting that ζ0 ◦ v = v. �

The exists an action of the braid group on any integrable Uq(ŝln) module. Therefore, there

exists an action of T on any integrable Uhor
q (ĝln) module.

2.5. Representations. In this subsection we present a family of En-modules studied in our
previous works [FJMM1],[FJMM2]. These are

• the vector representation V (k)(u),
• the Fock representation F(k)(u),

• the representation N
(k)
α,β(u) .

In all cases the central element qc acts as identity. These modules carry a discrete parameter
k ∈ Z/nZ which we call color, and a continuous parameter u ∈ C× which we call the evaluation
parameter. In fact the general case can be obtained as a twist of the one for k = 0 and u = 1
by the automorphisms τ and sa, given by (2.6) and (2.7) respectively.

First, we recall some terminology about representations.
An En-module V is said to have level ℓ if the central element κ−1 acts as the scalar ℓ.
Let φ(z) = (φ+

i (z), φ
−
i (z))i∈Z/nZ be a collection of formal series φ±

i (z) ∈ C[[z∓1]]. A vector
v ∈ V is said to have weight φ(z) if K±

i (z)v = φ±
i (z)v holds for all i ∈ Z/nZ. The module V

is weighted if the action of the commuting family of operators {K±
i (z)}i∈Z/nZ is diagonalizable

in V . It is said to be tame if the joint spectrum of this action is simple.
The module V is lowest weight if it is generated by a weight vector v such that Fi(z)v = 0

for all i ∈ Z/nZ. Such a v is called a lowest weight vector, and its weight the lowest weight of
V . Given φ(z) = (φ+

i (z), φ
−
i (z))i∈Z/nZ with φ+

i (∞)φ−
i (0) = 1, there exists a unique irreducible

lowest weight module Lφ(z) with lowest weight φ(z).
Let V = ⊕s∈ZVs be a module Z-graded by the principal degree. (This is the case for all

modules we consider in this paper.) We say that V is quasi-finite if dimVs < ∞ for all s. It
is known [M07], [FJMM2], that an irreducible lowest weight module Lφ(z) is quasi-finite if and
only if, for each i, φ±

i (z) are expansions of a rational function φi(z), such that it is regular
at z = 0,∞ and φi(0)φi(∞) = 1. If it is the case we say simply that the lowest weight is
φ(z) =

(
φi(z)

)
i∈Z/nZ

.

Vector representation. The vector representation V (k)(u) has a basis {[u]
(k)
j }j∈Z. For n ≥ 2,

the action of the generators is explicitly given as follows.

Ei(z)[u]
(k)
j =

{
δ(qj+1

1 u/z)[u]
(k)
j+1 , i+ j + 1 ≡ k;

0 , i+ j + 1 6≡ k;

Fi(z)[u]
(k)
j+1 =

{
δ(qj+1

1 u/z)[u]
(k)
j , i+ j + 1 ≡ k;

0 , i+ j + 1 6≡ k;

K±
i (z)[u]

(k)
j =





ψ(qj1u/z)[u]
(k)
j , j + i ≡ k;

ψ(qj1q
−1
3 u/z)−1[u]

(k)
j , j + i+ 1 ≡ k;

[u]
(k)
j , otherwise.
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Here and after we set

ψ(z) =
q − q−1z

1− z
.

For n = 1 the formulas read

E0(z)[u]
(0)
j = δ(qj+1

1 u/z)[u]
(0)
j+1 ,

F0(z)[u]
(0)
j+1 = q

1− q3

1− q−1
1

δ(qj+1
1 u/z)[u]

(0)
j ,

K±
0 (z)[u]

(0)
j = ψ(qj1u/z)ψ(q

j
1q

−1
3 u/z)−1[u]

(0)
j .

The vector representation V (k)(u) is an irreducible, tame representation of level 1.

Fock representation. We use the following notation concerning partitions. A partition λ =
(λ1, λ2, · · · ) is a sequence of non-negative integers λi such that only finitely many are nonzero
and λj ≥ λj+1 for all j. In particular, we denote ∅ = (0, 0, . . . ). The dual partition λ′ is given
by λ′i = |{j | λj ≥ i}|. We identify a partition λ with the set of integer points (x, y) on the
plane satisfying 1 ≤ x ≤ ℓ(λ) and 1 ≤ y ≤ λx, where ℓ(λ) = λ′1 is the length of λ. A pair of
natural numbers (x, y) is a convex corner of λ if λ′y+1 < λ′y = x. A pair of natural numbers
(x, y) is a concave corner of λ if λ′y = x− 1 and in addition y = 1 or λ′y−1 > x− 1. Let CC(λ)
and CV (λ) be the set of concave and convex corners of λ respectively.

Fixing k ∈ Z/nZ, to each point (x, y) ∈ Z2 we assign a color k+x−y ∈ Z/nZ. For i ∈ Z/nZ,
introduce the set of concave (resp. convex) corners of λ of color i as follows.

CC
(k)
i (λ) = {(x, y) ∈ CC(λ) | k + x− y ≡ i} ,

CV
(k)
i (λ) = {(x, y) ∈ CV (λ) | k + x− y ≡ i} .

Finally, for a partition λ = (λ1, λ2, . . . ) and j ∈ Z≥1 we write λ± 1j = (λ1, λ2, . . . , λj ± 1, . . . ).
The Fock representation F(k)(u) has a basis {|λ〉} indexed by all partitions λ. It is realized

as a linear subspace of the infinite tensor product of vector representations

F(k)(u) ⊂ V (k)(u)⊗ V (k)(uq−1
2 )⊗ V (k)(uq−2

2 )⊗ . . . ,

where

|λ〉 = [u]
(k)
λ1−1 ⊗ [uq−1

2 ]
(k)
λ2−2 ⊗ [uq−2

2 ]
(k)
λ3−3 ⊗ . . . .

Notation being as above, the action of En is given as follows.
For i ∈ Z/nZ, j ∈ Z≥1 such that k + j − λj ≡ i+ 1, set

〈λ+ 1j |Ei(z)|λ〉 =

j−1∏

s=1,
k+s−λs≡i

ψ(q
λs−λj−1
1 qs−j

3 )

j−1∏

s=1,
k+s−λs≡i+1

ψ(q
λj−λs

1 qj−s
3 ) δ(q

λj

1 q
j−1
3 u/z),

〈λ|Fi(z)|λ+ 1j〉 =

ℓ(λ)∏

s=j+1,
k+s−λs≡i

ψ(q
λs−λj−1
1 qs−j

3 )

ℓ(λ)+1∏

s=j+1,
k+s−λs≡i+1

ψ(q
λj−λs

1 qj−s
3 ) δ(q

λj

1 q
j−1
3 u/z).
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Further, for i ∈ Z/nZ, set

〈λ|K±
i (z)|λ〉 =

∏

(x,y)∈ CV
(k)
i (λ)

ψ(qx3q
y
1q2u/z)

∏

(x,y)∈ CC
(k)
i (λ)

ψ(qx3q
y
1q

2
2u/z)

−1.

We set all other matrix coefficients to be zero. In particular, we see that Ei(z) adds, and Fi(z)
removes, a box of color i.

Here we used the bra-ket notation for the matrix elements of the linear operators acting in
F(k)(u) in the basis {|λ〉}.

The Fock representation F(k)(u) is an irreducible, tame, lowest weight representation of level
q with lowest weight (φi(z)) where

φi(z) =





q−1 − qu/z

1− u/z
(i ≡ k)

1 (i 6≡ k)
.

We remark that the Fock representation was given in [Sa] using vertex operators (for the
perpendicular generators), and in [VV2],[STU] using the q-wedge spaces. The explicit formula
for the action of E1 in the Fock space was found in [FT].

Representation N
(p)
α,β(u). The representation N

(p)
α,β(u) is defined as a submodule of a finite tensor

product of Fock representations. Let α, β be partitions with m parts, such that αm = βm = 0.
Given a color p ∈ Z/nZ and an evaluation parameter u ∈ C×, set

pi = p− αi + βi , ui = qαi

1 q
i−1
2 qβi

3 u , i = 1, · · · , m .(2.17)

Consider the linear subspace

N
(p)
α,β(u) ⊂ F(p1)(u1)⊗ · · · ⊗ F(pm)(um)(2.18)

spanned by vectors |λ(1)〉 ⊗ · · · ⊗ |λ(m)〉, where λ(i) are partitions satisfying the conditions

λ
(i)
j ≥ λ

(i+1)
j+bi

− ai, i = 1, · · · , m− 1,(2.19)

where

ai = αi − αi+1, bi = βi − βi+1.(2.20)

Then N
(p)
α,β(u) is a well-defined En-submodule of the tensor product module F(p1)(u1) ⊗ · · · ⊗

F(pm)(um). Moreover it is an irreducible, tame, quasi-finite lowest weight module of level qm

and lowest weight (φi(z)), where

φi(z) =
∏

j:pj≡i

q−1 − quj/z

1− uj/z
.

3. Construction of subalgebras

In this section we describe a family of subalgebras of a completion of En. These subalgebras
satisfy the relations of Em with m < n and act in all lowest weight representations of En. In
this section, except in Section 3.5, we always work in perpendicular generators, see (2.10) and
(2.11). We use similar notation for the generating series, e.g. E⊥

i (z), F
⊥
i (z), etc.
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3.1. Definition of current E⊥
n−1|0(z). We give the definition of the ”fused” current E⊥

n−1|0(z).

The construction mimics the extraction of the polar term in the operator product of E⊥
0 (z) and

of E⊥
n−1(z).

