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Abstract

A functional connection between the circadian timing system and alcohol consumption is 

suggested by multiple lines of converging evidence. Ethanol consumption perturbs physiological 

rhythms in hormone secretion, sleep and body temperature, and conversely, genetic and 

environmental perturbations of the circadian system can alter alcohol intake. A fundamental 

property of the circadian pacemaker, the endogenous period of its cycle under free-running 

conditions, was previously shown to differ between selectively bred High- (HAP) and Low- (LAP) 

Alcohol Preferring replicate 1 mice. To test whether there is a causal relationship between 

circadian period and ethanol intake, we induced experimental, rather than genetic, variations in 

free-running period. Male inbred C57Bl/6J mice and replicate 2 male and female HAP2 and LAP2 

mice were entrained to light:dark cycles of 26 h or 22 h or remained in a standard 24 h cycle. 

Upon discontinuation of the light:dark cycle, experimental animals exhibited longer and shorter 

free-running periods, respectively. Despite robust effects on circadian period and clear circadian 

rhythms in drinking, these manipulations failed to alter the daily ethanol intake of the inbred strain 

or selected lines. Likewise, driving the circadian system at long and short periods produced no 

change in alcohol intake. In contrast with replicate 1 HAP and LAP lines, there was no difference 

in free-running period between ethanol naïve HAP2 and LAP2 mice. HAP2 mice, however, were 

significantly more active than LAP2 mice as measured by general home-cage movement and 

wheel running, a motivated behavior implicating a selection effect on reward systems. Despite a 

marked circadian regulation of drinking behavior, the free-running and entrained period of the 

circadian clock does not determine daily ethanol intake.
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Introduction

In all of the mammalian species in which it has been studied, the suprachiasmatic nuclei 

(SCN) of the anterior hypothalamus function as a daily, or circadian, clock that exerts a 

marked influence on myriad aspects of physiology and behavior (Liu et al., 2007). At the 

cellular level, circadian rhythms are generated by interacting transcriptional, translational 

feedback loops of a few dozen genes including 3 homologs of the period (per) gene, so 

named because point mutations in Drosophila altered the circadian cycle length (i.e., period) 

under constant environmental conditions. While circadian rhythmicity driven by clock gene 

expression can be seen in both the SCN and in tissues throughout the brain and body, only 

the rhythms in the SCN are self-sustaining. This master pacemaker thus sits atop a hierarchy 

where it orchestrates the circadian organization of multiple physiological systems below 

(Albrecht, 2006; Liu et al., 2007; Yamazaki et al., 2000). The circadian timing system has 

proven relevant to a wide array of health conditions (Maywood et al., 2006). For example, 

shift-work that requires people to time their sleep and activity counter to the preferred phase 

of their circadian clock has been recently classified by the World Health Organization as a 

probable carcinogen (IARC, 2008). Conversely, incorporation of circadian timing 

considerations can improve cancer treatment outcomes of chemotherapy by optimizing 

therapeutic and minimizing toxic actions of drugs (Hrushesky, 1993; Rivard et al., 1985).

The biology of alcohol consumption, likewise, displays a pronounced circadian organization 

(Rosenwasser, 2001; Spanagel et al., 2005b; Wasielewski and Holloway, 2001). Alcohol 

consumption in the general human population, for instance, peaks early in the evening, 

whereas alcohol-dependent subjects report greatest cravings in the morning (Arfken, 1988; 

Danel et al., 2003). Ethanol acts on numerous physiological systems that are strongly 

rhythmic (e.g., sleep, body temperature, melatonin) (Danel et al., 2001; Landolt et al., 1996; 

Rupp et al., 2007) and produces different effects as a function of time of day (Danel et al., 

2001). Further, the chronotype of humans, morning “larks” versus evening “owls”, predicts 

alcohol intake, with greater consumption reported by evening types (Adan, 1994; Wittmann 

et al., 2006). Shift-workers too have been reported to have increased alcohol consumption or 

risk for heavy drinking although not consistently across studies (Hermansson et al., 2003; 

Webb et al., 1990). Among abstinent alcoholics, relapse is predicted by the degree of 

persistent disruption of the sleep/wake cycle (Drummond et al., 1998). Finally, a single 

nucleotide polymorphism in the per2 gene reportedly associates with elevated alcohol intake 

among a population of human alcoholic subjects (Spanagel et al., 2005a).

