Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2016

Palladium-Catalyzed Ligand-Promoted Site-Selective Cyanomethylation of Unactivated C(sp³)–H Bonds with Acetonitrile

Yongbing Liu, Ke Yang, and Haibo Ge

Table of Contents

General Information	S2
Structures of Starting Materials	S2
General Procedure A for the Preparation of Starting Materials (1a-1g, 1k-1m, 3a-3 and 5)	h , 3k , [D ₃]- 3 d
General Procedure B for the Preparation of Starting Materials (1h-1j, 3i and 3j)	S4
Analytical Data of Starting Materials (1b, 1c, 1h-1j, 1l, 3c, 3i, 3j, [D ₃]-3d)	S5
General Procedure for Palladium-Catalyzed Site-Selective Cyanomethylation of Lin Amides	n ear Aliphatic
General Procedure for Palladium-Catalyzed Site-Selective Cyanomethylation of Aliphatic Amides	α-Substituted
Analytical Data of Products	S10
Experimental Date of Further Optimization Studies	S20
Control Experiments on Cyanomethylation of 1a	S22
Deuterium Labeling Experiment	S22
Parallel KIE Experiments	S24
Experimental Procedure for the Removal of the Directing Group of 4b	S28
References	S28
Copies of NMR Spectrum	S29

General Information

¹H and ¹³C NMR were recorded on a Bruker 500 MHz NMR Fourier transform spectrometer (500 MHz and 125 MHz, respectively) using tetramethylsilane as an internal reference, and chemical shifts (δ) and coupling constants (J) were expressed in ppm and Hz, respectively. Infrared spectra were obtained using a Thermo Nicolet IR 330 spectrometer. Mass (MS) analysis was obtained using Agilent 1100 series LC/MSD system with Electrospray Ionization (ESI). All the solvents and commercially available reagents were purchased from commercial sources and used directly. Starting materials **1a**-1g, **1k**-1m, **3a**-3h, **3k**, [D₃]-**3d** and **5** were prepared according to literature procedures.¹ **1h**-1j, **3i** and **3j** were prepared based on reported reaction protocol.²

Structures of Starting Materials

0

[′]Pr

0

0

Ν́ Η

3d

Ν́ Η

3g

`N´ H

3j

Ń

Ń

Ń

General Procedure A for the Preparation of Starting Materials (1a-1g, 1k-1m, 3a-3h, 3k, [D₃]-3d and 5)

The acid chloride (6.0 mmol) was added dropwise to a solution of 8aminoquinoline (0.721 g, 5.0 mmol) and Et_3N (1.0 mL, 7.5 mmol) in CH_2Cl_2 (10 mL) at 0 °C under nitrogen. The resulting mixture was stirred overnight at room temperature. Then the mixture was diluted with CH_2Cl_2 (10 mL), washed successively with water, saturated aqueous NaHCO₃, and brine. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with EtOAc/hexanes (1/30-1/5, v/v) to afford corresponding 8-aminoquinolinyl amide.¹

General Procedure B for the Preparation of Starting Materials (1h-1j, 3i and 3j)

A 35 mL tube was charged with acetamide **1m** or **3i** or **3l** (601 mg, 3.0 mmol), alkyl halide (12 mmol) $Pd(OAc)_2$ (33.6 mg, 0.15 mmol), K_2CO_3 (1.037 g, 7.5 mmol), PivOH (613 mg, 6.0 mmol) and *tert*-Amyl alcohol (4.0 mL). The reaction mixture was stirred at 110 °C for 24 h. Then the mixture was cooled to room temperature, diluted with EtOAc (10 mL), filtered through a celite pad, and concentrated in vacuo. The residue was purified by chromatography on silica gel eluting with EtOAc/hexanes to give the desired product.²

Analytical Data of Starting Materials (1b, 1c, 1h-1j, 1l, 3c, 3i, 3j, [D₃]-3d)

Compound **1b**, pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 0.86 (t, *J* = 6.9 Hz, 3H), 1.20-1.45 (m, 8H), 1.72-1.86 (m, 2H), 2.52 (t, *J* = 7.6 Hz, 2H), 7.38 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.43 (dd, *J* = 8.2, 1.3 Hz, 1H), 7.45-7.54 (m, 1H), 8.08 (dd, *J* = 8.3, 1.6 Hz, 1H), 8.75 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.78 (dd, *J* = 7.6, 1.2 Hz, 1H), 9.78 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 14.1, 22.6, 25.7, 29.1, 29.3, 31.7, 38.3, 116.4, 121.3, 121.5, 127.4, 127.9, 134.6, 136.3, 138.3, 148.1, 171.9; IR (neat) *v* 3356, 3044, 2953, 2927, 2854, 1689, 1525, 1486, 1424, 1386, 1325, 1163, 826, 791 cm⁻¹; Ms (ESI): *m*/*z* = 271.2 [M+H]⁺.

Compound **1c**, white solid. ¹H NMR (500 MHz, CDCl₃) δ 0.86 (t, *J* = 7.0 Hz, 3H), 1.18-1.44 (m, 20H), 1.77-1.85 (m, 2H), 2.52 (t, *J* = 7.5 Hz, 2H), 7.37 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.41 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.44-7.51 (m, 1H), 8.07 (dd, *J* = 8.3, 1.7 Hz, 1H), 8.74 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.78 (dd, *J* = 7.6, 1.1 Hz, 1H), 9.78 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 14.1, 22.7, 25.7, 29.33, 29.38, 29.44, 29.53, 29.65, 29.67, 29.70, 31.9, 38.2, 116.4, 121.3, 121.5, 127.4, 127.9, 134.6, 136.3, 138.3, 148.0, 171.8; IR (neat) *v* 3358, 3048, 2959, 2852, 1697, 1521, 1486, 1424, 1386, 1325, 1165, 826, 791, 679 cm⁻¹; Ms (ESI): *m*/*z* = 355.2 [M+H]⁺.

Compound **1h**, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 1.33-1.49 (m, 6H), 1.57-1.71 (m, 2H), 1.78-1.88 (m, 2H), 2.03 (s, 3H), 2.56 (t, *J* = 7.5 Hz, 2H), 4.05 (t,

J = 6.7 Hz, 2H), 7.45 (dd, J = 8.3, 4.3 Hz, 1H), 7.49 (dd, J = 8.2, 1.3 Hz, 1H), 7.51-7.56 (m, 1H), 8.16 (dd, J = 8.3, 1.5 Hz, 1H), 8.73-8.84 (m, 2H), 9.80 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 21.1, 25.7, 25.9, 28.7, 29.2, 29.3, 38.3, 64.7, 116.6, 121.5, 121.7, 127.6, 128.1, 134.7, 136.5, 138.5, 148.2, 171.4, 171.9; IR (neat) v 3356, 3047, 2933, 2857, 1735, 1689, 1525, 1486, 1425, 1386, 1325, 1242, 1164, 1041, 827, 793, 680 cm⁻¹; Ms (ESI): m/z = 329.1 [M+H]⁺.

Compound **1i**, pale yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 1.20 (t, J = 7.1 Hz, 3H), 1.37-1.49 (m, 2H), 1.60-1.72 (m, 2H), 1.73-1.85 (m, 2H), 2.28 (t, J = 7.5 Hz, 2H), 2.52 (t, J = 7.5 Hz, 2H), 4.08 (q, J = 7.1 Hz, 2H), 7.38 (dd, J = 8.2, 4.2 Hz, 1H), 7.42 (dd, J = 8.2, 1.3 Hz, 1H), 7.44-7.53 (m, 1H), 8.08 (dd, J = 8.3, 1.6 Hz, 1H), 8.63-8.80 (m, 2H), 9.76 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 14.3, 24.7, 25.3, 28.7, 34.2, 37.9, 60.2, 116.4, 121.4, 121.6, 127.4, 127.9, 134.5, 136.3, 138.3, 148.1, 171.5, 173.6; IR (neat) v 3354, 2978, 2937, 2865, 1732, 1684, 1524, 1486, 1387, 1163, 1031, 829, 795 cm⁻¹; Ms (ESI): m/z = 315.1 [M+H]⁺.

