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BRANCHING RULES FOR QUANTUM TOROIDAL gl,
B. FEIGIN, M. JIMBO, T. MIWA, AND E. MUKHIN

ABSTRACT. We construct an analog of the subalgebra Ugl(n) @ Ugl(m) C Ugl(m + n) in the
setting of quantum toroidal algebras and study the restrictions of various representations to
this subalgebra.

1. INTRODUCTION

1.1. Motivation: the AGT conjecture. The quantum toroidal algebra, [GKV], associated
with a semi-simple Lie algebra g is the quantum version of the universal enveloping algebra of
the Lie algebra of currents C* x C* — g.

In this paper we consider only the case g = gl,,, n > 1. The corresponding toroidal algebra
En = Enlq1, g2, q3), see Section 2] depends on three deformation parameters ¢, g, g3 such that
¢1q2q3 = 1. The algebra &,(q1, ¢2, q3) has two central elements which we denote by ¢¢ and k.
In all representations appearing in this paper, one of the central elements, ¢¢, always acts by
1. In the limit ¢o — 1, the algebra &£,, becomes the universal central extension of the universal
enveloping algebra of the Lie algebra M, @ C[Z*!, D*1], see Section 3.7l Here M, is the algebra
of n x n matrices, and C[Z*!, D*!] is the algebra of functions on the one-dimensional quantum
torus: ZD = ¢ DZ. The Lie algebra structure is given by the standard formula [a, b] = ab— ba.

The algebra &,, has another important so-called conformal limit. This limit is more subtle
and it is obtained by setting ¢ = €', ¢u = €%, q3 = €% with 01 + 0y + 03 = 0, Kk = £¥,
and sending € — 1. This limit is called conformal, because the limiting algebra has a vertex
operator algebra (conformal algebra) structure. The limiting algebra depends on oy /09 and
k. Note that the algebra obtained via the conformal limit for special values of parameters is
smaller than &,,.

The conformal limit is important for the study of the AGT conjecture. The AGT conjecture,
[AGT], claims that when parameters of the 4-dimensional topological super Yang-Mills field
theory go to an appropriate limit, the theory becomes deeply connected to a 2-dimensional
conformal field theory. At the same time the algebra &,(q1,¢e,qs) acts by correspondences
in the space of the K-theory of the moduli spaces of instantons related to the 4-dimensional
topological super Yang-Mills field theory and the conformal limit of €,,(q1, ¢2, g3) describes the
relevant conformal field theory.

arXiv:1309.2147v2 [math.QA] 4 Apr 2014

1.2. Motivation: the coset constructions. Consider a pair of affine Lie algebras: QT[N and
its subalgebra gA[ Nen C gA[ ~ both with level k. The well-known coset construction of conformal
field theory gives a new vertex operator algebra for this pair, which we denote ek(;T[N, gA[ Nen)-
The coset algebras naturally appear in the problem of decompositions of representations. Con-
sider a restriction of an integrable representation 7 of gA[N with level k to the subalgebra gA[ Nen-
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Then weAhave the decomposition © = @, W, ® R,, where R, are irreducible representa-
tions of gly_,,, and spaces of multiplicities W, are irreducible representations of the algebra
Cr(aly, 8ly_n)-

The problem of decomposition of Ugly module after restriction to Ugl,_,, is closely related to
the problem of finding the commutant of the subalgebra Ugly_,, in Ugly. This commutant can
be described explicitly, and it is closely related to the Yangian of gl,, see [O1], [O2]. Namely,
the commutant is a factor of the Yangian and the Yangian can be viewed as the analytic
continuation of the commutant with respect to the variable V. To get generators and relations
of the coset algebra Ck(gly, gly_,) one has to study the commutant in the affine setting.

Clearly, Gk(gT[N,gT[N_n) contains the subalgebra gT[n with level k generated by Ej;(z) =
Y osez(Eij @ t°)27°, where i,j = N —n + 1,...,N. It also contains the quadratic currents

E(z)(z) =S Bio(2)Eaj(2) s withi,j = N—n+1,..., N. In fact, the algebra Crlaly, aly_)

ij a=1

is generated by Ej;(z) and El(f )(z). But in the operator product of the currents E;;(z) with
E;;(w) one can find cubic currents EZ(;’ )(z), then quartic currents EZ(A;)(Z) and so on. The coset
algebra Cj, (QT[ N QT[ ~N_n) is expected to be a factor of a quantization of the universal enveloping

algebra of the double current Lie algebra gl, ® C[z;™", 25], and then the currents EZ(]m )(z) should
correspond to the currents E;;(z1)z5".

The case of ek(;T[N, QT[N_l) is the best studied and is known as the WW-algebra associated to
gl,. There exists a number of alternative constructions which produce the W-algebra, though
in almost all cases, a rigorous proof of the identification is missing.

__For example, consider the algebra obtained by the quantum Drinfeld-Sokolov reduction of
gl,, with level s, followed by the analytic continuation with respect to M [FE]. We follow
the standard notation and denote the result by WM,ﬁ' Then with this notation, we have

Gk(gA[N, gA[N_l) o~ Wk,%fgié' This statement is non-trivial, the direct check is tedious and has

not been done yet.

There exists a dual coset construction of the algebra Gk(gA[N, gA[N_l), where one takes gA[k
of level 1 times gA[k of arbitrary level and considers the coset with respect to the diagonal
embedding of gA[k

There is an additional puzzling observation that the algebra Gk(gTIN, QT[N_I) is isomorphic
to the W-algebra constructed by the Drinfeld-Sokolov reduction from the Lie superalgebra
gl(N|N —1).

The algebra Gk(gA[N,gA[N_n) depends on two parameters N, k, where k is the level of gA[N.
TheAparimeter k is a complex number, while N is natural. However, the structure constant in
Cr(gly, gly_,) depends on N algebraically. Therefore, we can make the analytic continuation
with respect to N, then N becomes an arbitrary complex number. The quantum toroidal
algebra €,(q1,q2,q3) is a quantization of the resulting algebra. Moreover, the conformal limit
of algebra &,(q1, g2, q3) coincides with Gk(ET[N,ET[N_n)-

In particular, the algebra corresponding to the W-algebra, €1(q1,¢q2,q3), is the quantum

toroidal algebra which has been most extensively studied. It is known as elliptic Hall algebra
BSI, [S], [SV2], (q,) analog of W1, [MO7], an elliptic deformation of the W algebra of type
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gl, Ding-Tohara algebra, [FHHSY], spherical Cherednik DAHA [SV1], quantum continuous gl_,
FEJMMI|, [FEJMM?2].

The coset construction has a quantum group version. Consider the quantum affine algebra
U (g[N) with the subalgebra U, (g[N_l) Then the problem is to find the commutant of U, (g[N 1)

in Uq(gl ~)- This is a non-trivial question which we suggest to solve using the quantum toroidal
algebras.

Namely, one expects that there is an evaluation map €n(q1, g2, q3) — Uq(gT[N) where ¢® = ¢,
and the level of QT[N depends on ¢; and k. Then on the level of quantum toroidal algebras, we
find a homomorphism of algebras ¢ : &, ® Ey_1 — e N Where e ~ is a suitable completion of
En. In the Lie algebra limit g — 1 the map ¢ becomes very simple: it is just the map coming
from the embedding

M, ® C[Z*', D] @ My_, ® C[Z*!, DF'] = My ® C[Z*!, D*].

Note that on the other hand the conformal limit of ¢ is rather non-trivial.
Combining ¢ with the evaluation map, we obtain

81 & 8N_1 — Uq(gA[N)

The image of the subalgebra 1 ® Ey_1 is Uq(gT[N_l) and €; ® 1 is mapped to the commutant of

Uq(gT[N_l) in Uq(alN). Actually, we believe that the map of algebra &; ® 1 to the commutant
is surjective, but we do not discuss this fact in the present paper. Instead we concentrate on a
family of irreducible representations of the algebra € and study the restriction on the product
E1®EN_1. In all cases we consider, the multiplicities of irreducible representations of €1 ® &€ y_1
appearing in irreducible representations of €y are one.

1.3. Motivation: geometry. The simplest integrable representation of &, is called the Fock
module, [VV2], [STU], [FIMMI], [FIMM2], [S]. The Fock module appears in geometry in the
following way. Consider the Hilbert scheme Hj of ideals of codimension d in C|z1, z3]. The
plane C? is equipped with an action of the torus C* x C* via a x 1 (21, 22) = (21, B22) and
of the cyclic group Z, of order p via ((z1,22) = (C21,{ '22), where ( € C* is a root of unity of
order p. These actions induce the corresponding actions in Hg.

Let H ) be the manifold of the fixed points of Z, in H;. The manifold H c(lp ) is smooth
but not connected It is known that the quantum toroidal algebra &€,(q1, ¢, ¢qs3) acts in the
equivariant K-theory space F = & (K (H, gp )), where ¢, ¢o are the equivariant parameters, by
correspondences, see [N], [ET]. This representation of €, is isomorphic to the Fock module.
Moreover, geometrically one observes the following remarkable phenomenon.

A basis in J is given by fixed points of C* x C* action. This basis consists of eigenvectors of
the Cartan subalgebra of €,. If J € H, ép ) then J C Cl#, 2] is a homogeneous ideal such that
the quotient Clzy, 22|/ is a d-dimensional representation of Z,. Irreducible representations of

Z,, are all one dimensional denote them vy, vy, ..., vp—1. Wecall J € Hc(lp) of type (ag, - .., ap—1)
if Clzy, 29)/J = @t ()anz Note that ag +--- + a,-1 = d. Denote Hy, ., , C Hép) the set of
ideals of type (ag, ..., ap_1).

Then Hyg,,... 4, , are exactly the connected components of H ép ), and we have the geometric
description of the weight decomposition of the Fock module: ¥ = ¢K (Hal,...,a,,,l)-
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The algebra €, has a large group of automorphisms which is a toroidal version of Lusztig
braid group, see [M99]. In particular, this group contains the root lattice of sl,, which consists
of the extensions of the affine translations to &,. This lattice is isomorphic to ZP~! and it also
acts in the Fock module &F. Geometric description of the action of the braid group is non-trivial,
but one can observe the following stabilization of manifolds.

The group ZP~! acts in the set of weights {(aq,...,a, 1)}. Fix some A = (ag,...,a, 1)
and let T € ZP~! be a generic element. Consider the sequence of manifolds M, = Hf(pps)A,
s =0,1,2,.... According to [N|, for s large enough the manifolds M, are all isomorphic and
have a simple geometric description which can be described as follows. Consider the quotient
(C x C)/Z,. It has the Kleinian singularity at the origin. Resolve this singularity and call
the result X,,. Then X, is a 2-dimensional smooth manifold with a natural action of the torus
C* x C*.

For s large enough the manifolds M; is isomorphic to a connected component of the Hilbert
scheme of torsion free sheaves on X,. The choice of the connected component corresponds to
the choice of (ao, ..., ap—1).

On the other hand, the manifold X, has p fixed points with respect to C* x C*. Therefore,
on the Hilbert scheme of X, we have p commuting actions of ;. The i-th action is given by
correspondences with support in the i-th point. Thus, in this limit of the Fock module, we
observe an action of €. One of the goals of this paper is to give a representation-theoretic
explanation of this phenomenon.

Namely, the Cartan subalgebra of €, is a commutative algebra generated by {K*(z)}. The
fixed points are eigenvectors with respect to the operators Kii(z). Consider the operators
T*K*(z), s = 0,1,2,..., acting in the Fock module. For v € F, we have T°K*(z) -v =
T® o Ki(2) o T~*v. For each v € F, for large enough s, the vector T°K:*(z) - v does not depend
on s. The joint spectrum of the Cartan subalgebra is simple, so in the limit s — oo, we obtain
a basis of the Fock module. _

In addition, we construct an embedding %7 — €p.  Then the action of this subalgebra in
the above basis recovers the geometric action.