Important aspects of the temporal organization of human alcohol consumption are 

reproduced in rodents, making them ideal subjects for experimental assessment of causal 

relationships between circadian function and ethanol biology. Mice and rats express 

pronounced daily rhythms in voluntary alcohol intake and time-dependent responses to 

ethanol (Baird et al., 1998; Freund, 1970; Trujillo et al., 2009). Repeated shifting of the rat 
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circadian pacemaker can alter voluntary alcohol consumption (Clark et al., 2007). A null 

mutation of the per2 clock gene likewise increases ethanol consumption in mice (Spanagel 

et al., 2005a). In both rats and mice, artificial selection for high versus low alcohol 

preference has produced line differences in circadian period measured by wheel running 

under constant environmental conditions (Hofstetter et al., 2003; Rosenwasser et al., 2005b). 

Because of its hierarchical nature, however, it is difficult to know at which level of 

physiological organization that the circadian system is implicated in these effects. The 

genetic studies raise the possibility of a direct causal relationship between fundamental 

mechanisms of circadian pacemaker function and an alcohol consuming phenotype. 

Alternatively, effects on alcohol consumption could occur downstream of the pacemaker on, 

for example, reward or arousal processes, that have a circadian character (McClung, 2007). 

Finally, altered entrainment or perturbation of the circadian system may act as a chronic 

non-specific stressor (i.e., introduce a general allostatic load; Boulos and Rosenwasser, 

2004) that could induce changes in drinking behavior.

Circadian biologists have a number of analytical tools with which to assess the nature of 

circadian influence on physiology and behavior (Daan and Aschoff, 2001; Dunlap et al., 

2004). In the absence of temporal cues from the environment, circadian rhythms “free-run” 

with an endogenous period, τ. The light:dark cycle, however, typically synchronizes (i.e., 

entrains) the endogenous rhythm to match the 24 hour (h) day by resetting the clock daily to 

offset any discrepancy between τ and 24 h. Because light can reset the clock earlier or later 

depending on when it falls in the endogenous cycle, animals can entrain to a range of 

environmental periods both somewhat longer and shorter than 24 h using so-called T cycles, 

where T indicates the period of the entraining environmental cycle (e.g., T26 indicates 

alternating 13 h of light and 13 h of dark). The phase dependence of light’s actions further 

implies that the phase of the entrained rhythm can be varied systematically: as T lengthens, 

the endogenous rhythm adopts a progressively earlier alignment with the lighting cycle (i.e., 

animals become more like “larks”) expressed in circadian terminology as a “phase angle of 

entrainment” (see methods for precise definition). T cycles may also be used to influence the 

endogenously expressed free-running period, τ. Transfer to constant conditions from an 

entraining long T cycle produces a τ that is longer than observed after transfer from an 

entraining short T cycle. Such period after-effects may persist for at least a month in rodents 

(Pittendrigh and Daan, 1976).

Using T cycles to induce long-term changes in the functional organization of the circadian 

system of mice, we tested two hypotheses suggested by epidemiological and correlational 

studies in humans and rodents: first, that there is a causal relationship between the period of 

the free-running circadian pacemaker and ethanol intake in C57BL/6J mice; second, that 

there is a causal relationship between the phase angle of entrainment and alcohol 

consumption in C57BL/6J mice. Finally, we assessed whether aspects of circadian 

rhythmicity in addition to the free-running period and phase angle of entrainment 

distinguished high-alcohol preferring (HAP2) and low-alcohol preferring (LAP2) mice 

(Grahame et al., 1999; Grahame et al., 2003) not yet studied from a circadian perspective. 