Compound **1**j, pale yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 1.30-1.45 (m, 8H), 1.68-1.87 (m, 4H), 2.55 (t, *J* = 7.5 Hz, 2H), 3.51 (t, *J* = 6.8 Hz, 2H), 7.44 (dd, *J* = 8.1, 4.1 Hz, 1H), 7.46-7.56 (m, 2H), 8.14 (d, *J* = 8.2 Hz, 1H), 8.69-8.85 (m, 2H), 9.80 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 25.7, 26.9, 28.8, 29.25, 29.31, 32.7, 38.3, 45.2, 116.5, 121.4, 121.7, 127.5, 128.0, 134.6, 136.5, 138.4, 148.2, 171.9; IR (neat) *v* 3355, 2930, 1688, 1525, 1485, 1424, 1385, 1325, 1260, 1166, 826, 792, 758, 680 cm⁻¹; Ms (ESI): m/z = 319.2 [M+H]⁺.

Compound **11**, pale yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 2.13-2.24 (m, 2H), 2.63 (t, J = 7.4 Hz, 2H), 3.00 (t, J = 7.3 Hz, 2H), 6.78-6.89 (m, 1H), 6.94 (dd, J = 5.1, 3.4 Hz, 1H), 7.14 (dd, J = 5.1, 1.2 Hz, 1H), 7.46 (dd, J = 8.2, 4.2 Hz, 1H), 7.50 (dd, J = 8.3, 1.5 Hz, 1H), 7.52-7.63 (m, 1H), 8.16 (dd, J = 8.3, 1.6 Hz, 1H), 8.65-8.90 (m, 2H), 9.80 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 27.5, 29.3, 37.1, 116.6, 121.5, 121.7, 123.4, 124.8, 126.9, 127.5, 128.0, 134.6, 136.5, 138.4, 144.4, 148.2, 171.3; IR (neat) v 3351, 3066, 2934, 2851, 1685, 1522, 1485, 1424, 1385, 1259, 1163, 826, 792, 696 cm⁻¹; Ms (ESI): m/z = 297.1 [M+H]⁺.

Compound **3c**, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 1.32 (d, *J* = 6.8 Hz, 3H), 2.79 (dd, *J* = 13.3, 7.4 Hz, 1H), 2.82-2.92 (m, 1H), 3.20 (dd, *J* = 13.3, 6.9 Hz, 1H), 7.07-7.15 (m, 1H), 7.15-7.25 (m, 4H), 7.29 (dd, *J* = 8.1, 4.1 Hz, 1H), 7.37 (d, *J* = 8.2 Hz, 1H), 7.40-7.51 (m, 1H), 7.98 (d, *J* = 8.2 Hz, 1H), 8.60-8.72 (m, 1H), 8.73-8.87 (m, 1H), 9.77 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 17.7, 40.2, 44.7, 116.3, 121.3, 121.4, 126.2, 127.2, 127.7, 128.3, 129.0, 134.4, 136.1, 138.2, 139.5, 147.9, 174.3; IR (neat) *v* 3354, 3027, 2969, 2931, 1684, 1522, 1485, 1454, 1387, 1324, 1240, 1161, 1079, 912, 856, 792 cm⁻¹; Ms (ESI): *m*/*z* = 291.1 [M+H]⁺.

Compound **3i**, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 0.99 (t, *J* =7.4 Hz, 3H), 1.03 (d, *J* = 6.7 Hz, 3H), 1.05 (d, *J* = 6.7 Hz, 3H), 1.68-1.84 (m, 2H), 1.95-2.06 (m, 1H), 2.08-2.15 (m, 1H), 7.44 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.48 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.52-7.57 (m, 1H), 8.15 (dd, *J* = 8.3, 1.6 Hz, 1H), 8.81 (dd, *J* = 4.3, 1.7 Hz, 1H), 7.52-7.57 (m, 2000) and 2000 and 20000 and 20000 and 2000 and 20000 and 20000 and 20000 and 20000 and 20

1H), 8.85 (dd, J = 7.5, 1.4 Hz, 1H), 9.82 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 14.5, 20.6, 21.1, 23.5, 31.1, 58.4, 116.5, 121.4, 121.6, 127.6, 128.1, 134.6, 136.4, 138.6, 148.3, 174.5; IR (neat) v 3359, 2962, 2932, 2873, 1684, 1525, 1485, 1424, 1386, 1324, 1172, 826, 792, 757, 669, 603 cm⁻¹; Ms (ESI): m/z = 257.1 [M+H]⁺.

Compound **3j**, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 0.98 (t, *J* =7.4 Hz, 3H), 1.02-1.32 (m, 5H), 1.59-1.84 (m, 7H), 1.87-1.97 (m, 1H), 2.09-2.19 (m, 1H), 7.42 (dd, *J* = 8.1, 4.1 Hz, 1H), 7.47 (d, *J* = 8.0, 1H), 7.49-7.57 (m, 1H), 8.12 (d, *J* = 8.2 Hz, 1H), 8.80 (d, *J* = 3.1 Hz, 1H), 8.86 (dd, *J* = 7.4, 0.8 Hz, 1H), 9.82 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 12.4, 23.1, 26.4, 26.50, 26.53, 31.0, 31.4, 40.6, 57.5, 116.5, 121.4, 121.6, 127.5, 128.0, 134.5, 136.4, 138.5, 148.2, 174.5; IR (neat) *v* 3359, 2927, 2851, 1684, 1524, 1485, 1424, 1384, 1323, 1259, 1165, 826, 792, 757, 676 cm⁻¹; Ms (ESI): m/z = 297.1 [M+H]⁺.

Compound [D₃]-**3d**, white solid. ¹H NMR (500 MHz, CDCl₃) δ 1.02 (d, *J* =6.8 Hz, 3H), 1.04 (d, *J* =6.8 Hz, 3H), 1.97-2.11 (m, 1H), 2.32 (d, *J* =7.9 Hz, 1H), 7.44 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.48 (dd, *J* = 8.2, 1.3 Hz, 1H), 7.50-7.59 (m, 1H), 8.07-8.20 (m, 1H), 8.71-8.88 (m, 2H), 9.83 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 19.7, 21.3, 31.8, 49.8, 116.5, 121.4, 121.7, 127.6, 128.1, 134.7, 136.5, 138.6, 148.3, 175.3; IR (neat) *v* 3357, 2961, 2872, 1685, 1524, 1485, 1424, 1385, 1324, 1168, 826, 791 cm⁻¹; Ms (ESI): $m/z = 246.1 [M+H]^+$.

General Procedure for Palladium-Catalyzed Site-Selective Cyanomethylation of Linear Aliphatic Amides

A 35 mL sealed tube was charged with amide **1** (0.3 mmol), $Pd(OPiv)_2$ (11.1 mg, 0.036 mmol), 5,5'-dimethyl-2,2'-bipyridine (**L2**) (22.1 mg, 0.12 mmol), $Cu(O_2C^nPr)_2$ (85.6 mg, 0.36 mmol), Ag_2CO_3 (165.5 mg, 0.6 mmol), CsOPiv (84.3 mg, 0.36 mmol), MeCN (1.5 mL) and heptane (1.5 mL). After sealed, the reaction mixture was stirred at 130 °C for 15 h. Then the mixture was cooled to room temperature, quenched with aqueous NaOH (1 M, 2 mL), and extracted with EtOAc (3×10 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by chromatography on silica gel eluting with EtOAc/hexanes (1/10-1/3, v/v) to provide the desired product **2**.