Let first n ≥ 3. We have the relation

(d−1z − q−1w)E⊥
n−1(z)E

⊥
0 (w) = (d−1q−1z − w)E⊥

0 (w)E
⊥
n−1(z),

which in components is

E⊥
n−1,k+1E

⊥
0,r − q1E

⊥
n−1,kE

⊥
0,r+1 = q−1E⊥

0,rE
⊥
n−1,k+1 − dE⊥

0,r+1E
⊥
n−1,k.(3.1)

We start with the representation-theoretical version.
We define another grading deg⊥ on En such that:

deg⊥E⊥
i,k = deg⊥ F⊥

i,k = deg⊥H⊥
i,k = k.(3.2)

From Lemma 2.4, it follows that − deg⊥ x is equal to the 0-th component of deg x.
Call a graded En module V admissible if for every vector v ∈ V there exists N(v) such that

gv = 0 for all g ∈ En with deg⊥ g > N(v). If a representation is admissible then the formal

series E⊥
i (z)v, F

⊥
i (z)v, K−,⊥

i (z)v are actually Laurent series in z and the series K+,⊥
i (z)v is a

polynomial in z−1. Note that in terms of the standard generators, the condition of admissibility
is written in terms of the principal grading, (see (2.4), (2.12)). In particular, all lowest weight
modules defined in Section 2.5 are admissible.

Let V be an admissible representation. Then from (3.1), we obtain that given k ∈ Z and
v ∈ V , we have

E⊥
n−1,s+kE

⊥
0,−sv = q−1

1 E⊥
n−1,s+1+kE

⊥
0,−s−1v

for large enough s.
Define

E⊥
n−1|0,kv = q−s−k

1 E⊥
n−1,s+kE

⊥
0,−sv,(3.3)

where s is sufficiently large. Clearly, E⊥
n−1|0,k is a well-defined operator acting in V . We set

E⊥
n−1|0(z) =

∑
k∈ZE

⊥
n−1|0,kz

−k.
Equivalently, we can define:

E⊥
n−1|0(z) = lim

z′→z
(1−

z

z′
)E⊥

n−1(q1z
′)E⊥

0 (z).(3.4)

Using (3.1) repeatedly, we can also write

q−s−k
1 E⊥

n−1,s+kE
⊥
0,−s = q−k

1 E⊥
n−1,kE

⊥
0,0 +

s−1∑

i=0

q−1−i−k
1 (q−1E⊥

0,−1−iE
⊥
n−1,k+1+i − dE⊥

0,−iE
⊥
n−1,k+i).

Therefore we can equivalently define:

E⊥
n−1|0,k = q−k

1 E⊥
n−1,kE

⊥
0,0 +

∞∑

i=0

q−1−i−k
1 (q−1E⊥

0,−1−iE
⊥
n−1,k+1+i − dE⊥

0,−iE
⊥
n−1,k+i).

Note that the sum evaluated on any vector v in an admissible representation becomes finite.
This formula shows that the operator E⊥

n−1|0,k belongs to the completion of En with respect to

grading (3.2).
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There is one more useful way to write the operators E⊥
n−1|0,k, which we use in Section 4. Let

Tn−1|0 be the automorphism of En given by (2.15).
We have

Tn−1|0E
⊥
0 (z) = z−1E⊥

0 (z), Tn−1|0E
⊥
n−1(z) = zE⊥

n−1(z),

Tn−1|0F
⊥
0 (z) = zF⊥

0 (z), Tn−1|0F
⊥
n−1(z) = z−1F⊥

n−1(z),

and Tn−1|0 preserves currents with indexes different from 0 and n − 1 as well as qc and κ. In
particular,

Tn−1|0K
±,⊥
i (z) = κ∓δi,n−1±δi,0K±,⊥

i (z).

Then we clearly have

E⊥
n−1|0,k = lim

s→∞
q−s−k
1 T s

n−1|0(E
⊥
n−1,kE

⊥
0,0).

Finally, let us consider the case n = 2. In this case, we replace the product (3.3) by the
following stable combination. We set

E
(1),⊥
1|0,k = q−s−k

1 (E⊥
1,s+kE

⊥
0,−s − q3E

⊥
1,s+k−1E

⊥
0,−s+1),

where s is sufficiently large. Equivalently we have

E
(1),⊥
1|0 (z) = lim

z′→z
(1−

z

z′
)(1−

q3z

q1z′
)E⊥

1 (q1z
′)E⊥

0 (z)

and

E
(1),⊥
1|0,k = lim

s→∞
q−s−k
1 T s

1|0(E
⊥
1,kE

⊥
0,0 − q3E

⊥
1,k−1E

⊥
0,1).

For n = 2 we write an extra upper index for the reason explained in Section 3.2, see (3.11),
(3.12) below.

3.2. Other operators. We collect operators obtained by the construction described in Section
3.1.

Similarly to Section 3.1, we define a number of other currents. We use formulas of type (3.4)
keeping in mind that it is always justified by formulas of type (3.3).

For n ≥ 3 and i = 0, 1, . . . , n− 1, define

E⊥
i|i+1(z) = lim

z′→z
(1−

z

z′
)E⊥

i (q1z
′)E⊥

i+1(z),(3.5)

F⊥
i|i+1(z) = lim

z′→z
(1−

z′

z
)F⊥

i+1(z)F
⊥
i (q1z

′),(3.6)

K±,⊥
i|i+1(z) = K±,⊥

i (q1z)K
±,⊥
i+1 (z).(3.7)

We also have another family of operators defined by

E⊥
i+1|i(z) = lim

z′→z
(1−

z

z′
)E⊥

i+1(q3z
′)E⊥

i (z),(3.8)

F⊥
i+1|i(z) = lim

z′→z
(1−

z′

z
)F⊥

i (z)F⊥
i+1(q3z

′),(3.9)

K±,⊥
i+1|i(z) = K±,⊥

i+1 (q3z)K
±,⊥
i (z).(3.10)
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All such currents of the same type (e.g. of type E) are related to each other by En auto-
morphisms τ and ι, see (2.6) and (2.9), for example, E⊥

i|i+1(z) = θ−1 ◦ τ i+1 ◦ θ
(
E⊥

n−1|0(z)
)
and

E⊥
i+1|i(z) = θ−1 ◦ ι ◦ θ

(
E⊥

n−i−1|n−i(z)
)
.

Moreover, we use our construction recursively to obtain new currents. For example, we set

E⊥
i|i+1|i+2(z) = lim

z′′→z′
lim
z′→z

(1−
z′

z′′
)(1−

z

z′
)E⊥

i (q
2
1z

′′)E⊥
i+1(q1z

′)E⊥
i+2(z),

or

E⊥
i|i+1|i(z) = lim

z′′→z′
lim
z′→z

(1−
z′

z′′
)(1−

z

z′
)E⊥

i (q1q3z
′′)E⊥

i+1(q3z
′)E⊥

i (z).

One can justify this recursive definition directly, but we defer our discussion to Section 3.4.
Note that our notation E⊥

i|i+1|i(z) contains complete information about the shifts of arguments

participating in the corresponding definition. Namely, i|i + 1 signifies the relative shift of q3
while i+ 1|i signifies the relative shift of q1.

For n = 2, the construction of these currents is quite parallel, but we write an additional
upper index to distinguish the formulas in (3.5)–(3.7) and those in (3.8)–(3.10), e.g.,

E
(1),⊥
1|0 (z) = lim

z′→z
(1−

z

z′
)(1−

q3z

q1z′
)E⊥

1 (q1z
′)E⊥

0 (z),(3.11)

E
(3),⊥
1|0 (z) = lim

z′→z
(1−

z

z′
)(1−

q1z

q3z′
)E⊥

1 (q3z
′)E⊥

0 (z).(3.12)

In what follows we also use the notation

(3.13)

E⊥
n−1||0(z) = E⊥

n−1|n−2|...|1|0(z), F
⊥
n−1||0(z) = F⊥

n−1|n−2|...|1|0(z), K
±,⊥
n−1||0(z) = K±,⊥

n−1|n−2|...|1|0(z).

3.3. Correlation functions. We discuss properties of correlation functions in admissible rep-
resentations.

Let V be an admissible representation. Choose an arbitrary graded basis. Choose arbitrary
basis vectors v1, v2. We use the standard notation for the correlation functions. For exam-
ple, we write 〈E⊥

1 (z)E
⊥
2 (w)〉 for the matrix coefficient 〈v1|E

⊥
1 (z)E

⊥
2 (w)|v2〉 of the operator

E⊥
1 (z)E

⊥
2 (w). We study properties common to all correlation functions, and therefore it is not

important which admissible representation and which particular matrix element we consider,
thus we omit this information from our notation. In all calculations V, v1, v2 are arbitrary but
fixed.

By the word ”current” we mean either E⊥
i (z), F

⊥
i (z), K−,⊥

i (z) or K+,⊥
i (z). Later we will

also use the fused currents.
Algebraic relations between currents translate into properties of correlation functions.
Moreover, if an element g of En acts by zero in all admissible representations, then g = 0.

Indeed, such a statement is known to be true in the setting of Lie algebras, so it holds for
UL′

n(d), see Section 3.7. (The proof is analogous to ii) of Theorem 8.4.4 in [D].) But since En is a
quantization of UL′

n(d) and all admissible representations of UL′
n(d) quantize to representations

of En, this fact is true for En. Finally, note that admissible representations are graded and if
an element g =

∑∞
i=1 gi with deg⊥ gi = i of the completion of En acts by zero in an admissible

representation, then all gi do. Therefore, we have the converse statement: if all correlation
functions satisfy a given property then the currents satisfy an algebraic relation inside En.