We provide strong evidence against a direct connection between circadian period or 

entrainment phase and alcohol intake in mice. Instead, we confirm an association between 

high alcohol preference and activity levels in these genetically distinct mice.
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Materials and Methods

Subjects and housing

Male C57BL/6J mice (Jackson Laboratories, Sacramento CA) and male and female HAP2 

and LAP2 were acquired and housed in standard shoebox cages with food (Mouse diet 5015, 

Purina Mills) and water available ad libitum. The latter lines were selected for differences in 

alcohol drinking from the same progenitor population, and using the same phenotype (free-

choice consumption of 10% ethanol over a 4 week period) as replicate 1 HAP and LAP mice 

that showed a difference in free-running period (Hofstetter et al., 2003). Subjects were group 

housed prior to circadian rhythm or ethanol intake measurement but were moved to 

individual housing for those measures where they remained for the duration of the 

experiments. All procedures and animal care were approved by the Institutional Animal Care 

Use Committee at University of California, San Diego and conducted in accordance with the 

Guide for the Care and Use of Laboratory Animals.

Lighting cycles—Prior to experimentation, animals were maintained on 24 h light:dark 

cycle with 12 h of light and 12 h of dark (LD12:12). Throughout all experiments, the “light” 

phases were lit by fluorescent bulbs generating an illuminance of approximately 100 lux, 

whereas “dark” phases were dimly illuminated with red light (< 1 lux). For all 24 h and 

non-24 h light cycles (T cycles, where T indicates the cycle period) the lengths of the light 

and dark cycles were always kept equal (e.g., T22 was 11 h of light and 11 h of dark; T26 

was 13 h of light and dark). At transitions between lighting conditions, the timing of lights 

on was preserved to ensure no sudden phase shifts, and transitions to constant darkness 

always occurred at the normal time of lights off. For all experiments, exposures to T22 and 

T26 were preceded by one week of T23 or T25, respectively.

24 Hour 2 Bottle Choice—A 10% (w/v) ethanol solution was prepared using 95% ethyl 

alcohol and water; a separate water bottle was also prepared for the procedure. Fluids were 

presented to mice in 50 ml conical tubes fitted with sipper tubes. In experimental conditions 

where alcohol licking was recorded, location of alcohol and water bottles remained constant 

throughout alcohol exposure; in all other experimental conditions alcohol and water bottle 

locations were alternated weekly. Bottles stayed on 7 days/week, were checked daily and 

were changed and weighed 2 times per week (and divided by number of days to obtain a 24 

hour average) to determine g/kg intake. During periods of alcohol exposure, animals were 

weighed at least every 2 weeks. Alcohol intake values were calculated both on a 24 h basis 

and per circadian cycle when animals were free-running in DD. Because in no cases did 

adjustment for period alter the results of the statistical tests, all intake measures are reported 

per 24 h. Ethanol preference was calculated as proportion of ethanol to total liquid 

consumption. Ethanol intake and preference values were calculated separately for each week 

of the experimental manipulation. As these measures produced parallel results, only the 

intake values are presented in repeated measures ANOVAs.

Activity and licking monitoring—General activity or ethanol licking activity was 

recorded continuously and compiled into 6 min bins by Vital View software (Mini Mitter, 

Bend, OR). When an animal licked at a drinking bottle it closed an electrical contact 
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between a metal stage (8×13 cm) on the cage floor and an electrode connected to the bottle 

spout. For recording general activity, the latter electrode was moved from the water bottle to 

the wire cage lid. Thus, whenever the animals stood on the metal stage and contacted any 

part of the wire lid, the electrical contact was closed. This occurred during feeding, 

climbing, rearing and apparently undirected movement within the cage (informal 

observation), but only when the animal was in approximately half of the cage. Contact with 

the lid occurred also during drinking but not as a result of licking the bottle, per se. 

Regardless of recording condition, the cage configuration was identical, but limitations in 

recording capacity prevented concurrent recording of both measures.

Procedures

Figure 1A–C schematically represents the manipulations employed in Experiments 1–3.