1.4. The plan of the paper and the main results. Here is the outline of the paper.

We denote &,, the quantum toroidal algebra of type gl,,.

Section [2 collects notation and basic facts about &,. We discuss the defining relations
in Section 2.1l automorphisms in Section 2.4] representation theory in Section 23 In the
literature, the cases n > 3 and n = 1 usually appear separately, while n = 2 is often omitted.
We manage to write all formulas in a uniform way:.

Section [3] contains the construction and the properties of &,, inside a suitable completion of
En, m < n. The main construction is described in Section B.], it defines fused currents via
a quantum version of the operator product expansion. Then we prove our first main results,
Theorem [B1], see Section B.4] and Theorem B.4] see Section Theorem [B1] establishes that
the fused currents do satisfy the relations of the quantum toroidal gl ,, and Theorem [3.4] proves
that the upper left corner and the bottom right corner subalgebras €, and &,, commute within
Emain- Our main method is the study of correlation functions, we develop the techniques in
Section B3l In Section B.7 we describe the Lie algebra limit of €, and the meaning of our
construction in this limit.
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Section Ml is devoted to the study of the modules over &,,., after restriction to &,, ® &,.
We write the formulas mainly in the case of n = 1. We give all details in the case of the
Fock module and n = 1 to explain the approach and the logic of the proofs, see Section A1l
Then we proceed to tensor products of Fock modules and their irreducible submodules. The
main results are Theorem B9, Theorem EI1 and Theorem These theorems explicitly
describe decompositions of various modules. We conclude with a conjectural formula for the
decomposition of the so called Macmahon module.

2. QUANTUM TOROIDAL ALGEBRAS
In this section we introduce our notation concerning the quantum toroidal algebra of type

gl,. We also recall its basic features relevant to the present text.

2.1. Generators and relations. Let n be a natural number. We shall Write a = b for
a = bmod n. Let (am)” _, be the Cartan matrix of type An 1, and let (mm)” _, be a skew-
symmetric matrix defined by m;y1, = 1 and m;; = 0if ¢ # j £ 1, where the suffix is to be read
modulo n.

Fix non-zero complex numbers d, q. Throughout the text we shall use the parameters

n=dq", o=¢ ¢=d'q",
so that ¢1g2q3 = 1. We assume further that for ny, ng,n3 € Z
q1'q5%qy® = 1 holds only if ny = ny = ng.

In particular, none of the ¢; is a root of unity.

The quantum toroidal algebra of type gl,,, which we denote &,, is an associative unital C-
algebra defined by generators and relations to be given below.

The algebra &, has generators

Eiy, Foy, Hipy, K'Y ¢ (1 € Z/0Z, k€ Z, r € Z/{0}).
In order to write down the defining relations, introduce the generating series

)= Bzt F(2) =) Fur" Kf(z) =K exp(+(g—q ZHZ 2T,

k€EZ keZ

Define further g; ;(z, w) by

Z — Qow (ZEj)>
C gz =7 A (i=j-1),
n>3: gm(vw>_ z—qw (F=j+1),
Z— W (Zijv.]:tl)
_ 9. . _ )i qw (i =),
n = 2 gz,j(zaw) {(Z _ qlw)(z — Q3w) (Z 7_é.])

n=1: gool(zw) = (2 — qu)(z — @u)(z — gsw).
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and

d¥ (i=jF1,n>3),
di7j: —1 (’L?éj,’/I,IQ),
1 (otherwise).
Notation being as above, the defining relations for EnEl are as follows

KK '=K'K; =1,

¢*=¢ are central, ¢°¢ “=q ¢ =1,

K (2) K (w) = K5 (w) K (=),

K;(Z)K;(w) — %K}(w)&‘(z),

j(w) + gja(w, 2) Bj(w) K (¢'F9°%2) = 0,
j(w) + gij(z, 0) Fy(w) K (¢" V%) = 0,

9ij(q 2z, w)
ij(q°z, w)

di j9i(z,w) K (T2 E
djig;4(w, 2) K (") F,
0;

Y (5(q" ) K (2) — 6 (g°

djigj.i(w, 2) Fi(2) Fj(w) + g; j (2, w) Fj(w) Fi(2) =

In addition we impose the Serre relations as follows. We use the notation [A, B], = AB

For n > 3,

Forn =214 # j,

(2.1) Z?}ZZI; [Ei(z1), [Ei(22), [Ei(23), Ej(w)}qzﬂqﬂ =0,
(22 Sy [R e, (B [Fiex). B )] ] 2 =0,

For n =1,

Sym 225 ' [Eo(21), [Eo(22), Eo(2s)]] = 0,

21,%22,23

Sym 222’3_1[F0(Zl), [FQ(ZQ), F()(Zg)]] =0.

21,222,723

—pBA.

1 We have slightly changed the notation from [FJMM2]. The generators K (z), H; , here correspond to
K0, 7

i,r there respectively. For n =1, see Remark 2 in Section 2.2
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In the above, Sym, . . stands for the symmetrization in zy,- -, 2.

*5%s

2.2. Some technical points. In this subsection we give a few remarks about the relations in
€,, which are important for this work.
It is convenient to rewrite the relations involving K;“(2) in terms of the generators {H;,}.

Let [2] = (¢" —q7") /(g —q 7).
First of all, we have

KEj(2)K; ' = q"Ej(2), KiFj(2)K; " = q " Fj(z).

The other relations are as follows.

For n > 3,
[HZ-’M E](z)] _ [T@i,j]d—rm” (r—|r)e/2 TE (Z) ’
T
,ra/Z7 j —Tmy; 4 T T|)C T
[HZ vy H; s] = 57”+8 0 [raid] qrc — q_rcd_rmi’j .
e Tor q—q!
For n =2,
[Hir, Bj(2)] = a;(r)2" Ej(2)q" /2,
[Hi,v“v F’](Z)] = _ai,j (T)ZTF’]'(Z)q(T+|T|)C/2 )
qrc _ q—rc
(i Hjs| = 0rss0 ai,j(r)ﬁ,
where a;;(r) = [r](¢"+q¢77)/r, aij(r) = —=[r](d"+d7")/r (i # j).
Forn =1,

[Ho.p, Eo(2)] = 2"b(r) Eg(2)q"~I"De/2,
[Ho.y, Fo(2)] = —2"b(r) Fy(2)qtIrDe/2,

7 —q
[Ho,r, Ho,s] = Orys0 b(r)ﬁv
where b(r) = [r|(¢"+q " —d" —d")/r.
The following elements of £, are central,
k=Ko K,_1, ¢°.
The algebra &,, is Z" x Z-graded by the degree assignment
(2.3) deg Eip = (1;,k), degFip = (—1;k), degH,;, = (0,7),
deg K; = degq® = (0,0),

i—th
where 1; = (0,---, 1 ,---,0) € Z". For a homogeneous element x € &, with degx =

(do," - ,dn_1,k), we set pdegz = Z?:_Ol d; and call it the principal degree. We have
(2.4) pdeg E;p =1, pdegFi=—1, pdegH;, =0.
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In Section 4 we use the classical weight of a homogeneous element

n—1

(2.5) cweight z = Z(d’ —dp)y

i=1

where o; (i =1,...,n— 1) are the sl,, roots.
The algebra &, has also a formal coproduct

Ei(z) = Ei(2) @1+ K (Ci2) ® E;j(Cy2),
Z(z) Fi(Cy2) @ KM (Cyz) +1® Fi(2),

AK}(2) = K (2) @ K[ (Cy'2),
AK[ (2) = K; (Cy'2) @ K (2),
A =q¢®q,

where we have set 7 = ¢°® 1 and C5 = 1 ® ¢°. Since the right hand side contains an infinite
sum of generators, these formulas are not a coproduct in the usual sense. Nevertheless for a
certain class of modules they can be used to define a module structure on tensor products. For
the details see [EJMMI], [EJMM?2].

In the sequel, when necessary we shall exhibit the dependence on ¢; explicitly and write &,
as €n(q1, G2, g3)-

Remark 1. The definition of the quantum toroidal algebra with n > 3 is due to [GKV]. Our
presentation of £, (n > 3) follows closely the one given in [TU].
To the authors’ knowledge, the algebra €; has been introduced for the first time in [BS], where

it was termed the elliptic Hall algebra. Subsequently the same algebra has been rediscovered
by other authors. In [M07] it was called a (g,~) analog of W1, and in [FHHSY] it was called

Ding-Iohara algebra. In [FEJMMI], [EEJMM?2] we called it “quantum continuous gl .”.

Remark 2. In our previous paper [FJJMMI] we have used an algebra which is an extension of
€1 by an additional central element. The correspondence of the notation in and the
present paper is e(2) = (1/(1 —a))Eo(2), f(2) = —(a7/(1 — @3))cFo(2), ¥ (2) = &g (¢°2),
where ¢ is an extra central element. In the generators e(z), f(2), 1% (2), the defining relations
are completely symmetric in the parameters ¢i, g2, g3. Hence &1(qr1), ¢r(2), ¢r3)) = €1(q1, @2, 43)
for any permutation 7 of {1,2,3}. In contrast, in the case n > 2 the ¢; <> g3 symmetry holds
true, the map is given by (29)) below, but ¢y plays a distinguished role.

Remark 3. We have not been able to find the Serre relations for €s in the literature, except
[MOT] where the special case d = ¢ is treated. Our quartic relations are similar to that of [MOT].

For €, we also have cubic relations inspired by the consideration of ‘fused currents’ which
will be discussed in Section [3.1] and Theorem [B.Il These cubic relations are not discussed in
[MO1]. As we show these cubic relations are equivalent to the quartic Serre relations (2.1), ([2.2)
in the presence of quadratic relations.



BRANCHING RULES FOR QUANTUM TOROIDAL gl,,. 9
Lemma 2.1. In &5 we have the following cubic relations:

Sym [%(21 — g3w)(22 — @sw) Ei(21) Bi(22) Ej(w) — (1 + ¢ ') (21 — gsw) (qr122 — w) Ei(21) Ej(w) Ei(22)

+a3(qrzr —w)(qr2e — w)Ej(w)Ei(Zl)Ei(Zz)} =0,

Sym [Q3(Q1zl —w)(qrz2 — w)Fy(21) Fy(22) Fj(w) — (1 4+ ¢; ") (@121 — w)(22 — q3w) Fi(21) Fj(w) Fy(22)

21,22
+q1(21 — gzw) (22 — Q3w)Fj(w)Fi(zl)Fi(Z2)} =0,
and the relations obtained by interchanging q, with qs.

Proof. Starting from the special case of the quartic relation
[Ei s [Eiky [Eiky Ejilg2]lg—2 =0,
we compute the commutator with Fj 11_j. The result is

(1+ @ ) [Eik, [Birsr, Ejilg—2) = (@1 + @3)[[Ejisr, Eirlg-2, Bixl -

Taking commutators with H;, we obtain

Symkl,kg ((1 + Q2_1)[Ei,k:1a [Ei,k‘gzl:la Ej,l]qu] - (C_I1 _l_ q3)[[Ej,l:|:1a Ei,kl]q727 iJi‘z]) - Oa
or in current form
Sym,, ., (1 + ¢ ")z ' [Ei(z1), [Ei(22), Bj(w)]g-2] — (@1 + g3)w™ [[Ej(w), Ei(21)]4-2, Ei(22)]) = 0.
2

Modulo the quadratic relation Sym, (2 — ¢*w)E;(2) Ej(w) = 0, these equations are equivalent
to the first identity in the lemma. O

In fact the quadratic relations
(2 = qw)(z — @sw) Ei(2) Ej(w) = (w — q12)(w — g32) Ej(w) Ei(2).
with ¢ # j also follow from the quartic relations.

On the other hand, the quartic Serre relations , are consequences of the quadratic and cubic
relations, see the part of Section concerning the Serre relations.