20 B. FEIGIN, M. JIMBO, T. MIWA, AND E. MUKHIN

We now discuss the dictionary between algebraic relations and properties of correlation func-
tions. In the dictionary we consider correlation functions of two or three currents. The corre-
lation functions of many currents satisfy the same properties for each subset of two or three
currents.

Quadratic relations. Consider two currents satisfying a quadratic relation. For example,
consider 〈E⊥

1 (z)E
⊥
2 (w)〉, n ≥ 3. Then the quadratic relation for the currents E⊥

1 (z) and E
⊥
2 (w)

is

(d−1z − q−1w)E⊥
1 (z)E

⊥
2 (w) = (d−1q−1z − w)E⊥

2 (w)E
⊥
1 (z).

This is equivalent to the following form of the correlation functions:

〈E⊥
1 (z)E

⊥
2 (w)〉 =

p(z, w)

d−1z − q−1w
, 〈E⊥

2 (w)E
⊥
1 (z)〉 =

p(z, w)

d−1q−1z − w
,(3.14)

where p(z, w) is a Laurent polynomial.
Here the right hand side of the first equation is understood as an expansion in w/z, while

the right hand side of the second equation as an expansion in z/w. Such a convention should
be clear and we often do not mention it.

Apart from the poles in the correlation functions which are dictated by the quadratic relations
we also have symmetries, when several of the currents are the same. For example, we have

〈E⊥
1 (z1)E

⊥
1 (z2)〉 =

p(z1, z2)

z1 − q2z2
,(3.15)

where p(z1, z2) is a Laurent polynomial (different from the one in (3.14)) such that p(z1, z2) =
−p(z2, z1). In particular, we have p(z, z) = 0.

Commuting currents. This is an important special case of the quadratic relations. If two
currents commute, their correlation function is a Laurent polynomial (no poles). Of course, the
converse is not true in general. For example, since the currents K±,⊥(w) are power series in

w∓1, clearly, the correlation functions 〈E⊥
i (z)K

+,⊥
i (w)〉 and 〈K−,⊥

i (w)E⊥
i (z)〉 do not have poles

but 〈E⊥
i (z)K

−,⊥
i (w)〉 and 〈K+,⊥

i (w)E⊥
i (z)〉 do. In particular, these currents do not commute.

However, in order to prove that two currents commute, often it is sufficient to check the
absence of poles, since we have that the correlation functions in different orders of currents are
equal as rational functions, see Section 3.6.

Serre relations. The Serre relations (see Section 2.1) are equivalent to the wheel conditions

for the correlation functions. For example,

〈E⊥
1 (z1)E

⊥
1 (z2)E

⊥
2 (w)〉 =

p(z1, z2, w)

(z1 − q2z2)(d−1z1 − q−1w)(d−1z2 − q−1w)
,

where p(z1, z2, w) is a Laurent polynomial skew-symmetric in z1, z2 satisfying the following
wheel condition:

p(z, q2z, q1q2z) = p(z, q2z, q2q3z) = 0.

Note that due to the skew-symmetry, we also have p(z, q−1
2 z, q1z) = p(z, q−1

2 z, q3z) = 0.
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This fact is not completely trivial, therefore we sketch the computation for the most difficult
case of n = 1. Recall the function g00(z, w) = g(z, w) = (z− q1w)(z− q2w)(z− q3w). Then the
Serre relation

Sym
z1,z2,z3

z2z
−1
3 [E⊥

0 (z1), [E
⊥
0 (z2), E

⊥
0 (z3)]] = 0

is equivalent to:

p(z1, z2, z3)

(
Asym
z1,z2,z3

(z2z
−1
3 (

1

g(z1, z2)g(z1, z3)g(z2, z3)
+

1

g(z1, z3)g(z1, z2)g(z3, z2)
(3.16)

−
1

g(z2, z3)g(z2, z1)g(z3, z1)
−

1

g(z3, z2)g(z3, z1)g(z2, z1)
))

)
= 0.

Let us study the result of the anti-symmetrization. First, one checks that as a rational function,
it is zero. However, all the terms have to be expanded in their own region. We change all the
expansions to the region |z1| ≫ |z2| ≫ |z3| by adding the delta functions.

The coefficient of a single delta function is obtained from the sum of twelve terms out of
twenty four terms present in (3.16). One checks that this sum has a zero at the support of the
corresponding delta function. Therefore single delta functions do not appear.

However, we do have products of two delta functions. The corresponding coefficient is com-
puted from four terms (3.16) and it is non-trivial. For example, we have δ(z1/(q1z2))δ(q3z1/z3)
with a non-zero coefficient. Therefore, this product of delta functions is absent if and only if
p(z1, q

−1
1 z1, q3z1) = 0.

Let us also comment on the Serre relations in the n = 2 case. As discussed above, we
impose the quartic relations, (2.1), (2.2), following [M01]. By Lemma 2.1 we also have the
cubic relations. These relations are inspired by Theorem 3.1 and they are equivalent to the
wheel condition for the correlation functions.

We show here that quartic relations follow from the cubic ones. Let

〈E⊥
0 (z1)E

⊥
0 (z2)E

⊥
0 (z3)E

⊥
1 (w)〉 =

p(z1, z2, z3, w)
3∏

i=1

(zi − q1w)(zi − q3w)
∏

i<j(zi − q2zj)

.

Then p(z1, z2, z3, w) is a Laurent polynomial which is skew-symmetric in z1, z2, z3 and vanishing
if zi = zj , or if z2 = q2z1 and w = q1z2, or if z2 = q2z1 and w = q3z2. Relation (2.1) is equivalent
to

p(z1, z2, z3, w) Asym
z1,z2,z3

1∏
i<j

(zi − q2zj)

( 1
3∏

i=1

g12(zi, w)

−
q2 + 1 + q−1

2

2∏
i=1

g12(zi, w)g12(w, z3)

+
q2 + 1 + q−1

2

g12(z1, w)
2∏

i=1

g12(zi, w)

−
1

3∏
i=1

g12(w, zi)

)
= 0.

Here as before in the case of n = 2, g12(z, w) = (z−q1w)(z−q3w). This equality is established in
the same way as (3.16) using the vanishing conditions of the Laurent polynomial p(z1, z2, z3, w).
Hence the quartic relations are consequences of the quadratic and cubic relations.
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Commutators of the E and F currents. The relation

[E⊥
i (z), F

⊥
i (w)] =

1

q − q−1
(δ(κ−1w/z)K+,⊥

i (z)− δ(κ−1z/w)K−,⊥
i (z))

holds if and only if the following formulas are satisfied for all correlation functions:

〈E⊥
i (z)F

⊥
i (w)〉 =

p(z, w)

(z − κw)(z − κ−1w)
, 〈F⊥

i (w)E⊥
i (z)〉 =

p(z, w)

(z − κw)(z − κ−1w)
,

where p(z, w) is a Laurent polynomial and

〈K+,⊥
i (z)〉 = κ−1z−2 q − q−1

κ−1 − κ
p(z, κz) = −κ−1z−1(q − q−1) Resw=κz〈E

⊥
i (z)F

⊥
i (w)〉,

−〈K−,⊥
i (w)〉 = κ−1w−2 q − q−1

κ−1 − κ
p(κw,w) = −κ−1w−1(q − q−1) Resz=κw〈E

⊥
i (z)F

⊥
i (w)〉.

3.4. The relations for the fused currents. In this section we describe the subalgebra gen-
erated by fused currents.

From now on we fix ηi, i = 1, 2, 3 such that qi = exp(ηi). For x ∈ Q, we set qxi = exηi.
Set

Ẽ⊥
i (z) = E⊥

i (q
i

n−1

1 z), F̃⊥
i (z) = F⊥

i (q
i

n−1

1 z), K̃±,⊥
i (z) = K±,⊥

i (q
i

n−1

1 z),

i = 1, . . . , n− 2, and set

Ẽ⊥
0 (z) = E⊥

n−1|0(z), F̃⊥
0 (z) = F⊥

n−1|0(z), K̃±,⊥
0 (z) = K±,⊥

n−1|0(z).

Set

q̃1 = q1 · q
1

n−1

1 , q̃2 = q2, q̃3 = q3 · q
− 1

n−1

1 .

Theorem 3.1. The currents Ẽ⊥
i (z), F̃

⊥
i (z), K̃±,⊥

i (z), i = 0, 1, . . . , n−2, satisfy the relations of

the toroidal algebra En−1(q̃1, q̃2, q̃3).

In the proof of this theorem we use the following simple lemma.

Lemma 3.2. Let f(z1, z2, w1, w2) be a Laurent polynomial, a, b, c, d complex numbers, such that

f(w, az, bz, cz) = f(dz, az, bz, w) = 0. Then

f(dz, az, bw, cw)

z − w

∣∣∣
z=w

=
f(dz, aw, bz, cw)

w − z

∣∣∣
z=w

.

Proof. We have

f(dz, az, bw, cw)

z − w

∣∣∣
z=w

=
∂

∂z
f(dz, az, bw, cw)

∣∣∣
z=w

=
∂

∂y
f(dz, ay, bw, cw)

∣∣∣
y=w

.

On the other hand,

f(dz, aw, bz, cw)

w − z

∣∣∣
z=w

=
∂

∂w
f(dz, aw, bz, cw)

∣∣∣
z=w

=
∂

∂y
f(dz, ay, bw, cw)

∣∣∣
y=w

.