Experiment 1—Male C57BL6/J mice (n = 23), 10 weeks of age, were exposed to 

light:dark cycles of 22, 24, or 26 h duration (T22, T24 and T26, respectively; Fig. 1A). After 

three weeks, animals were singly housed and cages were equipped with general locomotor 

activity sensors and lick monitors. The bright lights were permanently extinguished for 

assessment of their free-running circadian rhythms in continuous dim red (DD) over the next 

28 days. At the onset of DD, animals were also provided ethanol in a 24 h two bottle choice 

protocol for the next 4 weeks. Licking was recorded except during two intervals (2 days and 

5 days) when general activity was recorded instead (see Fig. 2).

Experiment 2—Male C57BL6/J mice (n = 40), 10 weeks of age, were entrained to T22, 

T24 or T26 cycles for 3 weeks (Fig. 1B). Subsequently, mice either continued in T22, T24 or 

T26, or were transferred from T22 to T24 or from T26 to T24 (n = 8/group) at which point 

they were allowed ethanol in a 24 h two bottle choice paradigm for 30 days. Ethanol licking 

activity was continuously recorded throughout the ethanol exposure phase.

Experiment 3—Male and female HAP2 (n = 30) and LAP2 (n = 28), 16 weeks old, were 

retained in T24 or allowed to free run in DD for assessment of the free-running period of 

general activity in the absence of ethanol (Fig. 1C). Subsequently, mice remained under their 

respective lighting conditions for an additional 21 days with the addition of 24 h two bottle 

choice, during which ethanol consumption was measured volumetrically. Ethanol was 

removed from all animals, and mice that had been in DD were returned to T24 for 2 weeks 

for re-entrainment. These mice, which had free-run previously, were then randomly assigned 

to be entrained by long (T26) or short (T22) cycles. After 3 weeks, these mice were again 

exposed to DD and all mice received 24 h two bottle choice for 21 days. Rhythms of general 

activity were recorded for all animals throughout the experiment except for controls exposed 

continuously to T24. For these control mice, general activity was recorded during the first 

alcohol naïve portion of the experiment only. Thereafter only alcohol licking behavior was 

assessed.

Experiment 4—Male HAP2 (n=14) and LAP2 (n=13) mice were retained from 

Experiment 3, and re-entrained to T24. At 42 weeks of age, they were transferred to cages 

equipped with running wheels (13 cm diam) and activity rhythms were recorded over 13 
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days. Subsequently, these mice were put into DD to freerun for another 13 days for 

assessment of the free-running rhythm. Two HAP2 males died before the end of data 

collection.

Data Analyses

Circadian measures were evaluated using ClockLab software (Actimetrics, Wilmette, IL). 

Periods of free-running and entrained activity and/or licking rhythms were calculated with 

chi-square periodogram analysis that determined the best fit of the data at all 0.1 h intervals 

from 20–30 h. From the periodogram analysis, the statistical power (Q) of the best fitting 

period was additionally recorded, as this is a quantitative measure of rhythm robustness 

(Refinetti, 2006; Sokolove and Bushell, 1978). In cases where there was no periodicity 

detected with α set to 0.001, the animal’s period and power data were not included in that 

analysis. To assess the importance of rhythm phase in Experiment 2, activity profiles were 

generated by averaging data over 22, 24 or 26 h, respectively, and smoothed with an 18 

minute moving average (data from three, 6-min bins). From these smoothed profiles, the 

onset of elevated drinking was defined as the earliest point that drinking exceeded the daily 

mean and was sustained for 18 min. These onsets were converted to a phase angle of 

entrainment, which is defined as the difference expressed in hours between the time of lights 

off and drinking onset. Negative values indicate that drinking precedes dark onset.

Data were analyzed using univariate and repeated measures ANOVAs run in JMP 7.0 (SAS 

Institute, Cary, NC). Values for each week of the manipulation were entered as repeated 

measures. For Experiments 1 and 2, lighting manipulations were the only between subject 

factors. In Experiment 3, lighting manipulations, sex, and line and all interactions of these 

factors were assessed in each statistical model. Because after the introduction of alcohol, 

licking instead of general activity was measured in mice maintained as controls in T24, this 

lighting condition was not included in circadian analyses after the first phase of the 

experiment during which activity was recorded from all animals.