2.3. Horizontal and vertical subalgebras. In this subsection we describe subalgebras of &,
isomorphic to the quantum affine algebras U,(sl,) and U,(gl,,) for n > 2.
The algebra U,(sl,) has a presentation in terms of the Chevalley generators {e;, fi,
0<i<n-—1, as follows.
titj = tjti, titi_l — ti_lti = 1,
tiejt; = q" e, tifitst =q " [,
t;— ;!
lei, f3] = 5i7jma
[6i7 6j] = 0? [fza f]] =0 (lf Q45 = O)a
lei, [eis e5lg-1]g = 0, [fis [fi filagr =0 (ifas; = —1).

+1
ti 5
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When n = 2, the last line is to be replaced by
leq, [es, [€i>€j] *2]1] 2 =0, [fi,[fi, [fi>fj] 2]1] = =0 (i#])

Alternatively, U, (sA[ ) has a presentation in terms of the Drinfeld generators {1’Z T e

1<i<n-—1,1€Z,r € Z\{0} with the relations

kzkl_l — kl_lkz — 1’ ch—c — q—cqc _ 1’

¢~ are central, [k;, k;] = [ki,h,;,] =0,

ra; ; re —
[hi,ra h’j,s] - 5r+s,0[ J] 1 1

rooq—q!
klx;lflkz_l — :tazjx;tl’ [hi,’r‘7 x;lfl] — :l: [TC:;,]] (rF|r))e/2 ;I:I—Hn’
_ 57 1 —k _
[fﬁf,kafﬁj )= q _; ( K2 A c¢i,k+l) g
[ﬁfzimp zl] w2 + [z zl+1’x;tk] =0,
(2525 =0 (if a;; = 0),
Likt1 Tjtlg®t T T 1401 LiglaFt = if a;; = —1),
[0 Tyl + (257400 i) 0 (if 1)
Symkl,kg [zj,tkp [95ka> ‘Tfl]qfl]q =0 (ifa;=-1).

In the above we have set
Zgbzkz —k:;tlexp< (¢g—q Zh”z T).
+k>0 +r>0
We choose the correspondence of these two generators as follows.
e =y, fi=ag, ti=k (1<i<n—1), tot1-ty1=g",
€o = qc(kl e kn—l)_l[' o [xl_,lv x2_,0]q7 e 7x;—1,0]q )

fO = [x:—l,O’ e [55;07 ZEI—l]qfla o ']q*1k1 T k57z—1q_C

In order to express the Drinfeld generators in terms of the Chevalley generators, it is useful to

have the formulas:
T = = (- 1)1 1(t0 oo tisatin, 'tn—l)_l[' - leg, 6n—1]q*1 - aei—i-l]q*l) 61](1,1 . ’ei_l]q,l
hir = (1) [es entlg-t -+ €istlg1, €xlgr -+ €1-1)g1, €ly-2
x:,r_1 = (=" ficr, - s isrs - U Jolg -+ - Jato - timatign, -+ e,
i = (=1'[fo, [ficrs -~ [frs [forns - [fars folg -l

A characteristic feature of the algebra &,, is that for n > 2 it admits two different embeddings

of U, (sl,),
hyv: Uy(sl,) — &,.
The embedding h is defined in terms of the Chevalley generators,
h: e Eio, fi—Fyo ti—K (0<i<n-—1).
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The embedding v is defined in terms of the Drinfeld generators,
v l’:_k —> dikELk, Iz_,k —> dikF’iJ@, k‘l —> Ki, hiJ» —> dirHi7r, qc —> qc
(1<i<n-—1keZ,reZ\{0}).

We call h the horizontal embedding, and its image h(quA[n) the horizontal subalgebra of &,.
Similarly we call v the vertical embedding, and its image U(Uq;{n) the vertical subalgebra of &,,.
We denote the horizontal and vertical subalgebras by U/ (;[n) and UJ*" (sA[n) respectively. Note
that if z € U;“”"(g[n) then degx € Z™ x {0}, and if z € U;”(g[n) then degz € {0} x Z"™! x Z.

Note also that &,, is generated by the union of Uéwr(;[n) and U’ (sl,,).
As it is pointed out in [FJMM2], there are also Heisenberg subalgebras commuting with these
subalgebras. For each r # 0, let {c;,}7=) be a non-trivial solution of the equation

n—1
Z CZ'J[’I"GZ',j]d_Tmi'j =0 (] = ]_, o — 1)
=0

Let a"" be the subalgebra of €, generated by H " = Z?:_ol CipH;y, 7 € Zygy. Clearly a”" is
a Heisenberg subalgebra with central element ¢° which commutes with UJ*"sl,. We call the
subalgebra generated by these two the vertical quantum affine gl,, and denote it by U " (gl,,).

Similarly there exists a Heisenberg subalgebra a"*" which commutes with U;“”"g[n. In terms
of the automorphism 6 to be given in Theorem below, we have a"" = §~! (a””).

We call the subalgebra generated by these two the horizontal quantum affine gl,, and denote
it by Ué“”’(g[n). The central element x = h(q°) belongs to the horizontal subalgebra, while
q° = v(q°) belongs to the vertical subalgebra.

2.4. Automorphisms. The algebra &,(q1, g2, ¢3) allows for various symmetries.
First, there exist automorphisms of algebras

T8, Xj ¢ Enlqr, @2, 43) — Enlar, @2, 43)
where ¢ € C* and 0 < j < n — 1, such that

(2.6) T Ei(2) = Eia(2), Fi(z) = Fia(z), K7 (2) = K54(2),
(2.7) a1 Bi(2) = Ei(az), Fi(2)w— Fy(az), KZ(z)~ K (az),
(2.8) X+ Ei(2) = Ei(2)27%, Fi(2) = Fi(2)2%7, K (2) = g7 K (2),

and such that all these maps send ¢ to itself.

We have 7" = id.

In addition, there exists an isomorphism of algebras

L Enlqr, 42, 03) = Enl(@3, 42, 1),

given by
(2.9) L Bi(2) = E,_i(2), Fi(2) e Fi(2), K& (2)w— K5 (2),
and 1(q°) = ¢°.

Of particular importance is the existence of an automorphism which exchanges the horizontal
subalgebra U/"(gl,,) and the vertical subalgebra U (gl,,).
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Let 0,7’ be anti-automorphisms of Uq(g[n) given by

, -1
g e ey, fl’_)fza tz’_)tz )
. E + -1
N T =T g hig = Chi . ki kT, ¢C e qC

Thﬁorem 2.2. [M99],[M0O1] Let n > 2. There exists a unique automorphism 0 of &, such
tha

Qov="h, Ooh=vonoo.
We have 0(¢°) = k and 0(r) = ¢~ °.
Theorem 2.3. [BS|,[MO7] There exists a unique automorphism 0 of €1 such that B
Eoo = —q¢°Ho—1, Foora 'q “Hy,,

Ho1 = Eoo, Ho_1+ —alyy,
¢“— Ky, Korrq©,

where a = q(1 — q1)(1 — g3)-

Remark. Actually, in the case of €5, the existence of # has been proved only in the case ¢; = 1
[MOT]. Tt can be shown that with minor modifications the method of [MO1] carries over to the
general case.

We shall write
(2.10) vt =0""2) (z€é&,).
Then we have

EfYy=Eiy, Fo=F, K-=K (1<i<n-1),
(2.11) () =kt Kt =¢°,
and for n > 2

Eol,o =dr "¢ Kol [Fi1, Faolgs -+ Fu1.0lg

FOJ:O = d_ll{'q_c[En—l,O) ) [E2,07 El,—l]qfla o ] *1[(()_1 .

q

We also have

)

H;= | = —(=d)'k[Eip, [Eic10, - [F10, [Bis1.0: - [En-1,0. Eoolg-1 - lg-1]g2,

Hﬁ = —(=d) "k [Foo, Fuo10lg s Fiv10lg Frolg - Fic1.0lg Fiolg2,

fori=1,...,n—1,

20ur 6 here is 9 of [M99].
30ur 6 is ¢ of [MO7] followed by the automorphism Fy(z) — ¢~ °Fo(2), Fo(z) — ¢“Fo(2), K (2) — Ki(2),
q° +— ¢°. Unlike 1, 6* # id.
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and for n > 2 we have
FOJ,_I = (_d)_nFo,—h
Hyy = —(=d) """ 57 [P, Faolg - - Facvolg Fo-1lg2,
Ey_y = (=d)"Eo,,
Hy = —(=d)" 'K[Eo, [En-10- - [Eao, Bralgr - Jg1]g2

The following Lemma can be extracted from [MO00]:
Lemma 2.4. If x € &, has degree (I,dy +1,...,dp_1 + 1, k) then o+ = 071(z) has degree
(—k,dy —k,...,dy1— k).
In particular, the principal degrees of the ‘perpendicular generators’ are given by
(2.12) pdeg E;}, = —nk —nd;o+1, pdegF} = —nk+nd;o—1, pdegH; = —nk.
Later on we shall use the formulas
(2.13)
O(H;1) = (—=d) 7'+~ [[- - [Eo0s En-rolgt, s Birrolg-1s Bvolgt, s Eimiolg1, Eiolg2
O(H; 1) = (—d)'[Fyo, [Fic10, - [Fr0, [Fiv00 -+ [Faer0, Foolg - Jala - +Jale2 »
where 1 <1 <n—1;
(2.14) 0(Hoy) = (—=d) " [[- - [Bry, Baolgt, -+ Encvolg1, Eo1lg—2
O(Ho,—1) = (=d)" " [Fo, [Fa-r0, 5 [Foo, Fimalg -l
We recall that for n =1
9(H0,1) = Foy, 9(H0,—1) = —akop .

Let s;, i =0,...,n— 1, denote the Lusztig braid group automorphism of U, (::A[n),
si(e;) = —fiti,  si(fi) = —t;lei,

€y €lg—1 if n > 3; fis filas if n > 3; o
suley) = {%[ei]fe,.,ej]qz] 2l - {[[%]n“fj]’qmq% [ EnzE Goien,
silej) =e;, si(fy)=f; (G#ii£1),
sity) =1
Consider the automorphisms
(2.15) Th10 = 07" o xox, 1t 00,
(2.16) T=T",.

Since each x; (see (2.8])) preserves the vertical subalgebra, T}, 19, T" preserve the horizontal
subalgebra. Note also that T;,_;)o, 1" restricted to a"" are identity operators.
We shall need the following result.

Lemma 2.5. We have

T 'oh="ho(sy_1-518)" "
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Proof. Set Y,, = CoXxoX, 1, Where (; is the automorphism of €, given by Ey(2) + (—d) " Ep(z),
Fo(z) = (=d)"Fy(2), leaving unchanged the rest of the generators. The lemma follows from
Proposition 2 of [M99] by choosing = = ¢! (Y,"), and noting that (s o v = v. O

The exists an action of the braid group on any integrable Uq(g[n) module. Therefore, there
exists an action of 7' on any integrable U (gl,) module.

2.5. Representations. In this subsection we present a family of £,-modules studied in our
previous works [FJMMI1],[FJMM2]. These are

e the vector representation V) (v),
e the Fock representation F*)(v),

e the representation N&k)ﬁ (u).

In all cases the central element ¢° acts as identity. These modules carry a discrete parameter
k € Z/nZ which we call color, and a continuous parameter u € C* which we call the evaluation
parameter. In fact the general case can be obtained as a twist of the one for £ =0 and u =1
by the automorphisms 7 and s,, given by (2.0) and (Z7) respectively.

First, we recall some terminology about representations.

An &,-module V is said to have level ¢ if the central element x~! acts as the scalar £.