General Procedure for Palladium-Catalyzed Site-Selective Cyanomethylation of α-Substituted Aliphatic Amides

A 35 mL sealed tube was charged with amide **3** (0.3 mmol), Pd(MeCN)₂Cl₂ (15.6 mg, 0.06 mmol), 5,5'-dimethyl-2,2'-bipyridine (**L2**) (22.1 mg, 0.12 mmol), Cu(OAc)₂·H₂O (18.0 mg, 0.09 mmol), Ag₂CO₃ (165.5 mg, 0.6 mmol), KOPiv (12.6 mg, 0.09 mmol), and MeCN (2.0 mL). After sealed, the reaction mixture was stirred at 130 °C for 1 h. Then the mixture was cooled to room temperature, quenched with aqueous NaOH (1 M, 2 mL), and extracted with EtOAc (3×10 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by chromatography on silica gel eluting with EtOAc/hexanes (1/15-1/6, v/v) to provide the desired product **4**.

Analytical Data of Products

Compound **2a**, colorless oil, yield: 72%. ¹H NMR (500 MHz, CDCl₃) δ 1.25 (d, J = 6.0 Hz, 3H), 2.53-2.72 (m, 5H), 7.47 (dd, J = 8.3, 4.2 Hz, 1H), 7.50-7.58 (m, 2H), 8.11-8.23 (m, 1H), 8.67-8.77 (m, 1H), 8.77-8.87 (m, 1H), 9.85 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 19.6, 24.2, 27.9, 43.4, 116.7, 118.4, 121.9, 122.0, 127.5, 128.1, 134.3, 136.5, 138.4, 148.4, 169.3; IR (neat) v 3347, 3049, 2964, 2931, 2245, 1684, 1527, 1486, 1423, 1327, 1166, 827, 793, 759, 685 cm⁻¹; Ms (ESI): m/z = 254.1 [M+H]⁺.

Compound **2b**, colorless oil, yield: 52%. ¹H NMR (500 MHz, CDCl₃) δ 0.89 (t, J = 7.0 Hz, 3H), 1.27-1.48 (m, 6H), 1.51-1.61 (m, 2H), 2.39-2.50 (m, 1H), 2.57-2.67 (m, 3H), 2.73 (dd, J = 15.4, 5.6 Hz, 1H), 7.46 (dd, J = 8.3, 4.2 Hz, 1H), 7.49-7.57 (m, 2H), 8.17 (dd, J = 8.3, 1.6 Hz, 1H), 8.67-8.77 (m, 1H), 8.81 (dd, J = 4.2, 1.6 Hz, 1H), 9.87 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 14.1, 21.8, 22.6, 26.5, 31.8, 32.3, 33.4, 41.4, 116.7, 118.5, 121.8, 121.9, 127.5, 128.1, 134.3, 136.5, 138.4, 148.4, 169.5; IR (neat) v 3347, 2955, 2929, 2857, 2244, 1685, 1527, 1489, 1425, 1386, 1326, 1164, 827, 793, 758, 685 cm⁻¹; Ms (ESI): m/z = 310.2 [M+H]⁺.

Compound **2c**, white solid, yield: 50%. ¹H NMR (500 MHz, CDCl₃) δ 0.88 (t, J = 7.0 Hz, 3H), 1.17-1.44 (m, 18H), 1.50-1.61 (m, 2H), 2.38-2.51 (m, 1H), 2.55-2.68 (m, 3H), 2.73 (dd, J = 15.4, 5.6 Hz, 1H), 7.46 (dd, J = 8.3, 4.2 Hz, 1H), 7.49-7.57 (m, 2H), 8.16 (dd, J = 8.2, 1.6 Hz, 1H), 8.67-8.77 (m, 1H), 8.81 (dd, J = 4.2, 1.7 Hz, 1H), 9.87 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 14.2, 21.8, 22.8, 26.9, 29.5,

29.60, 29.61, 29.67, 29.73, 29.74, 32.0, 32.3, 33.5, 41.5, 116.6, 118.5, 121.8, 121.9, 127.4, 128.1, 134.3, 136.5, 138.4, 148.4, 169.5; IR (neat) *v* 3342, 3044, 2925, 2854, 2246, 1685, 1527, 1486, 1465, 1425, 1388, 1326, 1164, 827, 792, 757 cm⁻¹; Ms (ESI): $m/z = 394.2 [M+H]^+$.

Compound **2d**, white solid, yield: 70%. ¹H NMR (500 MHz, CDCl₃) δ 1.85-2.00 (m, 2H), 2.44-2.56 (m, 1H), 2.60-2.85 (m, 6H), 7.15-7.25 (m, 3H), 7.26-7.32 (m, 2H), 7.47 (dd, J = 8.2, 4.2 Hz, 1H), 7.50-7.59 (m, 2H), 8.17 (dd, J = 8.3, 1.6 Hz, 1H), 8.67-8.77 (m, 1H), 8.82 (dd, J = 4.2, 1.6 Hz, 1H), 9.88 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 21.8, 31.9, 33.2, 35.1, 41.3, 116.7, 118.3, 121.9, 122.0, 126.3, 127.4, 128.1, 128.4, 128.7, 134.2, 136.5, 138.4, 141.0, 148.4, 169.2; IR (neat) v 3345, 3055, 3026, 2927, 2858, 2244, 1684, 1526, 1486, 1425, 1388, 1326, 1166, 827, 793, 754 cm⁻¹; Ms (ESI): m/z = 344.1 [M+H]⁺.

Compound **2e**, white solid, yield: 54%. ¹H NMR (500 MHz, CDCl₃) δ 2.47 (dd, J = 16.9, 4.1 Hz, 1H), 2.58 (dd, J = 17.0, 4.3 Hz, 1H), 2.65-2.83 (m, 4H), 2.87-2.98 (m, 1H), 7.20-7.28 (m, 3H), 7.28-7.35 (m, 2H), 7.46 (dd, J = 8.3, 4.3 Hz, 1H), 7.49-7.59 (m, 2H), 8.16 (dd, J = 8.3, 1.6 Hz, 1H), 8.67-8.77 (m, 1H), 8.81 (dd, J = 4.3, 1.7 Hz, 1H), 9.86 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 21.3, 34.2, 39.5, 40.8, 116.7, 118.3, 121.9, 122.0, 127.0, 127.4, 128.1, 128.9, 129.3, 134.3, 136.5, 138.3, 138.4, 148.4, 169.2; IR (neat) v 3346, 3060, 3022, 2925, 2851, 2246, 1684, 1527, 1485, 1424, 1325, 1261, 1160, 827, 792, 748, 702 cm⁻¹; Ms (ESI): m/z = 330.1 [M+H]⁺.

Compound **2f**, colorless oil, yield: 66%. ¹H NMR (500 MHz, CDCl₃) δ 0.95 (d, *J* = 6.8 Hz, 3H), 0.96 (d, *J* = 6.8 Hz, 3H), 1.35-1.51 (m, 2H), 1.64-1.76 (m, 1H), 2.48-2.75 (m, 5H), 7.46 (dd, *J* = 8.3, 4.3 Hz, 1H), 7.49-7.59 (m, 2H), 8.10-8.20 (m, 1H), 8.68-8.77 (m, 1H), 8.77-8.85 (m, 1H), 9.87 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 21.9, 22.3, 22.9, 25.2, 29.9, 41.4, 42.6, 116.6, 118.4, 121.8, 121.9, 127.4, 128.0, 134.2, 136.5, 138.3, 148.4, 169.4; IR (neat) *v* 3347, 2957, 2870, 2244, 1684, 1527, 1486, 1425, 1326, 1166, 827, 793, 758, 684 cm⁻¹; Ms (ESI): *m*/*z* = 296.1 [M+H]⁺.