�
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Proof of Theorem 3.1. We check the relations for the correlation functions. By the construction,
the correlation functions of the fused currents are extracted from those of the standard currents
in the way similar to obtaining 〈K±,⊥

i (z)〉 from 〈E⊥
i (z)F

⊥
i (w)〉. For example, if

〈E⊥
n−1(q1z1)E

⊥
0 (z2)〉 =

p(z1, z2)

z1 − z2

then

〈E⊥
n−1|0(z)〉 = −z−1p(z, z).

It enables us to check its properties.
All quadratic relations and Serre relations are checked by a straightforward computation.

The cases of n = 3 and n = 2 are slightly different but not much more difficult. For example,

let n = 2, and let us check the relation g̃(z, w)E
(1),⊥
1|0 (z)E

(1),⊥
1|0 (w) = g̃(w, z)E

(1),⊥
1|0 (w)E

(1),⊥
1|0 (z),

where

g̃(z, w) = (z − q̃1w)(z − q̃2w)(z − q̃3w) = (z − q21w)(z − q2w)(z − q3q
−1
1 w).

We have

〈E⊥
1 (q1z

′)E⊥
0 (z)E

⊥
1 (q1w

′)E⊥
0 (w)〉 =

z′w′p(q1z
′, z, q1w

′, w)

(z′ − q2w′)(z − q2w)

×
1

(z′ − w)(z′ − q3q
−1
1 w)(z − q21w

′)(z − q1q3w′)(z − z′)(q1z′ − q3z)(w′ − w)(q1w′ − q3w)
.

Then

〈E
(1),⊥
1|0 (z)E

(1),⊥
1|0 (w)〉 =

p(q1z, z, q1w,w)

(z − q2w)2(z − w)(z − q3q
−1
1 w)(z − q21w)(z − q1q3w)

.

The factor (z − q1q3w) and one factor of (z − q2w) cancel due to the wheel conditions for the
Laurent polynomial p(z′, z, w′, w). Finally the pole z − w is absent due to the skew-symmetry
property of p(z′, z, w′, w).

The most difficult calculation is the EF relation for the fused current. Here are some details
in the case n ≥ 3. Consider

R(z1, z2, w1, w2) := 〈E⊥
n−1(q1z2)E

⊥
0 (z1)F

⊥
0 (w1)F

⊥
n−1(q1w2)〉

=
p(z1, z2, w1, w2)

(z1 − z2)(w1 − w2)(z1 − κ−1w1)(z1 − κw1)(z2 − κ−1w2)(z2 − κw2)
.

Then we have

〈E⊥
n−1(q1z2)K

+,⊥
0 (z1)F

⊥
n−1(q1w2)〉 =

κ−1z−2
1 (q − q−1)p(z1, z2, κz1, w2)

(z1 − z2)(κz1 − w2)(κ−1 − κ)(z2 − κ−1w2)(z2 − κw2)
.

But this correlation function does not have a pole at z1 = z2, therefore the Laurent polynomial
p(z1, z2, w1, w2) satisfies

p(z, z, κz, w2) = 0.(3.17)

Similarly, considering the correlation function 〈E⊥
0 (z1)F

⊥
0 (w1)K

+,⊥
n−1(q1z2)〉, we obtain

p(z, κ−1w,w, w) = 0.(3.18)
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From Lemma 3.2, and the conditions (3.17), (3.18) we obtain that

p(z1, z1, w1, w1)

z1 − κ−1w1

∣∣∣
w1=κz1

=
p(z1, z2, κz1, κz2)

z2 − z1

∣∣∣
z2=z1

.

Using this identity, it is straightforward to check that

q − q−1

κ2z31
Resw1=κz1 Resz2=z1 Resw2=w1 R(z1, z2, w1, w2)

=
{q − q−1

κz2
Resw2=κz2

q − q−1

κz1
Resw1=κz1

q−1(κz1 − w2)

κz1 − q−1
2 w2

R(z1, z2, w1, w2)
}∣∣∣

z2=z1
.

Similarly one obtains an equation involving residues at z1 = κw1 and z2 = κw2.
These two equations are equivalent to the needed relation

[E⊥
n−1|0(z), F

⊥
n−1|0(w)]

=
1

q − q−1
(δ(κ−1w/z)K+,⊥

n−1(q1z)K
+,⊥
0 (z)− δ(κ−1z/w)K−,⊥

n−1(q1w)K
−,⊥
0 (w)). �

We denote the subalgebra of En described in the theorem by E
n−1|0
n−1 .

Note that Theorem 3.1 only shows that E
n−1|0
n−1 is a factor of toroidal algebra En−1 with

parameters q̃1, q̃2, q̃3. However, using the classical limit, see Section 3.7, we obtain that in fact

the algebra E
n−1|0
n−1 has the same size as En−1 and therefore is isomorphic to En−1(q̃1, q̃2, q̃3). Note

that while E
n−1|0
n−1 is a subalgebra of a completion of En, its classical limit is a subalgebra of

uncompleted classical limit of En, see Section 3.7.

Note also that if V is an admissible representation for En then V is an admissible represen-

tation of E
n−1|0
n−1 . Therefore, Theorem 3.1 justifies the recursive use of the construction of the

fused currents, see Section 3.1.

Let k ∈ {1, . . . , n− 1}.

Using the theorem recursively, we obtain subalgebras E
k|k+1|...|n−1|0
k generated by currents

Ẽ⊥
i (z) = E⊥

i

(
q

n−k
k

i

1 z
)
, F̃⊥

i (z) = F⊥
i

(
q

n−k
k

i

1 z
)
, K̃±,⊥

i (z) = K±,⊥
i

(
q

n−k
k

i

1 z
)
, i = 1, . . . , k − 1, and

Ẽ⊥
0 (z) = E⊥

k|k+1|...|n−1|0(z), F̃
⊥
0 (z) = F⊥

k|k+1|...|n−1|0(z), K̃
±,⊥
0 (z) = K±,⊥

k|k+1|...|n−1|0(z).

The subalgebra E
k|k+1|...|n−1|0
k is isomorphic to Ek(q̃1, q̃2, q̃3) with q̃i given by

q̃1 = q1 · q
n−k
k

1 , q̃2 = q2, q̃3 = q3 · q
−n−k

k

1 .

In the same way, we obtain subalgebras E
n−k|...|1|0
k which are generated by currents Ẽ⊥

i (z) =

E⊥
i

(
q

n−k
k

i

3 z
)
, F̃⊥

i (z) = F⊥
i

(
q

n−k
k

i

3 z
)
, K̃±,⊥

i (z) = K±,⊥
i

(
q

n−k
k

i

3 z
)
, i = n − k + 1, . . . , n − 1, and

Ẽ⊥
0 (z) = E⊥

n−k|...|1|0(z), F̃
⊥
0 (z) = F⊥

n−k|...|1|0(z), K̃
±,⊥
0 (z) = K±,⊥

n−k|...|1|0(z). The subalgebra

E
n−k|...|1|0
k is isomorphic to Ek(q̃1, q̃2, q̃3) with q̃i given by

q̃1 = q1 · q
−n−k

k

3 , q̃2 = q2, q̃3 = q3 · q
n−k
k

3 .

We abbreviate E
n−1|...|1|0
1 to E

n−1||0
1 .

In Section 3.7 below we explain that, in the classical limit, the embedding of the subalgebra

E
k|k+1|...|n−1|0
k into the completion of En corresponds to the embedding of submatrices into the
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upper-left corner. Similarly, the embedding E
n−k|...|1|0
k to the completion of En corresponds to

the embedding of submatrices into the lower-right corner.

3.5. Computation of H̃i,1. The algebra E
n−1|0
n−1 , see Theorem 3.1, is defined in terms of the

perpendicular generators. It is not easy to write the standard (non-perpendicular) generators

of E
n−1|0
n−1 in terms of standard generators of En in general. In this section we compute such a

formula for H̃i,1. This is used in Section 4.

Lemma 3.3. For i = 0, . . . , n− 2 we have

H̃i,1 = (−q)q
− i

n−1

1 lim
s→∞

q−s
1 T s

n−1|0

(
Hi,1 + δi,0q

−1
1 Hn−1,1

)
.

Proof. By the definition of the symbol ⊥ we have H̃i,1 = θ̃
(
H̃⊥

i,1

)
.

First assume n ≥ 3. Set d̃ = dq
1

n−1

1 . Then, for 1 ≤ i ≤ n− 2, we have from (2.13)

H̃i,1 = (−d̃)−i[[· · · [[· · · [Ẽ⊥
0,0, Ẽ

⊥
n−2,0]q−1 , · · · , Ẽ⊥

i+1,0]q−1 , Ẽ⊥
1,0]q−1 , · · · , Ẽ⊥

i−1,0]q−1 , Ẽ⊥
i,0]q−2 .

Substituting Ẽ⊥
j,0 = E⊥

j,0 (1 ≤ j ≤ n− 2) and

Ẽ⊥
0,0 = (−q) lim

s→∞
q−s
1 T s

n−1|0[E
⊥
0,0, E

⊥
n−1,0]q−1 ,

we find

H̃i,1 = (−d̃)−i(−q) lim
s→∞

q−s
1 T s

n−1|0

(
(−d)iHi,1

)

which gives the desired result.
Consider the case i = 0. Using the quadratic relation [E⊥

0,0, E
⊥
1,0]q−1 = −d[E⊥

1,1, E
⊥
0,−1]q−1 we

rewrite Hn−1,1 as follows.