Let ¢(2) = (&) (2), ¢; (2))icz/mz be a collection of formal series ¢ (z) € C[[zF!]]. A vector
v € V is said to have weight ¢(2) if K*(2)v = ¢ (2)v holds for all i € Z/nZ. The module V
is weighted if the action of the commuting family of operators {K;"(2)}iez /nz is diagonalizable
in V. It is said to be tame if the joint spectrum of this action is simple.

The module V' is lowest weight if it is generated by a weight vector v such that Fj(z)v = 0
for all i € Z/nZ. Such a v is called a lowest weight vector, and its weight the lowest weight of
V. Given ¢(z) = (¢ (2), ¢; (2))iez/nz With ¢; (c0)¢; (0) = 1, there exists a unique irreducible
lowest weight module Lg.) with lowest weight ¢(z).

Let V' = @47V be a module Z-graded by the principal degree. (This is the case for all
modules we consider in this paper.) We say that V is quasi-finite if dimV; < oo for all s. It
is known [MO7], [FJMM2], that an irreducible lowest weight module Lg.) is quasi-finite if and
only if, for each i, ¢:*(2) are expansions of a rational function ¢;(z), such that it is regular
at z = 0,00 and ¢;(0)¢;(c0) = 1. If it is the case we say simply that the lowest weight is

@(z) = (¢i(z))ieZ/nZ‘

Vector representation. The vector representation V*)(u) has a basis {[u]g-k)}jez. For n > 2,
the action of the generators is explicitly given as follows.

E,(z)[u](k) _ 5((1{““/2)[“]5@1 ) 1+j+ 1=k
S O i+j+1#k
ko ezl ivjrl=k;
E(z)[u]j+1 = 7
0, i+j+1#k;
o ¢(Q{U/z)[U]§k) > j+i=k
K@) = § vlales u/2) " ), j+i+ 1=k

] E»k) : otherwise.
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Here and after we set
—1
L qg—q 'z
For n = 1 the formulas read
5 O _ 5(g0+! ©
0(2)[ul; (g1 u/2)[u]yy

Fofe)[u)h = a2 8(a] u/)ul”
4

K5 (2)[u]” = w(qlu/2)v(algs "u/2) " [u]{” .

The vector representation V*)(u) is an irreducible, tame representation of level 1.

Fock representation. We use the following notation concerning partitions. A partition A =
(A1, Ag, - -+ ) is a sequence of non-negative integers \; such that only finitely many are nonzero
and \; > A\, for all j. In particular, we denote () = (0,0,...). The dual partition \" is given
by Xi = |{7 | A\; > i}|. We identify a partition A with the set of integer points (x,y) on the
plane satisfying 1 < 2 < {(A) and 1 <y < A;, where {(\) = \| is the length of A\. A pair of
natural numbers (z,y) is a convex corner of A if A, < A} = x. A pair of natural numbers
(z,y) is a concave corner of \ if Al =z — 1 and in addltlon y=1lor\,_,>z—1 Let CC()\)
and C'V(\) be the set of concave and convex corners of A respectively.

Fixing k € Z/n’Z, to each point (z,y) € Z? we assign a color k+z —y € Z/nZ. Fori € Z/nZ,
introduce the set of concave (resp. convex) corners of \ of color i as follows.

CCP ) = {(z,y) € CC\) | k+z—y =1},
CVPIN) = {(z,y) e CV(N) | k+z —y=i}.

Finally, for a partition A = (A1, Ag,...) and j € Z>q we write A+ 1; = (A, Ao, ..., A, £1,...).
The Fock representation F*)(u) has a basis {|\)} indexed by all partitions A. It is realized
as a linear subspace of the infinite tensor product of vector representations

FO(w) c VP () @ VP (ug; ) @ VI (ugs?) @ . . .,
where
k —921(k
A = [l @ g 18, @ g @

Notation being as above, the action of &, is given as follows.
Fori € Z/nZ, j € Z>y such that k +j — \; =i+ 1, set

j—1
(A + 15| Ei(z Hw PV T e TN ) s d ),
o )\S_z k+sf§j’zi+1
(N)+1
(AIF(2)]A + 1) Hw C ) T v ) oad /).

s=j+1, s=j+1,
k+s—As=1i k+s—As=i+1



16 B. FEIGIN, M. JIMBO, T. MIWA, AND E. MUKHIN

Further, for i € Z/nZ, set

MNEF@N = [ v@deuz ] o(@ddau/z)"

(@) OV (@y)e ccP )

We set all other matrix coefficients to be zero. In particular, we see that E;(z) adds, and Fj(z)
removes, a box of color 7.

Here we used the bra-ket notation for the matrix elements of the linear operators acting in
F®) (u) in the basis {|\)}.

The Fock representation F*)(u) is an irreducible, tame, lowest weight representation of level
q with lowest weight (¢;(z)) where

¢ —qu/z
oi(z) = 1—u/z (i=k) :

We remark that the Fock representation was given in [Sa] using vertex operators (for the
perpendicular generators), and in [VV2],[STU] using the ¢-wedge spaces. The explicit formula
for the action of €; in the Fock space was found in [E'T].

Representation Ng? )ﬁ(u) The representation ijj )B(u) is defined as a submodule of a finite tensor
product of Fock representations. Let «, f be partitions with m parts, such that «,, = £,, = 0.
Given a color p € Z/nZ and an evaluation parameter u € C*, set

(2.17) pi=p—oi+ 0B, ui=q¢¢ g, i=1,--,m.

Consider the linear subspace

(2.18) Ng{p)ﬁ(u) C FP(u) @ --- @ FPm) (u,,)

spanned by vectors A1) @ .-+ @ [A(™) | where A®) are partitions satisfying the conditions
(2.19) AT >N g =1, m -1,

where

(2:20) ai = 0 — i, bi = Bi — Bit1-

Then ijj )B(u) is a well-defined €,-submodule of the tensor product module V) (u;) ® - -+ ®

F®m)(u,,). Moreover it is an irreducible, tame, quasi-finite lowest weight module of level ¢™
and lowest weight (¢;(z)), where

H q ' —quy/z
fimget 1—u]/z

3. CONSTRUCTION OF SUBALGEBRAS

In this section we describe a family of subalgebras of a completion of &€,,. These subalgebras
satisfy the relations of &,, with m < n and act in all lowest weight representations of £,. In
this section, except in Section 3.5, we always work in perpendicular generators, see (Z.10) and
(ZII). We use similar notation for the generating series, e.g. Ei-(z), Fi-(2), etc.
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3.1. Definition of current F- ~1j0(2)- We give the definition of the "fused” current Et 10(2)-
The construction mimics the extraction of the polar term in the operator product of EL( ) and
of EX [ (2).

Let first n > 3. We have the relation

(d2 = g 'w) B,y (2) Ey (w) = (A7 2 — w) Ey (w) B,y (2),
which in components is
(3.1) E,_ 1k+1E07’ wk, 1kEO 1l = _lEo o B 1k+1 dEOJ:T’-i-lErJL_—l k

We start with the representation-theoretical version.
We define another grading deg™ on &, such that:

(3.2) deg” By, = deg™ Fj = deg™ Hj, = k.

From Lemma 27 it follows that — deg™ z is equal to the 0-th component of deg z.

Call a graded &,, module V' admissible if for every vector v € V' there exists N(v) such that
gv = 0 for all g € &, with deg™ g > N(v). If a representation is admissible then the formal
series E(2)v, Fi-(2)v, K; " (2)v are actually Laurent series in z and the series K, (2)v is a
polynomial in z~!. Note that in terms of the standard generators, the condition of admissibility
is written in terms of the principal grading, (see (24)), (Z12)). In particular, all lowest weight
modules defined in Section are admissible.

Let V' be an admissible representation. Then from (B.I), we obtain that given k € Z and
v €V, we have

1 s 1
E, 1s+kE U= En—1,5+1+kEo,—s—1U

for large enough s.
Define

(3.3) By i = 6" "By o Eo_gv

n—

where s is sufficiently large. Clearly, E- n_1j0 1S @ well-defined operator acting in V. We set

L Bt —k
En—1|0( 2) =>4 b n—1/0,k%
Equivalently, we can define:

z
(3.4 B yo(2) = I (1= 2)BL (0,2 B (2).
Using (31)) repeatedly, we can also write
s—1
1 kEJ_ ls—i—kEé_ s— kEJ_ lkEOO +Z L k( _IEJ_—I ZEJ_ 1E+144 dEd_ En 1k+z)
1=0

Therefore we can equivalently define:

o0

1 okl L ik —1 L L L

B ok =0 En—l,kEO,O_I_E N (¢ Eo_1-ibn 1 pp14s — dEy 1k+z)
i—0

Note that the sum evaluated on any vector v in an admissible representation becomes finite.
This formula shows that the operator Ei_—1|0,k belongs to the completion of £, with respect to

grading (3.2)).
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There is one more useful way to write the operators Erf—uo > which we use in Section @l Let

T,,—1j0 be the automorphism of &, given by (2.I7).
We have

Tn—l\OEol(Z) = Z_lEol(Z)v Tn_1|0E,f_1(z) = ZE#—l(Z)a
TooajoFy (2) = 2F5(2),  TaoapoFp(2) = 27 Fyy(2),

and T;,_1)o preserves currents with indexes different from 0 and n — 1 as well as ¢° and . In
particular,

TyoqjoK; (2) = wT00m 200 (R ()
Then we clearly have

EL 10,k — hm C.Il " n— 1\0(El 1kEoLo)

Finally, let us consider the case n = 2. In this case, we replace the product (B3] by the
following stable combination. We set

1V, L  —s—k/pL 1 1 1
Eyor = a0 " (BB s — BEL 1 Eo o),

where s is sufficiently large. Equivalently we have
1 . z q3z
Ei™(2) = lim (1= 5)(1 = ) B (@) By (2)

and

1),1
E§|3k = shm a 1\0(E1LkEoLo Q3E1l,k—1EoL,1)-

For n = 2 we write an extra upper index for the reason explained in Section B.2] see (B.1T]),

BI12) below.

3.2. Other operators. We collect operators obtained by the construction described in Section
Bl
Similarly to Section Bl we define a number of other currents. We use formulas of type (3.4))
keeping in mind that it is always justified by formulas of type ([B3)).
Forn>3andi=0,1,...,n— 1, define

z
(3.5) Ejini(z) = lim(1- ;)EJ—(qlz)EiJ-_i-l(Z)a
. 4
(36) Ffin(z) = lm(1= D)EL()F @7),
(3.7) Kin() = K@) KET(2).
We also have another family of operators defined by
) z
(33) Bi(e) = lm(1— 2)BL () B ),
2z
(3.9) Fio(z) = lim (1= ) F () (e?),
(3.10) Kia(2) = K3i(as2) K (2).
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All such currents of the same type (e.g. of type E) are related to each other by &, auto-
morphisms 7 and ¢, see (2.6]) and (29), for example, EZ|Z+1( z2)=0"tor o f(EL 1o(2 z)) and

EL.  (2)=0" 1OLO¢9(E7JL‘Z 1n— Z(z)).

i1
Moreover, we use our construction recursively to obtain new currents. For example, we set

Z/

E2\2+1\2+2( ) = z}’l—r?z jlgz(l o Z_)(l - _)El( : //)EZJ—_l—l((hZ )EiJ—_l—2(Z)7
or
Z/
Ejip1i(2) = Jim thﬂ)z(l - Z—)(l - Z_)Eil(Q1QSZ/,)EZ'J—_{-1(Q3Z,)E2'J_(Z)'

One can justify this recursive definition directly, but we defer our discussion to Section B4l
Note that our notation Ez|z +1|Z( z) contains complete information about the shifts of arguments
participating in the corresponding definition. Namely, i|i + 1 signifies the relative shift of g3
while 7 + 1|7 signifies the relative shift of ¢;.