Compound **2g**, colorless oil, yield: 40%. ¹H NMR (500 MHz, CDCl₃) δ 1.15-1.30 (m, 2H), 1.57-1.73 (m, 4H), 1.87-2.07 (m, 3H), 2.14-2.31 (m, 1H), 2.59-2.70 (m, 2H), 2.74 (dd, J = 17.1, 4.6 Hz, 1H), 2.87 (dd, J = 15.6, 3.9 Hz, 1H), 7.47 (dd, J = 8.2, 4.2 Hz, 1H), 7.50-7.60 (m, 2H), 8.17 (dd, J = 8.3, 1.7 Hz, 1H), 8.68-8.77 (m, 1H), 8.82 (dd, J = 4.3, 1.7 Hz, 1H), 9.89 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 21.4, 25.34, 25.37, 30.9, 31.1, 37.7, 40.3, 43.4, 116.7, 118.7, 121.86, 121.92, 127.5, 128.1, 134.4, 136.5, 138.4, 148.5, 169.8; IR (neat) v 3346, 2951, 2868, 2238, 1685, 1527, 1485, 1425, 1388, 1326, 827, 793 cm⁻¹; Ms (ESI): m/z = 308.3 [M+H]⁺.

Compound **2h**, pale yellow oil, yield: 61%. ¹H NMR (500 MHz, CDCl₃) δ 1.35-1.46 (m, 4H), 1.55-1.67 (m, 4H), 2.04 (s, 3H), 2.40-2.51 (m, 1H), 2.57-2.67 (m, 2H), 2.69 (dd, J = 15.6, 8.1 Hz, 1H), 2.77 (dd, J = 15.6, 5.6 Hz, 1H), 4.05 (t, J = 6.6 Hz, 2H), 7.54-7.66 (m, 3H), 8.33 (dd, J = 8.2, 1.5 Hz, 1H), 8.64-8.75 (m, 1H), 8.93 (dd, J = 4.4, 1.5 Hz, 1H), 9.94 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 21.0, 21.8, 25.9, 26.4, 28.5, 32.2, 33.3, 41.0, 64.4, 118.5, 119.9, 121.8, 122.8, 128.0, 128.4, 133.0, 136.8, 139.0, 147.6, 170.0, 171.1; IR (neat) v 3345, 2933, 2859, 2241, 1734, 1684, 1527, 1486, 1425, 1387, 1325, 1243, 1163, 1135, 1043, 828, 794, 761 cm⁻¹; Ms (ESI): $m/z = 368.1 \text{ [M+H]}^+$.

Compound **2i**, pale yellow oil, yield: 63%. ¹H NMR (500 MHz, CDCl₃) δ 1.23 (t, *J* = 7.1 Hz, 3H), 1.54-1.64 (m, 2H), 1.65-1.77 (m, 2H), 2.33 (t, *J* = 7.2 Hz, 2H), 2.40-2.50 (m, 1H), 2.57-2.67 (m, 3H), 2.73 (dd, *J* = 15.5, 5.4 Hz, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 7.41-7.46 (m, 1H), 7.47-7.54 (m, 2H), 8.11-8.17 (m, 1H), 8.66-8.73 (m, 1H), 8.75-8.83 (m, 1H), 9.85 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 14.3, 21.7, 22.1, 32.0, 32.8, 34.0, 41.0, 60.5, 116.6, 118.2, 121.8, 121.9, 127.3, 128.0, 134.2, 136.4, 138.3, 148.4, 169.2, 173.2; IR (neat) *v* 3346, 2981, 2936, 2869, 2245, 1732, 1684, 1526, 1486, 1425, 1326, 1181, 1030, 953, 828, 794, 761 cm⁻¹; Ms (ESI): m/z = 354.1 [M+H]⁺.

Compound **2j**, pale yellow solid, yield: 70%. ¹H NMR (500 MHz, CDCl₃) δ 1.31-1.50 (m, 6H), 1.53-1.62 (m, 2H), 1.70-1.82 (m, 2H), 2.38-2.51 (m, 1H), 2.56-2.68 (m, 3H), 2.73 (dd, *J* = 15.4, 5.7 Hz, 1H), 3.51 (t, *J* = 6.7 Hz, 2H), 7.47 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.50-7.62 (m, 2H), 8.17 (dd, *J* = 8.3, 1.6 Hz, 1H), 8.64-8.77 (m, 1H), 8.81 (dd, *J* = 4.1, 1.5 Hz, 1H), 9.87 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 21.9, 26.75, 26.84, 28.9, 32.3, 32.6, 33.4, 41.4, 45.1, 116.7, 118.4, 121.9, 122.0, 127.5, 128.1, 134.3, 136.5, 138.4, 148.4, 169.4; IR (neat) *v* 3344, 2931, 2856, 2244, 1684, 1523, 1425, 1387, 1324, 1162, 826, 792, 758, 641 cm⁻¹; Ms (ESI): *m*/*z* = 358.2 [M+H]⁺.

Compound **2k**, colorless oil, yield: 52%. ¹H NMR (500 MHz, CDCl₃) δ 0.85 (t, *J* = 7.0 Hz, 3H), 1.20-1.41 (m, 18H), 1.51-1.62 (m, 2H), 1.85-2.10 (m, 4H), 2.39-2.49 (m, 1H), 2.55-2.68 (m, 3H), 2.73 (dd, *J* = 15.5, 5.6 Hz, 1H), 5.27-5.41 (m, 2H), 7.46 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.49-7.58 (m, 2H), 8.16 (dd, *J* = 8.3, 1.6 Hz, 1H), 8.73 (dd, *J* = 6.4, 2.6 Hz, 1H), 8.81 (dd, *J* = 4.2, 1.6 Hz, 1H), 9.87 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 14.2, 21.8, 22.8, 26.8, 27.2, 27.4, 29.2, 29.4, 29.5, 29.6, 29.7, 29.9, 32.0, 32.3, 33.4, 41.4, 116.6, 118.4, 121.8, 121.9, 127.4, 128.1, 129.6, 130.3, 134.3, 136.5, 138.4, 148.4, 169.5; IR (neat) *v* 3348, 3004, 2926, 2854, 2245, 1688, 1527, 1486, 1425, 1388, 1326, 1164, 827, 792, 757, 689 cm⁻¹; Ms (ESI): *m/z* = 448.2 [M+H]⁺.

Compound **21**, colorless oil, yield: 41%. ¹H NMR (500 MHz, CDCl₃) δ 2.53-2.61 (m, 1H), 2.61-2.68 (m, 1H), 2.68-2.84 (m, 3H), 3.07 (dd, J = 14.8, 7.5 Hz, 1H), 3.16 (dd, J = 14.8, 5.7 Hz, 1H), 6.90-6.94 (m, 1H), 6.96 (dd, J = 5.1, 3.4 Hz, 1H), 7.20 (dd, J = 5.1, 1.2 Hz, 1H), 7.47 (dd, J = 8.3, 4.2 Hz, 1H), 7.50-7.59 (m, 2H), 8.17 (dd, J = 8.3, 1.7 Hz, 1H), 8.69-8.77 (m, 1H), 8.81 (dd, J = 4.2, 1.7 Hz, 1H), 9.87 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 21.2, 33.5, 34.5, 40.4, 116.7, 118.1, 121.9, 122.0, 124.7, 126.6, 127.3, 127.4, 128.1, 134.2, 136.5, 138.4, 140.3, 148.4, 168.9; IR (neat) ν 3343, 3066, 2924, 2851, 2245, 1658, 1527, 1486, 1388, 1326, 1261, 1164, 827, 792, 757, 700 cm⁻¹; Ms (ESI): m/z = 336.0 [M+H]⁺.