Hn−1,1 = (−d)−n+2[[[· · · [E⊥
1,1, E

⊥
2,0]q−1, · · · , E⊥

n−2,0]q−1, E⊥
0,−1]q−1 , E⊥

n−1,0]q−2 .

Setting X = [[E⊥
1,1, E

⊥
2,0]q−1 , · · · , E⊥

n−2,0]q−1 and using (2.14) we obtain

(−d)n−1
(
H0,1 + q−1

1 Hn−1,1

)
= [[X,E⊥

n−1,0]q−1, E⊥
0,−1]q−2 − q[[X,E⊥

0,−1]q−1 , E⊥
n−1,0]q−2

= X [E⊥
n−1,0, E

⊥
0,−1]q − q−2[E⊥

n−1,0, E
⊥
0,−1]q−1X − (1− q−2)E⊥

0,−1XE
⊥
n−1,0.

It follows that

lim
s→∞

q−s
1 T s

n−1|0(H0,1 + q−1
1 Hn−1,1) = (−d)−n+1[X,E⊥

n−1|0,−1]q−2 .

We obtain the statement by noting that Ẽ⊥
1,1 = q

− 1
n−1

1 E⊥
1,1.

The case n = 2 can be checked directly, by noting that H̃0,1 = Ẽ⊥
0,0 = E⊥

1|0,0. �

3.6. Commuting subalgebras. We show that the constructed ”upper left corner” subalge-
bras commute with ”lower right corner” subalgebras.

Theorem 3.4. For each k, the En subalgebras E
k|...|1|0
n−k and E

k|k+1|...|n−1|0
k commute.
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Proof. The theorem is proved by the same techniques as Theorem 3.1.

For example, let us check the commutativity of E⊥
1 (z) ∈ E

k|k+1|...|n−1|0
k with E⊥

k|...|1|0(w) ∈

E
k|...|1|0
n−k . We consider the correlation function

〈E⊥
1 (z)E

⊥
k (q

k
3wk)E

⊥
k−1(q

k−1
3 wk−1) . . . E

⊥
0 (w)〉

=
p(z, wk, . . . , w1, w)

(z − q2q3w1)(z − q1q
2
3w2)(z − q−1

1 w)(wk − wk−1) . . . (w1 − w)
.

We need to show that the poles at z = q2q3w1, z = q1q
2
3w2 and z = q−1

1 w disappear when we
multiply by (wk −wk−1) . . . (w1 −w) and set wk = wk−1 = · · · = w1 = w. But this follows from
the wheel conditions for the Laurent polynomial p(z, wk, . . . , w1, w).

Let us check the commutativity of F⊥
1 (z) ∈ E

k|k+1|...|n−1|0
k with E⊥

k|...|1|0(w) ∈ E
k|...|1|0
n−k . We

consider the correlation function

〈F⊥
1 (z)E⊥

k (q
k
3wk)E

⊥
k−1(q

k−1
3 w1) . . . E

⊥
0 (w)〉

=
p(z, wk, . . . , w1, w)

(z − κ−1q3w1)(z − κq3w1)(wk − wk−1) . . . (w1 − w)
.

We need to show that the poles at z = κ−1q3w1, z = κq3w1 disappear when we multiply by
(wk − wk−1) . . . (w1 − w) and set wk = wk−1 = · · · = w1 = w. We have

Resz=q3κw1〈F
⊥
1 (z)E⊥

k (q
k
3wk) . . . E

⊥
2 (q

2
3w2)E

⊥
1 (w1q3)E

⊥
0 (w)〉

= −
q3κw

−1
1

q − q−1
〈E⊥

k (q
k
3wk) . . . E

⊥
2 (q

2
3w2)K

+,⊥
1 (q3w1)E

⊥
0 (w)〉

= −q−1
3 d−1 q3κw1

q − q−1

q1q3w1 − w

w1 − w
〈E⊥

k (q
k
3wk) . . . E

⊥
2 (q

2
3w2)E

⊥
0 (w)K

+,⊥
1 (q3w1)〉.

In the last expression there is no pole at w2 = w1. It implies that we have the identity
p(κq3w1, wk, . . . , w1, w1, w) = 0 and the pole z = κq3w1 disappears.

We omit further details. �

3.7. Classical limit. In this subsection we explain the meaning of the fused currents in the
classical limit.

The quantum toroidal gln algebra En = En(q1, q2, q3) contains two parameters q, d. By the
classical limit we mean q → 1. The algebra En(q1, q2, q3) in the limit is known to have the
following description.

Consider the algebra An(d) = Mn ⊗ C[Z±1, D±1], where Mn stands for the algebra of n× n
matrices, and C[Z±1, D±1] is the algebra generated by symbols Z,D satisfying DZ = d−nZD.
We regard An(d) as a Lie algebra by commutators. Let Ln(d) = An(d) ⊕ Cc1 ⊕ Cc2 be its
two-dimensional central extension, where the Lie bracket is given by

[M1 ⊗ Zr1Ds1,M2 ⊗ Zr2Ds2] =
(
d−nr2s1M1M2 − d−nr1s2M2M1

)
⊗ Zr1+r2Ds1+s2

+ δr1+r2,0δs1+s2,0 d
−nr2s1tr

(
M1M2

)
· (r1c1 + s1c2) ,

for Mi ∈ Mn, ri, si ∈ Z, i = 1, 2. Let further L′
n(d) be the Lie subalgebra of Ln(d) spanned

by c1, c2 and elements
∑
Mr,sZ

rDs ∈ An(d) such that tr(M0,0) = 0. The classical limit of
En(q1, q2, q3) is the universal enveloping algebra UL′

n(d).
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To see this explicitly, set K⊥
i = qH

⊥
i,0, κ = q−c1, c2 =

∑n−1
i=0 H

⊥
i,0. It is then straightforward

to check that the limit q → 1 of the defining relations for the generators E⊥
i,k, F

⊥
i,k, H

⊥
i,k of

En(q1, q2, q3) are satisfied by the following elements of L′
n(d):

Ē⊥
i,k =

{
Ei,i+1 ⊗ Zk d−ik (1 ≤ i ≤ n− 1) ,

En,1 ⊗DZk (i = 0) ,
(3.19)

F̄⊥
i,k =

{
Ei+1,i ⊗ Zk d−ik (1 ≤ i ≤ n− 1) ,

E1,n ⊗ ZkD−1 (i = 0) ,

H̄⊥
i,k =

{(
Ei,i −Ei+1,i+1

)
⊗ Zk d−ik (1 ≤ i ≤ n− 1) ,(

d−nkEn,n − E1,1

)
⊗ Zk + c2δk,0 (i = 0) .

Here Ei,j ∈ Mn are the matrix units. As it is noted in [M99], the automorphism θ ∈ AutEn

reduces in the classical limit to the Lie algebra automorphism θ̄ ∈ AutL′
n(d) given by the rule

Z 7→ D, D 7→ Z−1, c1 7→ c2, c2 7→ −c1,

and M 7→ M for M ∈ Mn.
Let us examine the classical limit of the fused currents. For simplicity we consider the case

n ≥ 3. Recall that the Fourier components of the current E⊥
n−1|0(z) are defined to be

E⊥
n−1|0,r = lim

s→∞
q−r−s
1 E⊥

n−1,r+sE
⊥
0,−s = lim

s→∞
q−r−s
1 [E⊥

n−1,r+s, E
⊥
0,−s] ,

where the second equality is due to the meaning of the completion. In view of (3.19), the
classical limit of this expression is

Ē⊥
n−1|0,r = d−r−s[Ē⊥

n−1,r+s, Ē
⊥
0,−s] = En−1,1 ⊗DZr .

This holds true for all s, without taking the limit s → ∞ nor introducing the completion.
Similarly the classical limit of F⊥

n−1|0,r is

F̄⊥
n−1|0,r = ds[F̄⊥

0,r+s, F̄
⊥
n−1,−s] = E1,n−1 ⊗ ZrD−1 .

These elements along with the other generators Ē⊥
i,rd

−ir/(n−1), F̄⊥
i,rd

−ir/(n−1) for 1 ≤ i ≤ n − 2

generate a subalgebra of L′
n(d) isomorphic to L′

n−1(d̃), where d̃ = dn/(n−1) (note that DZ =

d̃−n+1ZD). This is nothing but the one induced from the upper left corner embedding of matrix
algebras

Mn−1 →֒ Mn, M ′ 7→
(
M ′ 0
0 0

)
.

In a similar manner the classical counterparts of E⊥
n−1||0,r, F

⊥
n−1||0,r generate a subalgebra L′

1(d
n)

commuting with L′
n−1(d̃). The former corresponds to the bottom right corner embedding

M1 →֒ Mn, M ′′ 7→
(
0 0
0 M ′′

)
.
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Figure 1. The E2 module F(0)(u)

4. Branching rules

In this section we study the restriction of various En modules to the subalgebra E
n−1|0
n−1 ⊗E

n−1||0
1 .

The logic of the computation is the same in all cases, but we start with Fock spaces, and
specifically with n = 2 where the situation is the easiest to describe.

4.1. Fock modules for E2. In this section we study decompositions of the modules of level q
for E2.

Consider the module F(0)(u), see Section 2.5. This module has a basis labeled by partitions.
In addition, it is convenient to represent this module by the following familiar picture, see
Figure 1.

On this picture the module F(0)(u) looks similar to that of the vacuum ŝl2 integrable module
of (additive) level one, but actually it is not the same. It is similar simply because the Fock

module restricted to the horizontal algebra Uhor
q ŝl2 is a level q module (in the sense κ−1 = q).