Results

Experiment 1

Entrainment to T cycles produced strong after-effects on the period of the free-running 

general activity and licking rhythms in DD (Fig. 2A–D; F2,20 = 47.8; p < 0.001). All groups 

differed significantly from one another (p < 0.05, Tukey test). Visual inspection of 

actograms at transitions between licking and general activity confirmed previous findings 

that these rhythms closely parallel one another. Despite a mean difference in circadian 

period of over 0.6 h between conditions, there were no significant group differences in 

ethanol intake (Fig. 2E; F2,20 = 0.2; p > 0.7) or in ethanol preference (Fig. 2F; F2,20 = 0.05; 

p > 0.9). Repeated measures ANOVA revealed no effect of week (F3,18 = 0.6; p > 0.6) or 

week by entrainment interaction (F3,19 = 2.6; p > 0.08) on daily average ethanol intake 

across weeks (data not shown).
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Experiment 2

Indicating successful entrainment, the periods of the licking rhythms determined by 

periodogram analysis matched the periods, T, of the imposed lighting schedules (22, 24 or 

26 h; data not shown). Additionally, as predicted by circadian entrainment theory, the 

relative phasing of the behavioral and environment rhythms varied with the T cycle (Fig. 

3A–C, G; F4,35 = 48.4, p < 0.001): In T22, drinking onset occurred several hours into the 

dark period whereas drinking onset was earliest in T26. These measures differed 

significantly from values in T24 (p < 0.01, Tukey test). The three groups in T24 did not 

differ as a function of their prior T cycle history (Fig. 3G). The offset of nocturnal drinking 

also was advanced in T26 versus T22, whereas the bimodality of the drinking rhythm was 

lost in T22 (Fig. 3A). Despite these differences in entrainment, there were no differences 

among the five groups of animals in alcohol intake (Fig. 3H; F4,35 = 0.6; p > 0.6) or 

preference (Fig. 3I; F4,35 = 1.6; p > 0.20) over the entire period of alcohol exposure. 

Repeated measures ANOVA showed a main effect of week on daily average ethanol intake 

(F3,33 = 5.6; p < 0.01; data not shown), driven by higher alcohol intake in the first week of 

the exposure. There was no significant interaction of entrainment condition by week (F4,35 = 

1.5; p > 0.22).

Experiment 3

Activity rhythms in T24 versus DD—Prior to any alcohol exposure, general activity 

rhythms of mice in DD free-ran with a period less than 24 h as expected whereas mice in 

T24 had periods near 24 h, producing a main effect of lighting condition (Fig. 4A; F1,49 = 

27.2, p < 0.001). There were no main effects of or interactions with either line or sex. In 

contrast, the amount of activity was significantly greater in HAP2 than versus LAP2 mice 

(Fig. 4B; F1,50 = 48.8, p < 0.001) and in females versus males (F1,50 = 4.1, p < 0.05). Female 

mice showed a greater difference in activity counts between LD and DD than did males (sex 

× lighting condition interaction, F1,50 = 8.4, p < 0.01) and this effect was greater for HAP2 

than LAP2 mice (sex × strain × lighting condition interaction, F1,50 = 6.3, p < 0.05). Rhythm 

power (Q) was higher in HAP2 versus LAP2 mice (Fig. 4C; F1,49 = 16.2, p < 0.001) and was 

higher in LD compared to DD (F1,49 = 4.6, p < 0.05). Representative actograms of HAP2 

and LAP2 females free-running in DD are shown in Figures 4D, E.

Ethanol consumption in T24 versus DD—In the first interval of ethanol exposure, 

HAP2 mice consumed significantly more ethanol daily than did LAP2 mice (Fig. 5A; F1,50 

= 152.9; p < 0.001); female mice drank more than male mice (F1,50 = 13.4, p < 0.001); and 

mice drank more in LD than in DD (F1,50 = 8.0, p < 0.01). The sex difference in intake was 

greater for HAP2 than in LAP2 mice (F1,50 = 7.7, p < 0.01) and was more pronounced in LD 

than in DD (F1,50 = 4.6, p < 0.05). Similarly, the line difference was reduced in DD 

compared to LD (F1,50 = 5.2, p < 0.05). For alcohol preference, HAP2 mice had higher 

values than did LAP2 mice (Fig. 5B; F1,50 = 126.9, p < 0.001) and females higher than 

males (F1,50 = 4.9, p < 0.05), but lighting condition exerted no effect. Repeated measures 