Compound **2m**, colorless oil, yield: 57%. ¹H NMR (500 MHz, CDCl₃) δ 2.10-2.22 (m, 2H), 2.57 (t, *J* = 7.0 Hz, 2H), 2.76 (t, *J* = 7.0 Hz, 2H), 7.46 (dd, *J* = 8.2, 4.1 Hz,

1H), 7.49-7.59 (m, 2H), 8.16 (d, J = 8.3 Hz, 1H), 8.67-8.77 (m, 1H), 8.77-8.84 (m, 1H), 9.85 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 16.8, 21.2, 35.7, 116.6, 119.4, 121.8, 121.9, 127.4, 128.1, 134.3, 136.5, 138.4, 148.4, 169.6; IR (neat) v 3347, 3049, 2941, 2246, 1685, 1527, 1486, 1425, 1387, 1325, 1160, 827, 792, 759, 681 cm⁻¹; Ms (ESI): m/z = 240.1 [M+H]⁺.

Compound **4a**, colorless oil, yield: 51%. ¹H NMR (500 MHz, CDCl₃) δ 1.04 (t, J = 7.4 Hz, 3H), 1.64-1.77 (m, 1H), 1.81-1.95 (m, 2H), 2.12-2.25 (m, 1H), 2.37-2.56 (m, 2H), 2.58-2.69 (m, 1H), 7.46 (dd, J = 8.3, 4.2 Hz, 1H), 7.50-7.59 (m, 2H), 8.16 (dd, J = 8.3, 1.7 Hz, 1H), 8.70-8.80 (m, 1H), 8.82 (dd, J = 4.2, 1.6 Hz, 1H), 9.96 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 11.8, 15.5, 26.2, 27.9, 48.9, 116.7, 119.5, 121.8, 122.0, 127.4, 128.0, 134.2, 136.5, 138.5, 148.5, 172.7; IR (neat) v 3347, 3049, 2965, 2934, 2876, 2245, 1684, 1525, 1486, 1425, 1379, 1324, 1162, 827, 759, 686, 605 cm⁻¹; Ms (ESI): m/z = 268.2 [M+H]⁺.

Compound **4b**, colorless oil, yield: 55%. ¹H NMR (500 MHz, CDCl₃) δ 0.96 (t, J = 7.3 Hz, 3H), 1.40-1.52 (m, 2H), 1.53-1.65 (m, 1H), 1.77-1.86 (m, 1H), 1.87-1.97 (m, 1H), 2.13-2.25 (m, 1H), 2.38-2.56 (m, 2H), 2.65-2.75 (m, 1H), 7.47 (dd, J = 8.3, 4.2 Hz, 1H), 7.49-7.58 (m, 2H), 8.16 (dd, J = 8.3, 1.6 Hz, 1H), 8.70-8.80 (m, 1H), 8.83 (dd, J = 4.2, 1.6 Hz, 1H), 9.96 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 14.2, 15.5, 20.7, 28.2, 35.3, 47.4, 116.7, 119.5, 121.9, 122.0, 127.4, 128.0, 134.2, 136.5, 138.5, 148.5, 172.8; IR (neat) v 3347, 2958, 2932, 2872, 2241, 1684, 1526, 1486, 1425, 1324, 1162, 827, 792, 758, 685, 607 cm⁻¹; Ms (ESI): m/z = 282.1 [M+H]⁺.

Compound **4c**, pale yellow oil, yield: 50%. ¹H NMR (500 MHz, CDCl₃) δ 1.87-1.98 (m, 1H), 2.17-2.28 (m, 1H), 2.38-2.47 (m, 1H), 2.47-2.56 (m, 1H), 2.85-3.03 (m, 2H), 3.16 (dd, J = 13.1, 7.4 Hz, 1H), 7.10-7.18 (m, 1H), 7.19-7.30 (m, 4H), 7.43 (dd, J = 8.3, 4.2 Hz, 1H), 7.48-7.58 (m, 2H), 8.14 (dd, J = 8.3, 1.6 Hz, 1H), 8.65-8.80 (m, 2H), 9.78 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 15.5, 27.7, 39.4, 49.4, 116.8, 119.3, 121.8, 122.1, 126.9, 127.4, 128.0, 128.8, 129.1, 134.0, 136.4, 138.3, 138.4, 148.3, 171.9; IR (neat) v 3344, 3061, 2928, 2856, 2246, 1684, 1527, 1486, 1425, 1324, 1161, 827, 792, 730, 701, 607 cm⁻¹; Ms (ESI): m/z = 330.1 [M+H]⁺.

Compound **4d**, colorless oil, yield: 66%. ¹H NMR (500 MHz, CDCl₃) δ 1.06 (d, J = 7.3 Hz, 3H), 1.08 (d, J = 7.3 Hz, 3H), 1.90-2.01 (m, 1H), 2.01-2.12 (m, 1H), 2.14-2.26 (m, 1H), 2.33-2.57 (m, 3H), 7.46 (dd, J = 8.3, 4.2 Hz, 1H), 7.49-7.59 (m, 2H), 8.16 (dd, J = 8.2, 1.7 Hz, 1H), 8.71-8.80 (m, 1H), 8.82 (dd, J = 4.2, 1.6 Hz, 1H), 9.94 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 15.8, 20.2, 20.8, 25.6, 31.3, 54.3, 116.7, 119.6, 121.9, 122.0, 127.4, 128.1, 134.1, 136.5, 138.5, 148.5, 172.2; IR (neat) v 3348, 2963, 2874, 2245, 1683, 1526, 1486, 1425, 1388, 1323, 1161, 827, 792, 758, 697, 606 cm⁻¹; Ms (ESI): m/z = 282.1 [M+H]⁺.

Compound **4e**, colorless oil, yield: 60%. ¹H NMR (500 MHz, CDCl₃) δ 1.11 (s, 9H), 1.86-2.00 (m, 1H), 2.22-2.36 (m, 2H), 2.36-2.45 (m, 1H), 2.45-2.56 (m, 1H), 7.47 (dd, J = 8.2, 4.2 Hz, 1H), 7.49-7.59 (m, 2H), 8.17 (dd, J = 8.2, 1.6 Hz, 1H), 8.72-8.81 (m, 1H), 8.83 (dd, J = 4.2, 1.7 Hz, 1H), 9.94 (brs, 1H); ¹³C NMR (125)

MHz, CDCl₃) δ 16.3, 24.1, 28.2, 33.7, 58.0, 116.7, 119.6, 121.9, 122.0, 127.4, 128.1, 134.1, 136.5, 138.6, 148.6, 171.8; IR (neat) *v* 3351, 3049, 2926, 2872, 2245, 1683, 1526, 1486, 1425, 1370, 1324, 1157, 827, 758, 652, 605 cm⁻¹; Ms (ESI): *m*/*z* = 296.1 [M+H]⁺.

Compound **4f**, colorless oil, yield: 60%. ¹H NMR (500 MHz, CDCl₃) δ 1.24-1.42 (m, 2H), 1.47-1.75 (m, 4H), 1.77-1.87 (m, 1H), 1.88-2.06 (m, 2H), 2.09-2.26 (m, 2H), 2.35-2.57 (m, 3H), 7.47 (dd, J = 8.3, 4.2 Hz, 1H), 7.50-7.60 (m, 2H), 8.17 (dd, J = 8.3, 1.7 Hz, 1H), 8.71-8.80 (m, 1H), 8.83 (dd, J = 4.2, 1.7 Hz, 1H), 9.96 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 15.7, 24.95, 25.04, 27.5, 30.9, 31.4, 43.3, 53.4, 116.8, 119.6, 121.9, 122.1, 127.4, 128.1, 134.2, 136.5, 138.5, 148.6, 172.7; IR (neat) v 3348, 2953, 2869, 2245, 1684, 1525, 1486, 1425, 1387, 1324, 1162, 827, 793, 758, 688 cm⁻¹; Ms (ESI): m/z = 208.1 [M+H]⁺.