However, the reader should be warned that our space is in fact the vacuum Uq ĝl2 module. In

other words, we have a Heisenberg current commuting with the Uhor
q ŝl2, see Section 2.3, and

our module is the tensor product of the Fock space of the Heisenberg algebra with the vacuum

Uhor
q ŝl2 integrable module of level q. Thus the module F(0)(u) is the vacuum Uhor

q ĝl2 module.

We have the usual sl2 weight decomposition given by values of K1K
−1
0 . We called this weight

“cweight” (see (2.5)).
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The cweight of a partition is given by ♯{boxes of color 1}− ♯{boxes of color 0} in the corre-
sponding colored Young diagram. On Figure 1, the cweight increases from the right to the left
and it is denoted by s. The cones which look downward picture vectors of the same cweight.

We also have the principal degree given by pdegEi(z) = 1, pdegFi(z) = −1. It counts the
total number of boxes and in Figure 1 the principal degree increases from the top to the bottom.

The action of the i-th generator of the Heisenberg current increases the principal degree by
2i and does not change the cweight.

We have the action of the shift element T , see (2.16), on the Fock space as shown in Figure
1. Precisely, we have T−1 = s1s0 where the si are the Lusztig simple reflections.

Our first observation is the following combinatorial ”tensor product” decomposition of the
sector with large cweight s. Let Λs = (2s, 2s− 1, . . . , 2, 1) and Λ−s = (2s− 1, 2s− 2, . . . , 2, 1)
for s > 0 and let Λ0 be the empty partition. Then |Λs〉 is the vector of the lowest degree of
cweight s. The degree of |Λs〉 is s(2s + 1). Fix two partitions λ and µ with, say, k parts and
let |s| be larger than k. Let Λs

λ,µ be the unique partition of degree s(2s+ 1) + 2|λ|+ 2|µ| and
cweight s such that for i = 1, . . . , k we have

(Λs
λ,µ)i = Λs

i + 2λi,

(Λs
λ,µ)

′
i = (Λs)′i + 2µi.

Informally speaking, Λs
λ,µ is obtained from Λs by attaching the partitions of λ and µ made out

of dominoes to the top and the bottom respectively, see Figure 2.
Denote by Ss the subspace of F(0)(u) of cweight s. Denote by Ss

≤2k the subspace of Ss

consisting of vectors which have degree at most s(2s + 1) + 2k. We have the following purely
combinatorial lemma.

Lemma 4.1. If 2s > k, the vectors |Λs
λ,µ〉 with |µ|+ |λ| ≤ k form a basis of Ss

≤2k.

Proof. Partitions of vectors in Ss
≤2k have s more boxes of color 1 than color 0. Each odd row

contains at least as many boxes of color 0 as color 1. Each even row contains at most one more
box of color 1 than color 0. It follows that every such partition contains Λs. Hence any such
partition is obtained from Λs by adding r boxes of color 1 and r boxes of color 0 where r ≤ k.
It is easy to see that the only way to do it is as described in the lemma. �

Another important statement is the following lemma.

Lemma 4.2. Let λ, µ be partitions and let 2s > |λ|+ |µ|. Then T−1|Λs
λ,µ〉 = as,λ,µ|Λ

s+1
λ,µ 〉, where

as,λ,µ is a non-zero constant.

Proof. For s ≥ 0, one cannot remove boxes of color 0 from |Λs
λ,µ〉. It is therefore a lowest weight

vector with respect to Uqsl2 generated by E0,0, F0,0. Then s0|Λ
s
λ,µ〉 is a non-zero constant

multiple of the corresponding highest weight vector, that is |Λ−s−1
λ,µ 〉. Similarly s1|Λ

−s−1
λ,µ 〉 is a

non-zero constant multiple of |Λs+1
λ,µ 〉. The lemma follows. �

For s ∈ Z, and partitions λ, µ, we choose any integer r = r(s, λ, µ) such that 2(r+s) > |λ|+|µ|
and define vectors vsλ,µ by the formula

vsλ,µ = T r|Λr+s
λ,µ 〉.

Note that different choices of r change vectors vsλ,µ by non-zero scalars.
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. . . . . . . . . . . . . . .

Figure 2. The partition Λs
λ,µ with λ = (3, 3, 1) and µ = (2, 1, 1).

Corollary 4.3. The vectors vsλ,µ form a basis of the space Ss.

Proof. The corollary follows from Lemma 4.2 and Lemma 4.1. �

Recall that we have the subalgebra E
(1)
1 ⊗ E

(3)
1 ⊂ E2. The subalgebra E

(1)
1 is generated

by currents E
(1),⊥
1|0 (z), F

(1),⊥
1|0 (z), K

±(1),⊥
1|0 (z) and the subalgebra E

(3)
1 is generated by currents

E
(3),⊥
1|0 (z), F

(3),⊥
1|0 (z), K

±(3),⊥
1|0 (z). Now we are in a position to establish the decomposition of the

E2-module F(0).
We write F(2;0)(u) for the E2 Fock module F(0)(u), we also write F(1)(u) (resp. F(3)(u)) for

the E
(1)
1 (resp. E

(3)
1 ) Fock modules.

Theorem 4.4. We have an isomorphism of E
(1)
1 ⊗ E

(3)
1 modules

F(2;0)(u) = ⊕
s∈Z

xs(2s+1)zs F(1)(−qq2s1 u)⊠ F(3)(−qq2s3 u).(4.1)

In particular, this isomorphism identifies the space F(1)(−qq2s1 u)⊠F(3)(−qq2s3 u) with the subspace

of F(2;0)(u) of cweight s.
Here the factor xs(2s+1)zs signifies the cweight and degree of the top vector of the subspace

F(1)(−qq2s1 u)⊠ F(3)(−qq2s3 u) in F(2;0)(u).

Proof. The algebras E
(1)
1 and E

(3)
1 are defined in terms of the perpendicular generators of E2

and the action of E2 in F(2;0)(u) is given in terms of usual generators. Therefore, in general, it



BRANCHING RULES FOR QUANTUM TOROIDAL gln. 31

is not easy to compute the action of algebras E
(1)
1 and E

(3)
1 in F(2;0)(u). However, at least we

have the following formula, see Lemma 3.3, which turns out to be sufficient for our purposes.

H
(1)
0,1 = (−q) lim

s→∞
q−2s
1 T s(q−1

1 H1,1 +H0,1),(4.2)

H
(3)
0,1 = (−q) lim

s→∞
q−2s
3 T s(q−1

3 H1,1 +H0,1).(4.3)

It follows that we can compute

〈v|H
(1)
0,1 |v〉 = −q lim

s→∞
〈T−sv|q−2s

1 (q−1
1 H1,1 +H0,1)|T

−sv〉,(4.4)

〈v|H
(3)
0,1 |v〉 = −q lim

s→∞
〈T−sv|q−2s

3 (q−1
3 H1,1 +H0,1)|T

−sv〉.
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We use these formulas to establish

H
(1)
0,1 |Λ

s〉 = q2uq2s1 |Λs〉, H
(3)
0,1 |Λ

s〉 = q2uq2s3 |Λs〉.(4.5)

Now note, that for all s ∈ Z the vectors |Λs〉 are lowest weight vectors with respect to E
(1)
1 and

E
(3)
1 for the degree reasons. Since the levels of E

(1)
1 and E

(3)
1 coincide with the level of E2, the

vector |Λs〉 generates a level q module for both of these algebras. Such a module necessarily
contains a Fock module. The evaluation parameter of the Fock module is now obtained from
(4.5).

It follows that F(2;0)(u) contains the right hand side of (4.1). Then the equality follows from
Lemma 4.3. �

Remark 4.5. Using (4.4), we can compute the action of operators H
(1)
0,1 and H

(3)
0,1 on basis vsλ,µ.

Moreover, in fact, the spectrum of the operator H0,1 is simple in the E1 Fock module. It allows
us to identify (up to a constant) the vector vsλ,µ with the vector |λ〉⊠ |µ〉.

4.2. Fock modules for En. In this section we generalize the results of Section 4.1 for all Fock
modules.

Fix p ∈ {0, . . . , n − 1}, and consider the En Fock module F(p)(u). Then we have a picture,
similar to Figure 1, where the lattice of roots is now Zn−1. The top vectors (or extremal vectors)
are obtained by the action of the braid group on the |∅〉.

Denote the simple roots of sln by αj , j = 1, · · · , n − 1. Let η, η(p), ηi be the following sln
roots:

η =
n−1∑

j=1

jαj, η(p) =

p−1∑

j=1

jαj + p
n−1∑

j=p

αj, ηi =
i∑

j=1

(i− j + 1)αn−j.

Here i = 0, . . . , n− 2.
Given an sln root γ, there is unique s, a1, . . . , an−2 ∈ Z, i ∈ {0, 1, . . . , n− 2}, such that

γ = η(p) + ηi + sη +

n−2∑

j=1

ajαj .(4.6)

For s ≡ i+ p (mod n− 1) denote vs,i the extremal vector of cweight

w(s, i, p) := η(p) + ηi +
s− i− p

n− 1
η.

Lemma 4.6. For ns ≥ i+p, we have vs,i = |Λs,i〉, where the partition Λs,i has ns−p non-trivial
parts given by

(Λs,i)j =
ns− i− p

n− 1
−

[
j − i− 1

n− 1

]
,

see Figure 3.

Proof. The principal degree (or total number of boxes) of Λs,i is easily computed and is given
by

ρ(s, i, p) =
(ns + n− i− p− 1)(ns+ i− p)

2(n− 1)
.
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✲✛ ns−i−p
n−1

✻

❄

ns− p

✻

❄
i

✻

❄

n− 1

. . . . . . . . .