For n = 2, the construction of these currents is quite parallel, but we write an additional
upper index to distinguish the formulas in B3] (37) and those in E8)-GI0), e.g.,

(3.11) Efjy (2) = lim (1 - S)( jjzwﬂ 02 B (2),
(3.12) Bio () = lim (1= 5)(1 = 2B (057)) B (2)

In what follows we also use the notation
(3.13)

Erjz_—lHO(Z) = ErJL_—1|n—2\...\1|0(z)7 Fnl—luo(z) :Fri_—1|n—2\...\1|0(z)7 Kfilluo( )= K:L_L Jl_\n 2. |1\0( z).

3.3. Correlation functions. We discuss properties of correlation functions in admissible rep-
resentations.

Let V be an admissible representation. Choose an arbitrary graded basis. Choose arbitrary
basis vectors v, v5. We use the standard notation for the correlation functions. For exam-
ple, we write (E{(2)E)(w)) for the matrix coefficient (vi|Ei(2)Es-(w)|vs) of the operator
Ei(2)Ey (w). We study properties common to all correlation functions, and therefore it is not
important which admissible representation and which particular matrix element we consider,
thus we omit this information from our notation. In all calculations V, vy, v, are arbitrary but
fixed.

By the word ”current” we mean either E;*(z), Fi*(z), K, " (2) or K;""(z). Later we will
also use the fused currents.

Algebraic relations between currents translate into properties of correlation functions.

Moreover, if an element g of &, acts by zero in all admissible representations, then g = 0.
Indeed, such a statement is known to be true in the setting of Lie algebras, so it holds for
UL! (d), see Section 31 (The proof is analogous to ii) of Theorem 8.4.4 in [D].) But since &, is a
quantization of UL/, (d) and all admissible representations of UL! (d) quantize to representations
of &,, this fact is true for &,. Finally, note that admissible representations are graded and if
an element g = Y °°, g; with deg™® g; = i of the completion of &, acts by zero in an admissible
representation, then all g; do. Therefore, we have the converse statement: if all correlation
functions satisfy a given property then the currents satisfy an algebraic relation inside &,,.
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We now discuss the dictionary between algebraic relations and properties of correlation func-
tions. In the dictionary we consider correlation functions of two or three currents. The corre-
lation functions of many currents satisfy the same properties for each subset of two or three
currents.

Quadratic relations. Consider two currents satisfying a quadratic relation. For example,
consider (Ei(2)Ey (w)), n > 3. Then the quadratic relation for the currents Ej-(z) and Ey (w)
is

(A7 — g 'w) By (2) By (w) = (d7'q"" 2 — w) By () Eq (2).

This is equivalent to the following form of the correlation functions:

Z, W Z, W
B11) (BB W) = rm (BB ) = e
where p(z,w) is a Laurent polynomial.

Here the right hand side of the first equation is understood as an expansion in w/z, while
the right hand side of the second equation as an expansion in z/w. Such a convention should
be clear and we often do not mention it.

Apart from the poles in the correlation functions which are dictated by the quadratic relations
we also have symmetries, when several of the currents are the same. For example, we have

pla, 2)
Z1 — Q2227

(3-15) <E1l(21)E1l(22)> =

where p(z1, 22) is a Laurent polynomial (different from the one in ([BI4])) such that p(zy, z2) =
—p(z2, z1). In particular, we have p(z, z) = 0.

Commuting currents. This is an important special case of the quadratic relations. If two
currents commute, their correlation function is a Laurent polynomial (no poles). Of course, the
converse is not true in general. For example, since the currents K= (w) are power series in
wT!, clearly, the correlation functions (E:-(2) K" (w)) and (K, (w)E;*(z)) do not have poles
but (B (2)K; " (w)) and (K" (w)E(2)) do. In particular, these currents do not commute.

However, in order to prove that two currents commute, often it is sufficient to check the
absence of poles, since we have that the correlation functions in different orders of currents are
equal as rational functions, see Section 3.6l

Serre relations. The Serre relations (see Section [2]) are equivalent to the wheel conditions
for the correlation functions. For example,

p(Zh 22, w)

<E1J_(Zl)Ef_(Z2)E;_(w)> = (21 — qozo)(d 21 — ¢ 'w)(d 2 — q—lw)’

where p(z1, 29, w) is a Laurent polynomial skew-symmetric in 2z, 25 satisfying the following
wheel condition:

p(z, 22, 1q22) = p(2, @22, 42q32) = 0.

Note that due to the skew-symmetry, we also have p(z,¢; 'z, q12) = p(2, ¢35 ‘2, q32) = 0.
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This fact is not completely trivial, therefore we sketch the computation for the most difficult
case of n = 1. Recall the function go(z, w) = g(z,w) = (2 — qw)(z — gaw)(z — gsw). Then the
Serre relation

Sym 223 [Ey (21), [y (22), By (23)]] = 0

21,%22,23

is equivalent to:

1 1
3.16) p(z1, 22, 2 (Asm 2927} +
(3:16) Pz, 22, 2) | Asym (za2 (o o) T+ 90ems )9 (on, 2209 (o 22)

1 1
9(22,23)9(22, 21)9(23, 21) g(zsazz)g(z&zl)g(zzaZ1)>>) .
Let us study the result of the anti-symmetrization. First, one checks that as a rational function,
it is zero. However, all the terms have to be expanded in their own region. We change all the
expansions to the region |z| > |z2| > |23| by adding the delta functions.

The coefficient of a single delta function is obtained from the sum of twelve terms out of
twenty four terms present in (B.I6]). One checks that this sum has a zero at the support of the
corresponding delta function. Therefore single delta functions do not appear.

However, we do have products of two delta functions. The corresponding coefficient is com-
puted from four terms (B.I6]) and it is non-trivial. For example, we have §(z1/(q122))(q321/23)
with a non-zero coefficient. Therefore, this product of delta functions is absent if and only if

p(z1, 47 ' 21, q321) = 0.

Let us also comment on the Serre relations in the n = 2 case. As discussed above, we
impose the quartic relations, (21I), (Z2]), following [MO0I]. By Lemma 1] we also have the
cubic relations. These relations are inspired by Theorem [B.I] and they are equivalent to the
wheel condition for the correlation functions.

We show here that quartic relations follow from the cubic ones. Let

p(zlvz27 Zg,'ll))

(Eg (21)Ey (22) Ey (2) Ef (w)) =
[1(zi — qw)(z — gzw) [, (21 — @225)

i=1

Then p(z1, 29, 23, w) is a Laurent polynomial which is skew-symmetric in 2, 29, z3 and vanishing

if z; = zj, orif 25 = oz and w = @y 29, or if 23 = @221 and w = ¢325. Relation ([2.) is equivalent
to

1 1
p(Zl,Zg,Zg,W) Asym ( 3
21,22,23 (Zz - C_I2Zj)
i<j H 912(21', w)
i=1
14¢;° 14¢;° 1
_ g2+ 1+qy 4 g2+ 1+qy _ >:0.

3
912 (w7 Zz')

2 2
H 912(2‘2‘, w)ng(wv 23) 912(217 w) H 912(% w)
i=1 i=1 1

(2

Here as before in the case of n = 2, g12(z, w) = (z—qw)(z—gsw). This equality is established in
the same way as (3.10]) using the vanishing conditions of the Laurent polynomial p(z1, 22, 23, w).
Hence the quartic relations are consequences of the quadratic and cubic relations.
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Commutators of the E and F currents. The relation

7 (2), Fi-(w)] = p _lq_l(f?(%_lw/Z)Kf’l(Z) —0(n 2/ w) K (2))

holds if and only if the following formulas are satisfied for all correlation functions:

(BHGF ) = s (BB =

where p(z,w) is a Laurent polynomial and

—1
1,294 -1 - _
(K (2) = n 2 (e z) = =127 g — 07 Resums (B ()P (w),
1

—(K " (w)) = n_lw_Q%p(/@w, w) = —r"w (g — ¢ Resm (B (2) FH (w)).

3.4. The relations for the fused currents. In this section we describe the subalgebra gen-
erated by fused currents.

From now on we fix 7;, i = 1,2, 3 such that ¢; = exp(n;). For x € Q, we set ¢F = ™.

Set

Ezl(z) = EZ'J_(qln%lZ), Fl(z) = F-J'(qlnjz)’ K-i’l(z) _ K-:t’J_(qln%lZ),
1=1,...,n— 2, and set
Ey(2) = Epryp(2),  Ff(z) = Flyle),  Koh(z) = Koyl2).
Set

1 1

G =aq- q ", G2 = ¢, GB=qq "

Theorem 3.1. The currents E;-(2), F-(2), K" (2), i = 0,1,...,n—2, satisfy the relations of
the toroidal algebra €, _1(q1, 4o, G3)-

In the proof of this theorem we use the following simple lemma.

Lemma 3.2. Let f(z1, 2, w1, ws) be a Laurent polynomial, a,b, c,d complex numbers, such that
flw,az, bz, cz) = f(dz,az,bz,w) = 0. Then

fldz, az,bw, cw)

Z—w

f(dz, aw, bz, cw)

Z=w w—z

zZ=w

Proof. We have
f(dz,az, bw, cw)
Z—w
On the other hand,
f(dz, aw, bz, cw)

w—z

— 9 bz, ay, bw, cw)

= gf(dz,az, bw, cw) By

Z=w 82

y=w

= gf(d'% ay, bwa CUJ)
Z=w 8y

= if(alz, aw, bz, cw)

Z=w 8’(1]

y=w
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Proof of Theorem[3.1. We check the relations for the correlation functions. By the construction,
the correlation functions of the fused currents are extracted from those of the standard currents
in the way similar to obtaining (K;"(z)) from (E;*(z)EF-(w)). For example, if

(=B (o) = 222

(B

n—1
then

(Ei—uo(z» = _Z_lp(za z).
It enables us to check its properties.

All quadratic relations and Serre relations are checked by a straightforward computation.
The cases of n = 3 and n = 2 are slightly different but not much more difficult. For example,

let n = 2, and let us check the relation §(z,w)E§|10)’l(z)E§|lo)’l(w) = g(w, z)Eﬁg’L(w)Eﬁg’L(z),

where

9(z,w) = (2 — qw)(z — @w)(z — Gw) = (z — Gw)(z — gw)(z — gsq; 'w).
We have
z/w,p(qlzlv Z, qlwlv ’UJ)

(2" = gu') (2 = g2w)
1

(B (012) By (2) By (') By (w)) =

X .
(2 —w) (2 — gzq;"w) (2 — ') (z — ugzw’) (z — 2) (12’ — g32) (W' — w)(qw' — gsw)
Then
1),1 1),1 P(Q1Z> z, C_I17»U,7~U)
(Bio™ () By (w) =

(2 = @w)?(z — w)(2 — g3q7 'w)(2 — giw)(2 — qrgzw)’
The factor (z — ¢1gsw) and one factor of (z — gaw) cancel due to the wheel conditions for the
Laurent polynomial p(2’, z, w’, w). Finally the pole z — w is absent due to the skew-symmetry
property of p(2/, z, w', w).