Compound **4g**, colorless oil, yield: 63%. ¹H NMR (500 MHz, CDCl₃) δ 1.05-1.33 (m, 5H), 1.60-1.82 (m, 5H), 1.87-1.95 (m, 1H), 1.96-2.06 (m, 1H), 2.13-2.24 (m, 1H), 2.33-2.43 (m, 1H), 2.43-2.55 (m, 2H), 7.47 (dd, J = 8.2, 4.2 Hz, 1H), 7.50-7.59 (m, 2H), 8.17 (dd, J = 8.3, 1.7 Hz, 1H), 8.73-8.81 (m, 1H), 8.83 (dd, J = 4.2, 1.7 Hz, 1H), 9.93 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 15.7, 25.6, 26.3, 26.4, 30.8, 31.2, 40.7, 53.8, 116.7, 119.6, 121.9, 122.0, 127.4, 128.1, 134.1, 136.5, 138.5, 148.6, 172.4; IR (neat) v 3348, 2928, 2852, 2241, 1684, 1526, 1486, 1424, 1380, 1323, 1160, 827, 792, 758 cm⁻¹; Ms (ESI): m/z = 322.2 [M+H]⁺.

Compound **4h**, colorless oil, yield: 59%. ¹H NMR (500 MHz, CDCl₃) δ 1.57-1.70 (m, 9H), 1.81-1.90 (m, 3H), 1.92-2.05 (m, 4H), 2.21-2.34 (m, 3H), 2.45-2.55 (m, 1H), 7.47 (dd, J = 8.3, 4.2 Hz, 1H), 7.51-7.59 (m, 2H), 8.17 (dd, J = 8.2, 1.6 Hz, 1H), 8.75-8.83 (m, 1H), 8.84 (dd, J = 4.2, 1.7 Hz, 1H), 9.92 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 16.3, 22.5, 28.7, 35.6, 36.9, 40.3, 59.4, 116.7, 119.6, 121.9, 122.0, 127.4, 128.1, 134.1, 136.5, 138.6, 148.6, 171.4; IR (neat) v 3348, 3048, 2904, 2848, 2241, 1683, 1526, 1485, 1425, 1323, 1157, 827, 792, 754 cm⁻¹; Ms (ESI): m/z = 374.3 [M+H]⁺.

Compound **4i**, colorless oil, yield: 40%. ¹H NMR (500 MHz, CDCl₃) δ 1.04 (d, J = 6.6 Hz, 3H), 1.10 (d, J = 6.8 Hz, 3H), 1.26 (d, J = 6.8 Hz, 3H), 2.08-2.21 (m, 1H), 2.23-2.31 (m, 1H), 2.39-2.51 (m, 1H), 2.57 (dd, J = 17.0, 8.6 Hz, 1H), 2.64 (dd, J = 17.0, 4.1 Hz, 1H), 7.46 (dd, J = 8.2, 4.2 Hz, 1H), 7.49-7.58 (m, 2H), 8.16 (dd, J = 8.3, 1.6 Hz, 1H), 8.71-8.79 (m, 1H), 8.81 (dd, J = 4.2, 1.6 Hz, 1H), 9.88 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 18.2, 19.4, 21.1, 21.5, 28.1, 30.5, 59.5, 116.7, 119.4, 121.8, 122.0, 127.4, 128.1, 134.0, 136.5, 138.5, 148.5, 171.8; IR (neat) v 3350, 2963, 2933, 2876, 2244, 1680, 1526, 1486, 1425, 1378, 1324, 1167, 827, 793, 758, 679 cm⁻¹; Ms (ESI): m/z = 296.1 [M+H]⁺.

Compound **4j**, colorless oil, yield: 45%. ¹H NMR (500 MHz, CDCl₃) δ 1.06-1.34 (m, 8H), 1.60-1.90 (m, 6H), 2.25-2.35 (m, 1H), 2.40-2.53 (m, 1H), 2.55-2.68 (m, 2H), 7.47 (dd, J = 8.3, 4.3 Hz, 1H), 7.50-7.60 (m, 2H), 8.17 (dd, J = 8.2, 1.5 Hz, 1H), 8.70-8.79 (m, 1H), 8.81 (dd, J = 4.1, 1.4 Hz, 1H), 9.87 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 18.3, 21.2, 26.36, 26.42, 26.6, 29.6, 30.1, 31.5, 37.6, 58.9, 116.7, 119.5, 121.8, 122.0, 127.4, 128.1, 134.0, 136.5, 138.5, 148.5, 172.0; IR (neat) v 3350, 3054, 2929, 2852, 2249, 1679, 1525, 1485, 1425, 1325, 1165, 827, 792 cm⁻¹; Ms (ESI): m/z = 336.1 [M+H]⁺.

Compound **4k**, colorless oil, yield: 41%. ¹H NMR (500 MHz, CDCl₃) δ 1.32-1.48 (m, 3H), 1.61-1.71 (m, 1H), 1.77-1.92 (m, 2H), 1.93-2.06 (m, 1H), 2.07-2.27 (m, 2H), 2.32-2.54 (m, 3H), 7.46 (dd, J = 8.3, 4.2 Hz, 1H), 7.50-7.60 (m, 2H), 8.16 (dd, J = 8.3, 1.7 Hz, 1H), 8.70-8.79 (m, 1H), 8.82 (dd, J = 4.2, 1.7 Hz, 1H), 9.94 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 22.9, 25.35, 25.39, 30.87, 30.90, 35.7, 51.3, 116.7, 118.4, 121.9, 122.0, 127.4, 128.1, 134.3, 136.5, 138.5, 148.5, 172.9; IR (neat) v 3346, 3042, 2931, 2857, 2244, 1683, 1526, 1486, 1425, 1388, 1325, 1163, 931, 827, 792, 668, 600 cm⁻¹; Ms (ESI): m/z = 294.1 [M+H]⁺.

Experimental Date of Further Optimization Studies

Table S1 Experimental date of further optimization studies for ${\bf 1a}$

	Pd(OPiv) ₂ (12 mol %), L2 Cu(O ₂ C ⁿ C ₃ H ₇) ₂ , Ag ₂ CO ₃	NC
	CsOPiv, CH ₃ CN/heptane, 15 h	2a
1a , 0.3 mmol Č		2a

entry	[Cu] (equiv)	[Ag] (equiv)	[Cs] (equiv)	L2 (mol %)	CH ₃ CN/heptane (mL/mL)	temp (°C)	yield ^a (%)
1	1.2	2.0	1.2	40	1.5/1.5	130	76
2	2.0	2.0	1.2	40	1.5/1.5	130	62
3	0.5	2.0	1.2	40	1.5/1.5	130	8
4	1.2	3.0	1.2	40	1.5/1.5	130	74
5	1.2	1.0	1.2	40	1.5/1.5	130	50
6	1.2	2.0	2.0	40	1.5/1.5	130	29
7	1.2	2.0	0.5	40	1.5/1.5	130	64
8	1.2	2.0	1.2	50	1.5/1.5	130	76
9	1.2	2.0	1.2	30	1.5/1.5	130	59
10	1.2	2.0	1.2	40	2.0/1.0	130	74
11	1.2	2.0	1.2	40	1.0/2.0	130	73
12	1.2	2.0	1.2	40	1.5/1.5	150	74
13	1.2	2.0	1.2	40	1.5/1.5	110	61
14	1.2	2.0	1.2	40	0.8/0.8	130	61
15	1.2	2.0	1.2	40	3.0/3.0	130	75
16 ^b	40	2.0	1.2	40	1.5/1.5	130	67
17 ^c	40	2.0	1.2	40	1.5/1.5	130	85

^{*a*} Yields are based on **1a**, determined by ¹H-NMR using dibromomethane as the internal standard. ^{*b*} Pd(OPiv)₂ (10 mol %). ^{*c*} Pd(OPiv)₂ (15 mol %).