. . . . . .

p

0

0

0

0

0

i′

Figure 3. The staircase partition Λs,i. Here the color i′ is n− i− 1.

Then one checks by a straightforward computation that

ρ(s, i, p) =
n

2

(
(w(s, i, p)−Λp, w(s, i, p)−Λp)− (Λp,Λp)

)
+ (w(s, i, p),

n−1∑

l=0

Λl)

Here Λp denotes the p-th fundamental ŝln weight. The lemma follows. �

Lemma 4.7. The vector |Λs,i〉 has the smallest principal degree among all vectors of cweights

(4.6) with the given s, i and various ai.

Proof. Note that the Fock module F(p)(u) is irreducible, and Fi,k|Λ
s,i〉 = 0 for i = 0, . . . , n− 2.

The statement of the lemma follows. �

Let T be the automorphism of En given by T = T n
n−1|0, see (2.15). After restriction to the

horizontal subalgebra Uhor
q

(
ŝln
)
, T becomes the translation operator in the braid group. in

terms of the Lusztig simple reflections we have, see Lemma 2.5,

T−1 = (sn−1 . . . s2s1s0)
n−1.

Note also that T act as identity on the Heisenberg algebra ahor. Hence the operator T−1 acts
on F(p)(u) and changes cweight by η. In particular, we have

T−1vs,i = an,s,iv
s+n−1,i,

for some non-zero constants an,s,i.

We recall that we have the subalgebra E
n−1|0
n−1 ⊗ E

n−1||0
1 ⊂ En.
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The subalgebra E
n−1|0
n−1 is generated by currents E⊥

n−1|0(z), F
⊥
n−1|0(z),K

±,⊥
n−1|0(z) and E

⊥
i

(
q

i
n−1

1 z
)
,

F⊥
i

(
q

i
n−1

1 z
)
, K±,⊥

i

(
q

i
n−1

1 z
)
with i = 1, . . . , n− 2.

The subalgebra E
n−1||0
1 is generated by currents E⊥

n−1||0(z),F
⊥
n−1||0(z),K

±,⊥
n−1||0(z), see (3.13).

By Theorem 3.4 the subalgebras E
n−1|0
n−1 and E

n−1||0
1 commute inside En.

The following lemma follows from the construction of the subalgebras and Lemma 2.4.

Lemma 4.8. Let deg(n−1) and deg(n) denote the degree in En−1 and En, respectively. The

embedding of En−1 is graded. Namely, if x ∈ En−1 is a graded element such that deg(n−1) x =
(ℓ, ℓ+ d1, . . . , ℓ+ dn−2, k), then the embedded element, which we denote also by x, is graded and

deg(n) x = (ℓ, ℓ + d1, . . . , ℓ + dn−2, ℓ, k). Similarly, if x ∈ E1 is such that deg(1) = (ℓ, k) then

deg(n) = (ℓ, ℓ, . . . , ℓ, k).

Now we are in a position to describe the decomposition of the En-module F(p)(u).
We write F(n;p)(u) for the En Fock module, similarly we write F(n−1;k)(u) (resp. F(1)(u)) for

the E
n−1|0
n−1 (resp. E

n−1||0
1 ) Fock modules.

Theorem 4.9. We have an isomorphism of E
n−1|0
n−1 ⊗ E

n−1||0
1 modules

F(n;p)(u) =
n−2
⊕
i=0

⊕
s∈Z,

s≡p+i(modn−1)

xρ(s,i,p)zw(s,i,p) F(n−1;n−i−1)(−qq
ns−p

n−1

1 u)⊠ F(1)(−qqns−p
3 u).

Proof. The theorem is proved similarly to Theorem 4.4. The first step is to show that the
vector Λs,i is the lowest weight vectors for both of the actions of En−1 and E1. In the proof we
use Lemma 4.7 and Lemma 4.8.

Let us indicate the combinatorial picture. Similarly to n = 2 case, we define the basis |Λs,i
λ,µ〉

and the partition Λs,i
λ,µ is obtained from Λs,i by adding legs in the shape of µ, and arms in

the shape of λ. Moreover, each box of µ is replaced with vertical strip of n boxes colored
0, 1, 2, . . . , n− 1 (from top to bottom). The partition λ is colored by n− 1 colors, with the top
left box being n− i− 1. Then 0 boxes of λ are replaced in Λs,i

λ,µ by horizontal dominoes colored

0, n− 1 from left to right. The other boxes of λ go to the boxes of the same color in Λs,i
λ,µ.

Then we use Lemma 3.3 in place of (4.2), (4.3).
We leave the rest of the details to the reader. �

4.3. Generic tensor products of Fock modules. Our next goal is to establish the de-
composition of the module F(n,p1)(u1) ⊗ F(n,p2)(u2) ⊗ · · · ⊗ F(n,pk)(uk) with generic evaluation

parameters u1, . . . , uk as E
n−1|0
n−1 ⊗ E

n−1||0
1 module.

We prepare the following lemma.

Lemma 4.10. Let W = F(p1)(u1)⊗ F(p2)(u2)⊗ · · · ⊗ F(pk)(uk) be a tensor product of En-Fock

modules. Assume that u1, . . . , uk, q1, q2 are algebraically independent over Q, in particular, that

W is irreducible.

Let V be an En module such that

• V is an irreducible lowest weight En-module V with lowest weight vector v.
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• W and V have the same graded character in the principal gradation. Let w1, . . . , wk be

a basis of the subspace of V of vectors of the principal degree one. We choose a basis

consisting of eigenvectors of operators Ki and Hi,1, i = 0, . . . , n− 1.
• The eigenvalues of Ki, Hi,1, i = 0, . . . , n− 1, on vectors v, w1, . . . , wk coincide with the

corresponding eigenvalues of vectors |∅〉⊗k
, |∅〉⊗i−1 ⊗ |{1}〉 ⊗ |∅〉⊗k−i

, i = 1, . . . , k, in
W .

Then En-modules V and W are isomorphic.

Proof. Let Kiv = q−kiv. Then ki is the number of Fock representations F(pj)(uj) in W such
that pj = i. Then the number of wj such that Kiwj = q−ki+2wj is ki. It follows that the i-th
component of the lowest weight of v has at most ki zeros and at most ki poles.

Therefore the lowest weight of V coincides with that of a product of vacuum Macmahon
modules M(p1)(ũ1, κ1)⊗M(p2)(ũ2, κ2)⊗· · ·⊗M(pk)(ũk, κk), see [FJMM2], for some levels κi and
some evaluation points parameters ũj. On the other hand, for the Fock module F(i)(u), the
difference of eigenvalues of Hi,1 on |∅〉 and on |(1)〉 is given by −(q+q−1)u. The same holds also
for the Macmahon module M(i)(u, κ). From the hypothesis of the lemma, we then conclude
that {ũi}

k
i=1 = {ui}

k
i=1. In particular, the tensor product of Macmahon modules is well-defined.

Note that given lowest weight of V , the choice of the Macmahon modules (the choice of κj) is
not unique, it is defined by the choice of pairing up the factors in the numerator with factors in
the denominator. Since zeros in the denominator are algebraically independent, for each factor
in the numerator, there is at most one zero in the denominator, such that the corresponding
Macmahon module is not irreducible. Let us choose the pairing such that as many Macmahon
modules as possible are not irreducible. We can also choose the order of factors in such a way
that the tensor product is cyclic.

Then in the tensor product we need to have k linearly independent singular vectors of prin-
cipal degree 2. One can see that it is possible only if κi = q for all i. The lemma follows. �

Note that the subalgebras E
n−1|0
n−1 and E

n−1||0
1 are not Hopf subalgebras. However, the decom-

position formula looks as a tensor product formula.

Theorem 4.11. We have an isomorphism of E
n−1|0
n−1 ⊗ E

n−1||0
1 modules

k
⊗
j=1

F(n,pj)(uj) =
n−2
⊕

i1,...,ik=0
⊕

s1,...,sk∈Z,

sj≡pj+ij(modn−1)

x

k∑

j=1
ρ(sj ,ij ,pj)

z

k∑

j=1
w(sj ,ij ,pj)

×

(
k
⊗
j=1

F(n−1;n−ij−1)(−qq
nsj−pj
n−1

1 uj)

)
⊠

(
k
⊗
j=1

F(1)(−qq
nsj−pj
3 uj)

)
.(4.7)

Proof. Clearly it is enough to show that the vectors ⊗k
j=1|Λ

sj ,ij〉 are lowest weight vectors ?with

respect to E
n−1|0
n−1 and E

n−1||0
1 and to compute their lowest weights in accordance with (4.7).

Recall that we defined a basis of the Fock space |Λs,i
λ,µ〉, see proofs of Theorems 4.1 and 4.9.

Consider the basis of
k
⊗
j=1

F(n,pj)(uj) given by
k
⊗
j=1

|Λ
sj ,ij
λj ,µj

〉. Here ij = 0, . . . , n − 2, sj ∈ Z and

λj , µj are arbitrary partitions.
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Consider E
n−1|0
n−1 . By definition, any given g̃ ∈ E

n−1|0
n−1 acts as a limit of operators qrs1 T

sg for
some r and some g ∈ En. We have (T sg)v = T s ◦ g ◦ T−sv. Also, note that action of T in the
tensor product of modules is given by the tensor product of action of T in factors.

Therefore to compute action of g̃ we have to apply g to an element shifted far to the stable

zone, that is to ⊗k
j=1|Λ

sj ,ij
λj ,µj

〉 with large sj.