The most difficult calculation is the F'F relation for the fused current. Here are some details
in the case n > 3. Consider

R(z1, 20, wi, ws) := (B (q122) By (21) Fy- (w1) Fyy (qrws))
p(Z17Z27w17w2>
(21 — 22) (w1 — wo) (21 — K wy) (21 — Kwy) (29 — K~ 1wy (22 — Kws)

Then we have

k1272 (g — ¢ Yp(21, 20, K21, w
<E#_1(qle)KO*’l(zl)F,}_l(qleQ)):( g — g p(a, 22, 621, wy)

21 — 29) (k21 — we) (K™ — K) (22 — K twy) (22 — Kws)

But this correlation function does not have a pole at z; = z5, therefore the Laurent polynomial
p(21, 29, w1, wy) satisfies

(3.17) p(z, 2z, kz,wy) = 0.
Similarly, considering the correlation function (Eg&(z1)Fy-(wy)K; " (q122)), we obtain

(3.18) p(z, k™ w, w, w) = 0.
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From Lemma [B:2] and the conditions (B.17), (3:I8]) we obtain that

p(Zl, Zlawbwl) o p(21, 22, K21, /‘%’2)

Z1 — f{;_lw:[ w1=kK21 Z9 — 21 22:,21.
Using this identity, it is straightforward to check that
-1
q—dq

.3 ReSuw, —rz ReSzy—zy ReSyy—w, R(21, 220, w1, ws)
1

-1 -1

-1
_Jama g -4 g q (k21 — wy)
- eswz:lizz eswlznzl -1
%) Kz RZ1 — Q9 W2

R(z1, 29, wy, w2)}

Zo=21

Similarly one obtains an equation involving residues at z; = kw; and 25 = Kws.
These two equations are equivalent to the needed relation

[Ei—no(z)v FnL—uo(w)]

1 - _
= (8(x w/2) Ky (@2) Ky 7 (2) = 6k 2 /w) K, () Ky (w). O
We denote the subalgebra of £,, described in the theorem by SZ:}‘O.

Note that Theorem [3.1] only shows that Szj‘o is a factor of toroidal algebra &,_; with

parameters §i, G2, G3. However, using the classical limit, see Section [B.7] we obtain that in fact
the algebra 82:}'0 has the same size as €,,_1 and therefore is isomorphic to &,,_1(q1, 2, ¢3). Note
that while 82:1‘0 is a subalgebra of a completion of &,, its classical limit is a subalgebra of
uncompleted classical limit of €,,, see Section B.7)

Note also that if V' is an admissible representation for £, then V is an admissible represen-

tation of 82:}'0. Therefore, Theorem [3.1] justifies the recursive use of the construction of the

fused currents, see Section [B.1l

Let ke {1,...,n—1}.

Using the theorem recursively, we obtain subalgebras 8:‘“1'"""_1'0 generated by currents
EZJ‘(Z) = Ef(qln%iz), Fil(z) = Ff(qln%iz), f(lil(z) = Kii’L(qln%iz), i1=1,...,k—1, and
EOL(Z) = E]i_|k+1\,,,\n—1|0(z)? Fol(z) = Fﬁk+1\,,,|n_1\o(2)a [N((;_Ll(z) = K]ﬁ/}il\,,,m_l\o(z)

The subalgebra SIZ'HH“""_HO is isomorphic to €x(¢1, Go, Gs) with ¢; given by

n—k _ _ _n—k
O=q ¢", 7@ = ¢, 43 =03 ¢
In the same way, we obtain subalgebras EZ_M“'H'O which are generated by currents Ef(z) =

n—k; ~ n_k; ~ n—k; )
Ef(qs" '2), FHz) = F- (g™ 2), K (2) :Kii’l(qg’c z),i=n—k+1,...,n—1, and
Ey(z) = Elfyno?), F-(2) = FL n0(2), Kot(z) = K373 y0(2). The subalgebra

n—kl...|1]0
SZ_M'“MO is isomorphic to €(q1, Go, G3) With §; given by
_n—k _ ~ n—=k
G=q-q ", Q@2 = o, @3=qs q3" -

We abbreviate &7 !0 ¢ gn =110,

In Section 3.7 below we explain that, in the classical limit, the embedding of the subalgebra
8:‘“1'"""_1'0 into the completion of &€,, corresponds to the embedding of submatrices into the
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upper-left corner. Similarly, the embedding Ez—kl---\llo to the completion of €, corresponds to

the embedding of submatrices into the lower-right corner.

3.5. Computation of f[,-vl. The algebra 82:}‘0, see Theorem [B.1] is defined in terms of the

perpendicular generators. It is not easy to write the standard (non-perpendicular) generators
of 82:1‘0 in terms of standard generators of &, in general. In this section we compute such a

formula for ]:Ii,l. This is used in Section Ml

Lemma 3.3. Fort=0,...,n— 2 we have

H;y=(—q)q, " lim a1 Ty 40 (Hi,1 + 5i,0q1_1Hn—1,1) .

5—00

Proof. By the definition of the symbol 1 we have lffm = é(ﬁ[fl)
. 1
First assume n > 3. Set d = dg;""". Then, for 1 <i <n — 2, we have from (213

]:Ii,l = (_J)_ZH e H o [E()L,Ov Erf—zo]q*la T 7EiJ-_|-l,0]q717 Ell,o]q*v T 7Eij_—1,0]Q’17 Ez%o]q*2 .
Substituting Ejl,o = Ejfo (1<j<n-2)and

Eol,o = (—q) lim QISTi—uo[Eol,m E#—Lo]q*l )

5§—00

we find

H; = (—d)_i(_Q) lim QfSTS—uo ((_d)in}l)

n
S§—00

which gives the desired result.
Consider the case i = 0. Using the quadratic relation [Eg, Eil,1 = —d[Ejy, Eg_];1 we
rewrite H,,_1, as follows.

Hn—l,l = (—d)_n+2[[[' e [Eiu Ezl,o]qfla T ’Erjz_—2,0]q71> Eol,—l]qfla Erjz_—l,O]

q72 .
Setting X = [[Efy, Eyplg1, -+ 5 En_gole and using (Z14) we obtain
(_d)n_l (HO,l + q;lHn—Ll) = [[X, Erf—l,o]qfla Eo%—l]q*2 —q[[X, Eol,—l]qfla E7JL_—1,O]Q72
= X[E#—Lm Eol,—1]q - q_2[E#—1,0a E()L,—l]qle —(1- q_Q)Eol,—1XE#—1,0-
It follows that
lim Ch_sTs—uo(HO,l + Qlen—l,l) = (_d)_nH[Xa Erf—uo,—l]q*?-

n
S§—00

1

We obtain the statement by noting that Ef, = ¢, " Ef;.
The case n = 2 can be checked directly, by noting that Hy; = Eol,o = Ejjp - O

3.6. Commuting subalgebras. We show that the constructed "upper left corner” subalge-
bras commute with ”lower right corner” subalgebras.

Theorem 3.4. For each k, the &, subalgebras 82';’;11‘0 and 8?““'"'"_1‘0 commute.
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Proof. The theorem is proved by the same techniques as Theorem [3.1]

For example, let us check the commutativity of Ei(z) € 8z|k+1"“|n_1‘0 with EkL|...|1\o(w) €

kl...|1]0 : . .
Sn‘_ k‘ 1 We consider the correlation function

(Ey (2) By (q5wi) By (g5 wi—1) - . . By (w))
o p(zawka"'awlaw)
(2 = g2q3w1) (2 — q@3wa) (z — g7 W) (wy, — wy_1) - .. (w1 — w)

We need to show that the poles at z = gogswi, 2 = qig2ws and z = ¢; 'w disappear when we
multiply by (wr —wg_1) ... (w; —w) and set wy = wx_1 = - -+ = w; = w. But this follows from
the wheel conditions for the Laurent polynomial p(z, wy, ..., wy, w).
Let us check the commutativity of Fit(z) € 82‘“1'“""_1'0 with Ekl\...mo(w) € 8?'_’21‘0. We
consider the correlation function
(Fi-(2) By (5wi) By (g5 wn) - By (w))
p(z, Wk, . .., w1, W)
(z — ktqzw) (2 — kgzwy ) (W, — wi_1) ... (W —w)

We need to show that the poles at z = Kk 'qgsw;, z = kgsw; disappear when we multiply by

(wk - wk—l) cen (w1 - w) and set wy, = wp_1 = -+ = w; = w. We have
Resz:qanw&FlL(z)E,f(qgwk) . B (¢2ws) By (w1g3) B (w))
-1
g3KWw
- _q3— ql—1 (B (5w .. By (q3ws) K (gswn) By (w))

— —q; ' LA g (ghuy) B3 (qhws) B (w) K ().
q—dq w; —w
In the last expression there is no pole at wy = w;. It implies that we have the identity
p(kgswy, Wy, . .., wi,wy,w) = 0 and the pole z = Kgzw; disappears.
We omit further details. O

3.7. Classical limit. In this subsection we explain the meaning of the fused currents in the
classical limit.

The quantum toroidal gl,, algebra &, = &€,(q1,¢2, ¢q3) contains two parameters ¢,d. By the
classical limit we mean ¢ — 1. The algebra &,(q1, g2, ¢3) in the limit is known to have the
following description.

Consider the algebra A, (d) = M, ® C[Z*', D*!], where M, stands for the algebra of n x n
matrices, and C[Z*!, D*!] is the algebra generated by symbols Z, D satisfying DZ = d™"ZD.
We regard A, (d) as a Lie algebra by commutators. Let £,(d) = A,(d) ® Cc; @ Cey be its
two-dimensional central extension, where the Lie bracket is given by

My @ Z™ D%, My @ Z™ D) = (d_"T’QslMlMg — d_"””Mng) ® Zrtr2 psitse
—+ (5”_;_?270(5514_52’0 d—TLT281tr(M1M2) . (7’101 + 8102) ,

for M; € M, r;,s; € Z, i = 1,2. Let further £ (d) be the Lie subalgebra of £,,(d) spanned
by ¢1,¢2 and elements Y M, Z"D* € A,(d) such that tr(Myo) = 0. The classical limit of
En(q1, @2, q3) is the universal enveloping algebra UL! (d).
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To see this explicitly, set K- = ¢™io, k = ¢~ ¢y = S Hy. It is then straightforward

to check that the limit ¢ — 1 of the defining relations for the generators Ejy, Fy, Hiy of
En(q1, g2, q3) are satisfied by the following elements of £/ (d):

Lo B, @78d% (1<i<n-—1),
S\ Ba®Z" D7t (i=0),

gL — (E” — Ei+1,i+l) ® ZFd~* (1<i<n-—1),
o (d_nkEn,n - El,l) ® A + CQ(Sk,O (7, = O) .

Here E;; € M, are the matrix units. As it is noted in [M99], the automorphism 6 € Aut &,
reduces in the classical limit to the Lie algebra automorphism 6 € Aut £/ (d) given by the rule

ZI—>D, D|—>Z_1, C1 > C2, Cot>r —C1,

and M — M for M € M,,.
Let us examine the classical limit of the fused currents. For simplicity we consider the case
n > 3. Recall that the Fourier components of the current Ej_uo(z) are defined to be

1 7 —r—s L 1 R T —r—s 1 1
En—l\O,r = lim a1 En—l,r+sE0,—s = lim a, [En—l,r—l—s’ EO,—S] )
s—00 s—00

where the second equality is due to the meaning of the completion. In view of ([B.I9), the
classical limit of this expression is

EJ_—1|0,7‘ = d_T_S[ETJL_—l,r—l—s? Eé:—s] = En—l,l ® DZ".

n

This holds true for all s, without taking the limit s — oo nor introducing the completion.
Similarly the classical limit of Fnl—l\om is

Fri_—1|0,r = dS[F’OJ:r—i-s? Frﬂ_—l,—s] = El,n—l ® ZTD_l :
These elements along with the other generators Ed="/("=1  FLg=r/(=1) for 1 < i <n—2
generate a subalgebra of £/ (d) isomorphic to £/ _,(d), where d = d"/™1 (note that DZ =
d="*1Z D). This is nothing but the one induced from the upper left corner embedding of matrix
algebras
M’ O)

!
M, — M, Mn—><0 0

In a similar manner the classical counterparts of Erjz_—lHO . FnL_1||0 . generate a subalgebra £/ (d")

commuting with £/ _(d). The former corresponds to the bottom right corner embedding

My oM., Mo ()



28 B. FEIGIN, M. JIMBO, T. MIWA, AND E. MUKHIN

T—l

0]

0

1

s = —2/\ 0]
T—l

In this section we study the restriction of various €,, modules to the subalgebra 82:1‘0@)8?_1”0.