		Pc	d(MeCN) ₂ Cl ₂ Cu(OAc) ₂ •H	(20 mol %), L2 I ₂ O, Ag ₂ CO ₃		O N N	
[/] P 3b ,	r N , 0.3 mmol	r k	(OPiv, CH ₃ C	N, 130 ºC, 1 h	-	Ĥ ⁿ Pr 4b	N N
entry	[Cu] (equiv)	[Ag] (equiv)	[K] (equiv)	L2 (mol %)	CH ₃ CN (mL)	temp (°C)	yield ^a (%)
1	0.3	2.0	0.3	40	2	130	60
2	0.4	2.0	0.3	40	2	130	56
3	0.2	2.0	0.3	40	2	130	50
4	0	2.0	0.2	40	2	130	trace
5	0.3	3.0	0.3	40	2	130	59
6	0.3	1.5	0.3	40	2	130	54
7	0.3	2.0	0.4	40	2	130	56
8	0.3	2.0	0.1	40	2	130	58
9	0.3	2.0	0	40	2	130	52
10	0.3	2.0	0.3	50	2	130	60
11	0.3	2.0	0.3	30	2	130	50
12	0.3	2.0	0.3	40	2	150	51
13	0.3	2.0	0.3	40	2	110	29
14	0.3	2.0	0.3	40	4	130	42
15	0.3	2.0	0.3	40	1	130	60
16 ^b	0.3	2.0	0.3	40	2	130	59

 $Table \ S2 \ {\rm Experimental \ date \ of \ further \ optimization \ studies \ for \ 3b}$

^{*a*} Yields are based on **1a**, determined by ¹H-NMR using dibromomethane as the internal standard. b 15 h.

Control Experiments on Cyanomethylation of 1a

Table S3 Control Experiments on Cyanomethylation of 1a

	$\begin{array}{c} \begin{tabular}{ c c c c c } \label{eq:poly} & Pd(OPiv)_2 \ (12 \ mol \ \%), \ L2 \ (40 \ mol \ \%) \\ & Cu(O_2 C^n Pr)_2 \ (1.2 \ equiv) \\ \hline & Ag_2 CO_3 \ (2.0 \ equiv), \ CsOPiv \ (1.2 \ equiv) \\ & MeCN/heptane \ (1/1, \ v/v), \ 130 \ ^{\circ}C \ a \end{array}$	NC O N H Za
entry	change from the 'standard conditions' ^a	yield of 2a (%) ^b
1	none	76
2	no Pd(OPiv) ₂	0
3	no $Cu(O_2C^nPr)_2$	trace
4	0.5 equiv Cu(O ₂ C ⁿ Pr) ₂	8
5	0.5 equiv Cu(O ₂ C ⁿ Pr) ₂ , O ₂ (1 atm)	8
6	no Ag_2CO_3	trace
7	no Ag ₂ CO ₃ , 2 equiv Cu(O ₂ C ^{n} Pr) ₂	trace
8	no Ag ₂ CO ₃ , O ₂ (1 atm)	trace
9	0.3 equiv Ag ₂ CO ₃ , O ₂ (1 atm)	12

^a **1a** (0.3 mmol), $Pd(OPiv)_2$ (0.036 mmol), **L2** (0.12 mmol), $Cu(O_2C^nPr)_2$ (0.36 mmol), Ag_2CO_3 (0.6 mmol), CsOPiv (0.36 mmol), MeCN (1.5 mL), heptane (1.5 mL), air (1 atm), 130 °C, 15 h. ^b Yields are based on **1a**, determined by ¹H-NMR using dibromomethane as the internal standard.

Deuterium Labeling Experiment

A 35 mL sealed tube was charged with amide $[D_3]$ -**3d** (73.6 mg, 0.3 mmol), Pd(MeCN)₂Cl₂ (15.6 mg, 0.06 mmol), 5,5'-dimethyl-2,2'-bipyridine (**L2**) (22.1 mg, 0.12 mmol), Cu(OAc)₂·H₂O (18.0 mg, 0.09 mmol), Ag₂CO₃ (165.5 mg, 0.6 mmol), KOPiv (12.6 mg, 0.09 mmol), and MeCN (2.0 mL). After sealed, the reaction

mixture was stirred at 130 °C for 0.5 h. Then the mixture was cooled to room temperature, quenched with aqueous NaOH (1 M, 2 mL), and extracted with EtOAc (3×10 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by chromatography on silica gel eluting with EtOAc/hexanes (1/10-1/6) to provide the recovered [D₃]-**3d** and desired product [D₂]-**4d**. The ratio of deuterium was determined by ¹H NMR.

[D₂]-**4d**, colorless oil, yield: 60%. ¹H NMR (500 MHz, CDCl₃) δ 1.06 (d, *J* = 6.5 Hz, 3H), 1.07 (d, *J* = 6.5 Hz, 3H), 2.00-2.11 (m, 1H), 2.38 (d, *J* = 17.0 Hz, 1H), 2.44 (d, *J* = 7.2 Hz, 1H), 2.49 (d, *J* = 17.0 Hz, 1H), 7.46 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.48-7.59 (m, 2H), 8.16 (dd, *J* = 8.2, 1.4 Hz, 1H), 8.72-8.80 (m, 1H), 8.82 (dd, *J* = 4.2, 1.6 Hz, 1H), 9.95 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 15.6 (t, *J* = 5.6 Hz), 20.2 (d, *J* = 2.9 Hz), 20.7 (d, *J* = 2.7 Hz), 31.2, 54.1 (d, *J* = 4.7 Hz), 116.8, 119.6, 121.8, 122.0, 127.4, 128.0, 134.1, 136.5, 138.4, 148.4, 172.3; IR (neat) *v* 3348, 2962, 2928, 2874, 2239, 1683, 1526, 1486, 1425, 1387, 1324, 1168, 827, 792 cm⁻¹; Ms (ESI): m/z = 284.1 [M+H]⁺.

Recovered [D₃]-4d, colorless oil, yield: 25%. ¹H NMR (500 MHz, CDCl₃) δ 1.03 (d, J = 6.7 Hz, 3H), 1.04 (d, J = 6.7 Hz, 3H), 1.97-2.13 (m, 1H), 2.32 (d, J = 7.7 Hz, 1H), 7.44 (dd, J = 8.3, 4.2 Hz, 1H), 7.49 (dd, J = 8.3, 1.4 Hz, 1H), 7.51-7.60 (m, 1H), 8.15 (dd, J = 8.3, 1.7 Hz, 1H), 8.71-8.88 (m, 2H), 9.84 (brs, 1H).

A 10 mL sealed tube was charged with amide **3d** (0.1 mmol), Pd(MeCN)₂Cl₂ (5.2 mg, 0.02 mmol), 5,5'-dimethyl-2,2'-bipyridine (**L2**) (7.4 mg, 0.04 mmol), Cu(OAc)₂·H₂O (6.0 mg, 0.03 mmol), Ag₂CO₃ (55.2 mg, 0.2 mmol), KOPiv (4.2 mg, 0.03 mmol), and MeCN or CD₃CN (0.7 mL). After sealed, the reaction mixture was stirred at 130 °C for 40 min. Then the mixture was cooled to room temperature, quenched with aqueous NaOH (1 M, 1 mL), and extracted with

EtOAc (3×5 mL). The combined organic phase was dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by chromatography on silica gel eluting with EtOAc/hexanes (1/8) to provide the recovered **3d** and desired product [D₂]-**4d**'. The ratio of deuterium was determined by ¹H NMR.