If all sj are large the vector ⊗k
j=1|Λ

sj,ij
λj ,µj

〉 corresponds to a vector given by a product of

partitions of the type shown on Figure 2. Then the operator g acting on this vector produces
a linear combination of vectors corresponding to the product of partitions where a fixed total
amount of boxes has been removed and added.

For any fixed r, there exist some M > 0 such that if all sj > M , there is no vector of degree
less then ⊗k

j=1|Λ
sj ,ij〉 which corresponds to a set of partitions that can be obtained from Λsj ,ij

by a change of r boxes. It follows that this vector is a lowest weight vector with respect to

E
n−1|0
n−1 and similarly with respect to E

n−1||0
1 .

Moreover, for the same reason, the span of all vectors ⊗k
j=1|Λ

sj ,ij
λj ,µj

〉 with fixed sj , ij and all

tuples of partitions λj, µj is stable under the action of the E
n−1|0
n−1 .

To determine the lowest weight of ⊗k
j=1|Λ

sj ,ij〉, we check the conditions of Lemma 4.10. By

a similar argument as above, the vectors of principal degree 1 are obtained from ⊗k
j=1|Λ

sj ,ij〉
by adding one box or a domino. The action of Hi,1 is computed then as before. �

4.4. The modules N
(p)
α,β. In this section we deduce the decomposition of modules N

(p)
α,β(u) from

Theorem 4.11.
Recall that N

(p)
α,β(u) is a submodule in the tensor product F(p1)(u1)⊗· · ·⊗F(pk)(uk), see (2.18),

where pi, ui are given by (2.17). Recall also, that ai, bi are given by (2.20).
Assume that pi ∈ {0, . . . , n− 1}, and define the numbers mi by

pi = pi+1 + bi − ai −min.(4.8)

Theorem 4.12. We have an isomorphism of E
n−1|0
n−1 ⊗ E

n−1||0
1 modules

N
(n;p)
α,β (u) =

n−2
⊕

i1,...,ik=0
⊕

s1,...,sk∈Z,

sj≡pj+ij(modn−1)

x

k∑

j=1
ρ(sj ,ij ,pj)

z

k∑

j=1
w(sj ,ij ,pj)

×N
(n−1;n−1−ik)
γ(s),β (−qq

ns1−p1
n−1

1 u)⊠N
(1)
γ(s),α(−qq

ns1−p1
3 u),(4.9)

where

lj(s) = sj − sj+1 +mj , γj(s)− γj+1(s) = lj(s),

and the summation is over s1, . . . , sk such that lj(s) ≥ 0, j = 1, . . . , k − 1.

Proof. Theorem 4.12 is deduced from Theorem 4.11. The module N
(n;p)
α,β (u) is the submodule of

a tensor product of Fock modules, see (2.18), which is described by conditions (2.19).
Therefore, we start from the generic tensor product of Fock modules as in Theorem 4.11. Note

that the action of all operators depends on evaluation parameters algebraically. Therefore we
can specialize the evaluation parameters to any values where the tensor product is well-defined.
Let us specialize the evaluation parameters as in (2.17). Then we discard the representations
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of E
n−1|0
n−1 ⊗ E

n−1||0
1 whose lowest weight vectors do not satisfy (2.19). Next, we check that

the surviving lowest weight vectors have exactly lowest weights of N
(n−1;n−1−ik)
γ(s),β (−qq

ns1−p1
n−1

1 u)⊠

N
(1)
γ(s),α(−qq

ns1−p1
3 u). It shows that the left hand side of (4.9) contains the right hand side. It

remains to see that both sides coincide which is readily done in the stable limit of large enough
sj . �

We do the following change of summation variables in formula (4.9). Let y = (y1, . . . , yk−1)
be a vector with coordinates:

yr = (nsr − pr)− (nsr+1 − pr+1) = nlr + ar − br, r = 1, . . . , k − 1.(4.10)

Let also

ȳ =
k∑

r=1

(nsr − pr) = n(n− 1)j + (n− 1)
k∑

r=1

pr + n
k∑

r=1

ir,

where

j =
1

n− 1

k∑

r=1

(sr − ir − pr) ∈ Z.

Define

w(j, i, p, α, β) =

k∑

r=1

(
η(pr) + ηir

)
− jη,

where we used the notation i = (i1, . . . , ik).
Let Ck be the Cartan matrix of slk. We have (C−1

k )ir = (C−1
k )ri = i(k − r)/k, where

1 ≤ i ≤ r ≤ k − 1.

Corollary 4.13. We have an isomorphism of E
n−1|0
n−1 ⊗ E

n−1||0
1 modules

N
(n;p)
α,β (u) =

n−2
⊕

i1,...,ik=0
⊕
j∈Z

(
x

ȳ2

2(n−1)k
+ ȳ

2
+ 1

2(n−1)

k∑

r=1
(n−ir−1)ir

zw(j,i,p,α,β)

)

×

(
∞
⊕

l1,...,lk−1=0
x

ytC
−1
k

y

2(n−1) N
(n−1;n−1−ik)
γ(l),β (−qq

s
n−1

1 u)⊠N
(1)
γ(l),α(−qq

s
3u)

)
,(4.11)

where

s =
1

k
(ȳ −

k−1∑

r=1

(r − k)yr),

while the summation is over l1, . . . , lk−1 such that

lr + ar ≡ ir − ir+1 + br (modn− 1)

and
k−1∑

r=1

rlr ≡ (n− 1)j +

k∑

r=1

(ir + pr) +

k−1∑

r=1

rmr (mod k).

Proof. Formula (4.11) is obtained (4.9) by the straightforward change of variables. �
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4.5. Macmahon modules. In this section we discuss the k → ∞ limit of formula (4.11).
Fix partitions α, β. Adding zero parts we can think that α, β have k parts if k is sufficiently

large. Then, one can define the analytic continuation of the module N
(n;p)
α,β (u) with respect to

parameter k, the result is the so called Macmahon moduleM
(n;p)
α,β,∅(u,K). The Macmahon module

M
(n;p)
α,β,∅(u,K) is an admissible tame lowest weight En-module of level K which is irreducible for

generic values of K, and whose basis is labeled by plane partitions with boundary conditions
α, β, ∅, see [FJMM2].

We conjecture the decomposition of M
(n;0)
α,β,∅(u,K) as E

n−1|0
n−1 ⊗ E

n−1||0
1 module based on (4.11)

as follows.
Fix non-negative integers l1, . . . , lt, l

′
1, . . . , l

′
t. Let Lk be the vector with k components of the

form L = (l1, . . . , lt, 0, . . . , 0, l
′
t, l

′
t−1, . . . , l

′
1).

Similarly to the inductive construction of the Macmahon module, we expect the following.

Conjecture 4.14. There exists an En lowest weight admissible tame module M
(n;p),γ(l′)
γ(l),β (u,K)

of level K which is the analytic continuation of N
(p)
γ(Lk),β

(u) with respect to k.

Note that the module M
(n;p),γ(l′)
γ(l),β (u,K) does not change if sequences l and l′ are extended by

finitely many zeros. Namely, if l̃ = (l1, . . . , lt, 0) and l̃
′ = (l′1, . . . , l

′
t, 0) then M

(n;p),γ(l′)
γ(l),β (u,K) =

M
(n;p),γ(l′)

γ(l̃),β
(u,K) = M

(n;p),γ(l̃′)
γ(l),β (u,K).

If l′ = ∅, this module is the Macmahon module: M
(n;p),γ(∅)
γ(l),β (u,K) = M

(n;p)
γ(l),β(u,K).

Recall that the parameters ai, bi are given by (2.20), pi by (2.17), m by (4.8), and y by (4.10).
If the partitions α, β have t non-zero parts, we set ar = br = mr = pr = 0 for r > t.

Let G be the Gordon matrix given by Gi,j = min{i, j}.
Then we have the following decomposition formula.

Conjecture 4.15. We have an isomorphism of E
n−1|0
n−1 ⊗ E

n−1||0
1 modules

M
(n;0)
α,β,∅(u,K) = ⊕

0≤ir ,i
′
r≤n−2

r=1,2,···

+∞
⊕

j=−∞
xρ(i,i

′;j)zw(i,i′;j)

×


 ⊕

lr,l
′
r,···≥0

r=1,2,···

x
ytGy+(y′)tGy′

2(n−1) M
(n−1;n−1−i′1),γ(l

′)

γ(l),β (−qq
s

n−1

1 u,K)⊠M
(1),γ(l′)
γ(l),α (−qqs3u,K)


 ,

where y′r = nl′r, s =
∑

r≥1 yr,

ρ(i, i′; j) = n(n−1)
2

j + (n−1)
2

∑
r≥1

pr +
n+1
2

∑
r≥1

(ir + i′r)−
1

2(n−1)

∑
r≥1

(i2r + (i′r)
2),

w(i, i′; j) =
∑

r≥1

(
η(pr) + ηir + ηi′r

)
− jη,

and the summation is over j ∈ Z, ir, i
′
r ∈ {0, · · · , n− 2} and non-negative integers lr, l

′
r, r ≥ 1,

such that only finitely many ir, i
′
r, lr, l

′
r are non-zero and

lr + ar ≡ ir − ir+1 + br (modn− 1), l′r = i′r+1 − i′r (modn− 1),
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and
∑

r≥1

rlr −
∑

r≥1

rl′r = (n− 1)j +
∑

r≥1

(ir + pr + i′r) +
∑

r≥1

rmr.
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