The logic of the computation is the same in all cases, but we start with Fock spaces, and
specifically with n = 2 where the situation is the easiest to describe.

Ol

|}—t©|—*©

FIGURE 1. The &; module FO (u)

4. BRANCHING RULES

4.1. Fock modules for &,. In this section we study decompositions of the modules of level ¢
for &,.

Consider the module F© (u), see Section This module has a basis labeled by partitions.
In addition, it is convenient to represent this module by the following familiar picture, see
Figure 1.

On this picture the module 5 (u) looks similar to that of the vacuum sl integrable module
of (additive) level one, but actually it is not the same. It is similar simply because the Fock
t=1q).
However, the reader should be warned that our space is in fact the vacuum UquIQ module. In

module restricted to the horizontal algebra U(?OTEIQ is a level ¢ module (in the sense k™~

other words, we have a Heisenberg current commuting with the Ug‘”’g[g, see Section 2.3 and

our module is the tensor product of the Fock space of the Heisenberg algebra with the vacuum

U;WEAIQ integrable module of level g. Thus the module 7 (u) is the vacuum U;W gA[Q module.
We have the usual sl, weight decomposition given by values of K1 /K;*. We called this weight

“cweight” (see (2.3)).
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The cweight of a partition is given by f{boxes of color 1} — #{boxes of color 0} in the corre-
sponding colored Young diagram. On Figure 1, the cweight increases from the right to the left
and it is denoted by s. The cones which look downward picture vectors of the same cweight.

We also have the principal degree given by pdeg E;(z) = 1, pdeg F;(z) = —1. It counts the
total number of boxes and in Figure 1 the principal degree increases from the top to the bottom.

The action of the i-th generator of the Heisenberg current increases the principal degree by
2¢ and does not change the cweight.

We have the action of the shift element T, see (2.16)), on the Fock space as shown in Figure
1. Precisely, we have T~! = 5,5, where the s; are the Lusztig simple reflections.

Our first observation is the following combinatorial ”tensor product” decomposition of the
sector with large cweight s. Let A®* = (25,25 —1,...,2,1) and A™° = (2s — 1,25 — 2,...,2, 1)
for s > 0 and let A° be the empty partition. Then |A®) is the vector of the lowest degree of
cweight s. The degree of |[A®) is s(2s + 1). Fix two partitions A and p with, say, k parts and
let [s| be larger than k. Let A3 , be the unique partition of degree s(2s + 1) + 2|A| + 2|u| and
cweight s such that for ¢ = 1,...,k we have

( i\yﬂ)i - Af + 2)\2,
(A% )i = (A%); + 2p;.
Informally speaking, A3 , is obtained from A® by attaching the partitions of A and p made out
of dominoes to the top and the bottom respectively, see Figure 2.

Denote by S* the subspace of F©(u) of cweight s. Denote by S, the subspace of S*
consisting of vectors which have degree at most s(2s + 1) 4+ 2k. We have the following purely
combinatorial lemma.

Lemma 4.1. If 2s > k, the vectors [AS ) with |u| + |[A| < k form a basis of Sy

Proof. Partitions of vectors in SZ,, have s more boxes of color 1 than color 0. Each odd row
contains at least as many boxes of color 0 as color 1. Each even row contains at most one more
box of color 1 than color 0. It follows that every such partition contains A®*. Hence any such
partition is obtained from A® by adding r boxes of color 1 and r boxes of color 0 where r < k.
It is easy to see that the only way to do it is as described in the lemma. U

Another important statement is the following lemma.

Lemma 4.2. Let A, i be partitions and let 25 > [N +|ul. Then T7HAS ) = asx AT, where
g\ 1S 4 non-zero constant.

Proof. For s > 0, one cannot remove boxes of color 0 from A ). It is therefore a lowest weight
vector with respect to Ugsly generated by FEyg, Fyo. Then 80|A§7“> is a non-zero constant
multiple of the corresponding highest weight vector, that is \A;Z‘ly Similarly 31|A;7‘;_1) is a
non-zero constant multiple of |A§Ll> The lemma follows. U
For s € Z, and partitions \, i, we choose any integer r = r(s, A, u) such that 2(r+s) > ||+ |yl
and define vectors vy , by the formula
v = TTIASY).

Note that different choices of  change vectors vf , by non-zero scalars.
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0[11]60 1170 170 10 1
110 1170 10 10 1
0 110 1

1
110
011

— Ol o|kr

FIGURE 2. The partition Af , with A = (3,3,1) and p = (2,1,1).

Corollary 4.3. The vectors vy , form a basis of the space S*°.

Proof. The corollary follows from Lemma [£2 and Lemma .11 O

Recall that we have the subalgebra Egl) ® 853) C &,. The subalgebra Egl) is generated
by currents Eﬁg’L(z), Fl(‘lo)’L(z), Kli‘él)’L(z) and the subalgebra 8&3) is generated by currents
Eﬁ’o)’l(z), Fl(‘%)’L(z), Kﬁég)’l(z). Now we are in a position to establish the decomposition of the
&o-module FO.

We write F20 (u) for the €, Fock module FO (u), we also write FV(u) (resp. F® (u)) for
the 8&1) (resp. 8&3)) Fock modules.

Theorem 4.4. We have an isomorphism of 851) ® 8?) modules

(4.1) FE(w) = @ a2 O (—qqi"u) BTV (—qq5"u).
In particular, this isomorphism identifies the space T (—qq?u)XFE) (—qq2su) with the subspace
of FE) (u) of cweight s.

Here the factor z°%tV) 2% signifies the cweight and degree of the top vector of the subspace
FO(—qgt*u) B IO (—qq3*u) in FEO (u).

Proof. The algebras 851) and 8?) are defined in terms of the perpendicular generators of €,
and the action of €5 in F%(v) is given in terms of usual generators. Therefore, in general, it
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is not easy to compute the action of algebras 8%1) and 8%3) in 30 (y). However, at least we
have the following formula, see Lemma [3.3] which turns out to be sufficient for our purposes.

(4.2) Hy) = (—q) lim g7 **T*(¢; Hiy + Hoy),

(4.3) HY) = (—q) lim g5 T (g5 " Hyy + Hoa)-

It follows that we can compute

(4.4) (vl Hoylv) = —q lim (T*vlqy ** (g Hia + Hon)|T "),

(v By o) = —q lim (705> (g5 Hyx + Hoo)|T ™).
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We use these formulas to establish
(4.5) HYINY = Pug|A%),  HEIA®) = ¢Pug?’|A%).

Now note, that for all s € Z the vectors |A®) are lowest weight vectors with respect to Sgl) and

8&3) for the degree reasons. Since the levels of 8&1) and 8&3) coincide with the level of &, the
vector |A®) generates a level ¢ module for both of these algebras. Such a module necessarily
contains a Fock module. The evaluation parameter of the Fock module is now obtained from
3.

It follows that F%9 () contains the right hand side of (@I)). Then the equality follows from
Lemma O

Remark 4.5. Using ([@4)), we can compute the action of operators Ho(,ll) and Hé?’l) on basis vy .
Moreover, in fact, the spectrum of the operator Hy; is simple in the €; Fock module. It allows
us to identify (up to a constant) the vector v3 , with the vector [\) & |u).

4.2. Fock modules for &,. In this section we generalize the results of Section [Z1] for all Fock
modules.

Fix p € {0,...,n — 1}, and consider the &, Fock module 5™ (u). Then we have a picture,
similar to Figure 1, where the lattice of roots is now Z,,_;. The top vectors (or extremal vectors)
are obtained by the action of the braid group on the |0).

Denote the simple roots of sl,, by o, 5 =1,--+,n— 1. Let 5, n®, n; be the following s,
roots:

n—1 p—1 n—1 i
n= Joy, n® = Zj% +p204j7 U Z(i_j_'_l)an—j-
=1 j=1 i=p j=1
Here 1 =0,...,n—2.
Given an sl, root v, there is unique s, aq,...,a, 2 € Z, i € {0,1,...,n — 2}, such that
n—2
(4.6) y=0P + s+ Y aja;.
j=1

For s =i+ p (mod n — 1) denote v’ the extremal vector of cweight
S—1—Dp

. RN () ,
w(s,,p) ="+ + ——

n.

Lemma 4.6. Forns > i+p, we have v** = |A*"), where the partition A*>* has ns—p non-trivial
parts given by

. ns—1i—mp j—1—1
ASY) . = -
(A™); n—1 { n—1 ]’

see Figure 3.

Proof. The principal degree (or total number of boxes) of A®® is easily computed and is given
by
(ns+n—i—p—1)(ns+i—p)

2(n—1) '

p(s,i,p) =
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ns—p .o oo ...

0

FIGURE 3. The staircase partition A%, Here the color i’ is n —i — 1.

Then one checks by a straightforward computation that

n—1
n

p(s,i,p) = 5((111(8,@]9) o Apvw(svi7p> o A;l?) o (A;mA;D>) + (w(svivp>val>

Here A, denotes the p-th fundamental ;[n weight. The lemma follows. O

Lemma 4.7. The vector |A*") has the smallest principal degree among all vectors of cweights
Q) with the given s,i and various a;.

Proof. Note that the Fock module $®)(u) is irreducible, and F;,|A*?) =0 fori =0,...,n — 2.
The statement of the lemma follows. O

Let T" be the automorphism of &, given by T' =T , ;, see (2I5). After restriction to the

horizontal subalgebra Ué“”’ (;[n), T becomes the translation operator in the braid group. in
terms of the Lusztig simple reflections we have, see Lemma 2.7]

T_l = (Sn—l c. SgSlso)n_l.

Note also that 7' act as identity on the Heisenberg algebra a"*". Hence the operator 7! acts

on TP (u) and changes cweight by 7. In particular, we have

T—lvs,z — am&ivs—l—n—l,z’
for some non-zero constants Qs i
n—1|0 n—1/|0

We recall that we have the subalgebra €, ;" ® &; C &
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The subalgebra 8"_1 is generated by currents - “1p0(2), Ft 110(2), K L”O( )and B (ql"f1 z),
F(gf T2, K (g )withz'zl ,n—2.
The subalgebra &7 ~H0 g generated by currents Er 10(2); Ft 10(2)s K5~ (2), see (313).

n—1/|0
By Theorem B4 the subalgebras €.~ 1|0 and &} 10 commute inside &,.
The following lemma follows from the construction of the subalgebras and Lemma 2.4

Lemma 4.8. Let deg™ ™V and deg™ denote the degree in &,_1 and &,, respectively. The
embedding of &,_1 is graded. Namely, if © € &,_1 is a graded element such that deg™ ™V 2 =
(b, 04dy, ..., 0+d,_o,k), then the embedded element, which we denote also by x, is graded and
deg™a = (0,0 +dy,.... 0+ dyo,0,k). Similarly, if x € &, is such that deg™ = (£, k) then
deg™ = (¢,0,...,0,k).

Now we are in a position to describe the decomposition of the &,-module F®)(v).

We write F™P)(v) for the €, Fock module, similarly we write F™=1%)(4) (resp. T (u)) for
the €"~1° (resp. €771%) Fock modules.

n— 1\0 n—1||0

Theorem 4.9. We have an isomorphism of €, | ® & modules
n—2 . . . ns—
ff(n;p)(u) e D P(8:6:p) Jw(s,i,p) ff(n—l;n—l—l)(_qq ) =< F1) (—q gs—pu).
=0 SEZ,

s=p+i(modn—1)

Proof. The theorem is proved similarly to Theorem [£4l  The first step is to show that the
vector A*? is the lowest weight vectors for both of the actions of &,,_; and &;. In the proof we
use Lemma [£.7 and Lemma '
Let us indicate the combinatorial picture. Similarly to n = 2 case, we define the basis \AS’Z )
and the partition A}’ \u 18 obtained from A%" by adding legs in the shape of p, and arms in
the shape of A. Moreover, each box of u is replaced with vertical strip of n boxes colored
0,1,2,. — 1 (from top to bottom). The partition A is colored by n — 1 colors, with the top
left box being n —1— 1. Then 0 boxes of A are replaced in Ai’“ by horizontal dominoes colored

0,n — 1 from left to right. The other boxes of A go to the boxes of the same color in Ai’“

Then we use Lemma B3 in place of (4.2), (43)).
We leave the rest of the details to the reader. O

4.3. Generic tensor products of Fock modules. Our next goal is to establish the de-

composition of the module F™PV) (u;) @ FP2) (4y) @ - - - @ FPH)(y,) with generic evaluation

parameters uy, ..., uy as &, 10 & &l tjo
We prepare the followmg lemma

module.