[D₂]-**4d**', colorless oil, yield: 18%. ¹H NMR (500 MHz, CDCl₃) δ 1.07 (d, *J* = 6.8 Hz, 3H), 1.08 (d, *J* = 6.8 Hz, 3H), 1.96 (dd, *J* = 13.6, 2.8 Hz, 1H), 2.00-2.13 (m, 1H), 2.19 (dd, *J* = 13.4, 11.2 Hz, 1H), 2.39-2.50 (m, 1H), 7.47 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.50-7.60 (m, 2H), 8.17 (dd, *J* = 8.2, 1.6 Hz, 1H), 8.71-8.81 (m, 1H), 8.83 (dd, *J* = 4.2, 1.6 Hz, 1H), 9.94 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 20.3, 20.8, 25.4, 31.3, 54.3, 116.7, 119.6, 121.9, 122.0, 127.4, 128.1, 134.2, 136.5, 138.6, 148.6, 172.3; IR (neat) *v* 3348, 2963, 2246, 1683, 1526, 1486, 1425, 1387, 1324, 1169, 827, 792 cm⁻¹; Ms (ESI): *m*/*z* = 284.1 [M+H]⁺.

Parallel KIE Experiments

A 35 mL sealed tube was charged with amide **3d** or $[D_3]$ -**3d** (0.3 mmol), Pd(MeCN)₂Cl₂ (15.6 mg, 0.06 mmol), 5,5'-dimethyl-2,2'-bipyridine (**L2**) (22.1 mg, 0.12 mmol), Cu(OAc)₂·H₂O (18.0 mg, 0.09 mmol), Ag₂CO₃ (165.5 mg, 0.6 mmol), KOPiv (12.6 mg, 0.09 mmol), and MeCN (2.0 mL). After sealed, the reaction mixture was stirred at 130 °C for the indicated time. The reaction was stopped by rapid cooling and analyzed by GC using benzophenone as the internal standard. The average GC yield was calculated after calibrating the response of GC based on three runs of each reaction.

Time (min)	4	5	6	7	8	9	10	11	12
Yield 4d (%)	5.4	8.2	10.1	12.9	14.8	17.8	21.7	22.8	23.7

Time (min)	4	5	6	7	8	9	10	11	12
Yield of [D ₂]-4d (%)	5.8	8.5	10.6	13.5	14.9	18.9	23.8	25.2	27.7

Equation for **4d**: y = 2.4183x - 4.08 $R^2 = 0.9871$ Equation for [D₂]-**4d**: y = 2.825x - 6.0556 $R^2 = 0.9872$ $k_{\rm H}/k_{\rm D} = 2.4183/2.825 \approx 0.9$

KIE value determined from parallel reactions is 0.9.

A 10 mL sealed tube was charged with amide **3d** (0.1 mmol), $Pd(MeCN)_2Cl_2$ (5.2 mg, 0.02 mmol), 5,5'-dimethyl-2,2'-bipyridine (L2) (7.4 mg, 0.04 mmol), $Cu(OAc)_2 \cdot H_2O$ (6.0 mg, 0.03 mmol), Ag_2CO_3 (55.2 mg, 0.2 mmol), KOPiv (4.2 mg, 0.03 mmol), and MeCN or CD_3CN (0.7 mL). After sealed, the reaction

mixture was stirred at 130 °C for the indicated time. The reaction was stopped by rapid cooling and analyzed by GC using benzophenone as the internal standard. The average GC yield was calculated after calibrating the response of GC based on three runs of each reaction.

Time (min)	4	6	8	10	12	14	16	18
Yield 4d (%)	4.9	5.9	8.6	11.2	15.7	18.2	19.6	22.5

Time (min)	4	6	8	10	12	14	16	18
Yield of [D ₂]- 4d ′ (%)	3.7	4.2	5.0	6.1	6.7	7.4	9.3	9.8

Equation for **4d**: y = 1.3407 - 1.4259 $R^2 = 0.9848$ Equation for $[D_2]$ -**4d**': y = 0.4508x + 1.5627 $R^2 = 0.9818$ $k_{\rm H}/k_{\rm D} = 1.3407/0.4259 \approx 3.0$

KIE value determined from parallel reactions is 3.0.

Experimental Procedure for the Removal of the Directing Group of 4b

A solution of compound **4b** (84.4 mg, 0.3 mmol), Boc₂O (654 mg, 3 mmol) and DMAP (100 mg, 0.9 mmol) in CH₃CN (2 mL) was stirred at 70 °C for 0.5 h. The resulting mixture was concentrated under reduced pressure and purified by chromatography on silica gel eluting with EtOAc/hexanes (1/3) to provide the boc-protecting amide as yellow oil (108 mg, 94% yield). ¹H NMR (500 MHz, CDCl₃) δ 0.95 (t, *J* = 7.3 Hz, 3H), 1.22 (s, 9H), 1.40-1.60 (m, 3H), 1.80-1.91 (m, 1H), 1.94-2.04 (m, 1H), 2.10-2.22 (m, 1H), 2.48-2.69 (m, 2H), 4.00 (brs, 1H), 7.41 (dd, *J* = 8.3, 4.1 Hz, 1H), 7.49 (dd, *J* = 7.3, 1.3 Hz, 1H), 7.52-7.61 (m, 1H), 7.82 (dd, *J* = 8.2, 1.2 Hz, 1H), 8.17 (dd, *J* = 8.3, 1.6 Hz, 1H), 8.87 (dd, *J* = 4.1, 1.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 14.3, 15.0, 20.4, 27.7, 28.4, 34.8, 43.8, 83.1, 120.3, 121.7, 126.2, 128.3, 128.7, 129.0, 136.1, 137.2, 144.1, 150.5, 152.8, 178.4; IR (neat) *v* 2960, 2934, 2245, 1738, 1699, 1596, 1500, 1369, 1292, 1255, 1155, 1125, 1042, 854, 792 cm⁻¹; Ms (ESI): *m*/*z* = 382.2 [M+H]⁺.

To a solution of the boc-protecting amide (76.2 mg, 0.2 mmol) in THF/H₂O (2 mL, 3:1) was added LiOH·H₂O (9.6 mg, 0.4 mmol) and 30% H₂O₂ (1.0 mmol) at 0 °C. Ater the reaction was stirred at room temperature for 3 h, Na₂SO₃ (252 mg, 2 mmol) was added. The reaction mixture was diluted with EtOAc (4 mL), acidified with 0.5 M aqueous HCl, and extracted with EtOAc. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The resulting residue was purified by chromatography on silica gel eluting with EtOAc/hexanes (1/8-1/1) to provide the acid product 6**b** as pale yellow oil (21.5 mg, 69% yield). ¹H NMR (500 MHz, CDCl₃) δ 0.93 (t, *J* = 7.3 Hz, 3H), 1.31-1.44 (m, 2H), 1.46-1.56 (m, 1H), 1.62-1.73 (m, 1H), 1.79-1.89 (m, 1H), 1.95-2.06 (m, 1H), 2.32-2.50 (m, 2H), 2.50-2.61 (m 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.9, 15.5, 20.3, 27.3, 34.0, 43.9, 119.1, 180.6; IR (neat) *v* 2960, 2929, 2874, 2248, 1734, 1707, 1528, 1456, 1164; Ms (ESI): *m*/*z* = 154.2 [M-H]⁻.

References

- 1. X. Wu, Y. Zhao and H. Ge, J. Am. Chem. Soc., 2014, 136, 1789.
- 2. E. T. Nadres, G. I. F. Santos, D. Shabashov and O. Daugulis, *J. Org. Chem.*, 2013, **78**, 9689.

Copies of NMR Spectrum

S30

S38

S41

S51