Lemma 4.10. Let W = P (y)) @ TP (uy) ® - - - @ FP¥) (uy) be a tensor product of &,-Fock
modules. Assume that uy, ..., ug, q1,qo are algebraically independent over Q, in particular, that
W is wrreducible.

Let 'V be an &, module such that

o Vs an irreducible lowest weight E,-module V' with lowest weight vector v.
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o W and V have the same graded character in the principal gradation. Let wq, ..., wy be
a basis of the subspace of V' of vectors of the principal degree one. We choose a basis
consisting of eigenvectors of operators K; and H;;, 1 =10,...,n — 1.

o The eigenvalues of K;, H;1, 1 =0,...,n—1, on vectors v, wy, ..., wy coincide with the
corresponding eigenvalues of vectors |0)°F, [0)* " @ [{1}) @ |0V, i = 1,... k, in
W.

Then E,-modules V and W are isomorphic.

Proof. Let K;v = ¢ *iv. Then k; is the number of Fock representations F®#)(u;) in W such
that p; = 4. Then the number of w; such that K;w; = ¢~ % 2w, is k;. It follows that the i-th
component of the lowest weight of v has at most k; zeros and at most k; poles.

Therefore the lowest weight of V' coincides with that of a product of vacuum Macmahon
modules M®) (1, k1) @ MP2 (g, ky) @ - - - @ MP) (i, k), see [FIMM2], for some levels ; and
some evaluation points parameters @;. On the other hand, for the Fock module FD(u), the
difference of eigenvalues of H;; on |@) and on |(1)) is given by —(¢+¢~*)u. The same holds also
for the Macmahon module M® (u, k). From the hypothesis of the lemma, we then conclude
that {@;}*_, = {u;}*_,. In particular, the tensor product of Macmahon modules is well-defined.

Note that given lowest weight of V', the choice of the Macmahon modules (the choice of &) is
not unique, it is defined by the choice of pairing up the factors in the numerator with factors in
the denominator. Since zeros in the denominator are algebraically independent, for each factor
in the numerator, there is at most one zero in the denominator, such that the corresponding
Macmahon module is not irreducible. Let us choose the pairing such that as many Macmahon
modules as possible are not irreducible. We can also choose the order of factors in such a way
that the tensor product is cyclic.

Then in the tensor product we need to have k linearly independent singular vectors of prin-
cipal degree 2. One can see that it is possible only if k; = ¢ for all .. The lemma follows. [
Note that the subalgebras 82:1‘0 and 8?_1||0 are not Hopf subalgebras. However, the decom-
position formula looks as a tensor product formula.

n—1|0 n—1/|0

Theorem 4.11. We have an isomorphism of €, @ & modules
(g ?(n’pj)(uj) _ né2 & xj§1 P(sjvlppj)zjgl w(sj,i5,05)
7j=1 21y =0 81 5eees s, EZ,

sj=pj+ij(modn—1)

(4.7) X (

ns.—

ko an—1m—i;—1) e ko) ns;—pj
R T g " ) | B ® T (—ags T Tyy) )

J

J]=

Proof. Clearly it is enough to show that the vectors ®§:1|A31’ i) are lowest weight vectors ?with

respect to 82:}'0 and 8?_1”0 and to compute their lowest weights in accordance with (7).

Recall that we defined a basis of the Fock space |A§ZM>, see proofs of Theorems [A.]] and

Consider the basis of @ FPi)(u;) given by ® |A§’J;J> Here i; = 0,...,n =2, 5; € Z and
i=1 j=1

Aj, j; are arbitrary partitions.
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Consider & 1|0 By definition, any given g € &'~ 1 O acts as a limit of operators ¢;°T*¢g for
some 7 and some g € &,. We have (T%g)v = T% o g o T~*v. Also, note that action of 7" in the
tensor product of modules is given by the tensor product of action of 7" in factors.

Therefore to compute action of § we have to apply g to an element shifted far to the stable
zone, that is to ®%_ 1|As”’ ) with large s;.

If all s; are large the vector ® |A it > corresponds to a vector given by a product of
partitions of the type shown on Figure 2. Then the operator g acting on this vector produces
a linear combination of vectors corresponding to the product of partitions where a fixed total
amount of boxes has been removed and added.

For any fixed r, there exist some M > 0 such that if all s; > M, there is no vector of degree
less then ®§‘?:1|ASJ' i) which corresponds to a set of partitions that can be obtained from A®%
by a change of r boxes. It follows that this vector is a lowest weight vector with respect to
€™~ 1% and similarly with respect to &7 11°,

Moreover, for the same reason, the span of all vectors ®" 1\/\3]’” ) with fixed s;,4; and all

tuples of partitions \j, u; is stable under the action of the &'~ 1|0.

To determine the lowest weight of ®J:1\A537’J>, we check the conditions of Lemma .10l By
a similar argument as above, the vectors of principal degree 1 are obtained from ®@*_,|A%)
by adding one box or a domino. The action of H;; is computed then as before.

4.4. The modules N((f )B In this section we deduce the decomposition of modules N((f )B(u) from
Theorem ELTT] 7 7

Recall that N&p)ﬁ(u) is a submodule in the tensor product FPV (u;)®- - -@FP*) (uy,), see (1),
where p;, u; are given by (ZI7). Recall also, that a;, b; are given by (2.20]).

Assume that p; € {0,...,n — 1}, and define the numbers m; by

Theorem 4.12. We have an isomorphism of & ) &y U0 o odules
k k
N((l"g]) (u) = né2 o :L'j; p(s55i; ,pj)zglw(syﬂj,pj)
’ i1,...,’ik:0 S15eees SkEZ,
sj=pj+ij(modn—1)

4.9 N n— 1 in—1—ig) M;Lljlpl %4 N(l) ns1—p1
where

Li(s) = s5 = sjp1+my, v5(8) = vipa(s) = U5(s),
and the summation is over sy, ..., s such that [;(s) >0, j=1,...,k— 1.

Proof. Theorem is deduced from Theorem FETTl The module Ngf;ﬁp )(u) is the submodule of
a tensor product of Fock modules, see (2I8]), which is described by conditions ([219]).
Therefore, we start from the generic tensor product of Fock modules as in Theorem LTTl Note
that the action of all operators depends on evaluation parameters algebraically. Therefore we
can specialize the evaluation parameters to any values where the tensor product is well-defined.
Let us specialize the evaluation parameters as in (2.I7). Then we discard the representations
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of &'} 1 el 19 whose lowest weight vectors do not satisfy (ZI9). Next, we check that

ns|—pi
the surviving lowest weight vectors have exactly lowest weights of NJES P Zk)(—qql )X

Nil(l)’a( qqs” " u). It shows that the left hand side of (£9) contains the right hand side. It

remains to see that both sides coincide which is readily done in the stable limit of large enough
Sj. O

We do the following change of summation variables in formula [@3). Let vy = (y1,...,Yr_1)
be a vector with coordinates:
(4.10) yr = (ns, — pr) — (NSps1 — pra1) = nly + a, — by, r=1,...,k—1.

Let also

k
y= Znsr pr) =n(n—1)j+ n—lZpT—i—ner,
r=1 r=1

r=1
where
k
Z — i, —py) € Z.
Define
k
w(j,i,p,on B) =Y (0" +m,) — jn,
r=1
where we used the notation i = (i, ..., ).

Let C) be the Cartan matrix of sl,. We have (C’k_l)ir = (Ck_l)m- = i(k — r)/k, where
1<i<r<k-—1.

n— 1|0 n—1||0

® €& modules

_ CRA —i—1)ir
N(():L;ﬁp) (u) _ ”@2 & (IQ(nl)k"'zJ"Q(nl) Tgl(" ir—1)ir Zw(j,i,pa,ﬁ))

i1,...,0,=0jEZ

Corollary 4.13. We have an isomorphism of €,,_

0 tc n—1ln—1—1 n% 1 s
(4.11) x <zl,...f?1 . ) :Ng T (— g ) ® Ng(gm(—qqgu)) :
where
1 k—1
s= (1= 30— b
r=1
while the summation is over ly, ..., l,_1 such that
l. +a, =i, —i11 + b, (modn — 1)
and
k-1 k k—1
dorle=(n =15+ (i +p,)+ > rm, (modk).
r=1 r=1 r=1

Proof. Formula (A1) is obtained (£3) by the straightforward change of variables. O
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4.5. Macmahon modules. In this section we discuss the k& — oo limit of formula (€.IT]).
Fix partitions «, 8. Adding zero parts we can think that «, § have k parts if k is sufficiently
large. Then, one can define the analytic continuation of the module Ng:g’ ) (u) with respect to

parameter k, the result is the so called Macmahon module M(n;p ) o(u, K). The Macmahon module

fo B, %(u K) is an admissible tame lowest weight &,-module of level K which is irreducible for

generic Values of K, and whose basis is labeled by plane partitions with boundary conditions
a, 3,0, see [FJMM2].

We conjecture the decomposition of M("O p(u, K) as €17 10 % 71 module based on (@I
as follows.

Fix non-negative integers Iy, ..., 0, 1}, ..., ;. Let Ly be the vector with k components of the
form L = (Iy,...,1;,0,... Ol;,tl,...,l/l).
Similarly to the inductlve construction of the Macmahon module, we expect the following.

Conjecture 4.14. There exists an &, lowest weight admissible tame module M%’p 7y, K)

of level K which is the analytic continuation of Nv(Lk) ﬁ( u) with respect to k.
Note that the module M%f )B’W,)(u, K) does not change if sequences [ and I’ are extended by

finitely many zeros. Namely, if [ = (I1,...,1;,0) and I = (I},...,1/,0) then M ’p V(l (u, K) =
M) (1) = MDA (),

~(1),8 (1,8
If I’ = 0, this module is the Macmahon module: M ’p 7(@) (u, K) = Midf)ﬁ(u, K).

Recall that the parameters a;, b; are given by (m p, by @I117), m by (&8), and y by (EI0).
If the partitions «, 8 have t non-zero parts, we set a, = b, = m, = p, = 0 for r > t.

Let G be the Gordon matrix given by G;; = min{i, j}.
Then we have the following decomposition formula.

Conjecture 4.15. We have an isomorphism of &, 1‘0 ® &1 M0 o odules

+o00 L L
MO K) = ® B ot

a,,0 .
B, i7.<n—2 J=—00
b

oy Dl s
x| @ e M s (—qq7 Tu, K) RM (—gq5u, K) | .
s

_ / _
where y, =nl,, s =3 51 Ur,

p(i,i'5 5) = 2 + B S p, 4 2L S (i +17) — gk T2+ (1)),
r>1 r>1 r>1
U)(Z, 7'/7 .]) = 27«21 (W(pr) + . + 7h;) - jnu
and the summation is over j € Z, i,,i. € {0,--- ,n— 2} and non-negative integers l,., ., r > 1
such that only finitely many i, 1., 1.1 are non-zero and

)

l, +a, =i, —ir41 + b, (modn — 1), I =i, —1i, (modn — 1),
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and

ZTZT—ZN;: (n—l)j+2(z’r+pr+i;)+2rmr.

r>1 r>1 r>1 r>1
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