ANOVA indicated no significant differences in average daily ethanol intake across the 4 

measurement epochs (F3,48 = 2.0; p > 0.13).
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Free-running rhythms during alcohol consumption—Analysis of circadian 

parameters of mice freerunning in DD after the introduction of alcohol yielded several main 

effects of line: HAP2 mice exhibited longer periods (Fig. 5C; F1,35 = 7.7; p < 0.01), more 

activity (Fig. 5D; F1,35 = 83.4; p < 0.001) and higher power rhythms (Fig. 5E; F1,35 = 10.0; p 

< 0.01) compared to LAP2 mice. There were no significant effects of sex.

Licking patterns of HAP2/LAP2 mice in T24—Even though the data were collected 

over different intervals, the alcohol licking rhythms of HAP2 and LAP2 mice maintained in 

T24 paralleled rhythms of general activity, albeit at lower amplitude (Fig. 6). Sex and strain 

differences in rhythm amplitudes (see above) are reflected in the differential scaling of their 

respective ordinates. A scaling ratio of 1:5 (licks to activity counts) produced a close match 

of the two rhythms for HAP2 female and males, whereas LAP2 animals licked 

proportionately less per activity count. Qualitatively, the shape of the two rhythms was more 

similar in LAP2 than in HAP2, with the latter showing divergence between activity and 

licking late in the night.

Activity rhythms in DD following T cycles—As it did with C57 mice, T cycle 

entrainment produced significant period after-effects in DD (Fig. 7A). Following transfer 

from T22 to DD, during which animals also had access to alcohol, period was shorter than 

after transfer from T26 (F1,29 = 96.1, p < 0.001), and period was longer in HAP2 than in 

LAP2 (F1,29 = 6.6, p < 0.05). Activity levels were also higher for HAP2 animals (Fig. 7B; 

F1,31 = 27.3, p < 0.001). The prior T cycle had a differential effect on male versus female 

activity levels (F1,31 = 6.8; < 0.05), more so for HAP2 than for LAP2 (F1,31 = 9.2; p < 0.01). 

Rhythm power was again greater for HAP2 versus LAP2 mice (Fig. 7C; F1,29 = 11.3, p < 

0.01), but no other effects were significant.

Drinking in DD after T cycles—Despite large effects on period (see below), the prior T 

cycle again had no effect on alcohol intake (Fig. 7D; F2,45 = 0.4, p > 0.65) or preference 

(Fig. 7E; F2,45 = 0.7; p > 0.49) and interacted with no other variable. For both intake and 

preference, the main effects of line and of sex seen in the first alcohol exposure (Fig. 5) were 

replicated as was the sex × line interaction on intake. Repeated measures ANOVA revealed 

that ethanol intake varied with time, peaking in the second week and thereafter declining 

(F3,43 = 4.0; p < 0.05), but no other variable interacted with time.

Experiment 4

In T24, male HAP2 mice had significantly greater wheel running activity per day versus 

LAP2 male mice (Table 1; F1,25 = 21.2; p < 0.001). Furthermore, activity rhythms of HAP2 

mice also showed greater periodogram power (F1,25 = 8.0; p < 0.01) than those of LAP2 

mice. The phase angle of entrainment to the 24-hour cycle, however, did not differ between 

strains (F1,24 = 0.1; p > 0.7202). In DD, differences in wheel-running activity characteristics 

between HAP2 versus LAP2 mice were again observed. HAP2 mice again showed greater 

wheel running activity per day (F1,23 =10.7; p < 0.01) and higher power than LAP2 mice 

(F1,21 = 4.5; p < 0.05). However, there was no significant difference between the HAP2 and 

LAP2 period (F1,22 = 0.0001; p > 0.99).
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Discussion

Evidence suggesting a deep mechanistic connection between the circadian clockwork and 

alcohol consumption includes circadian differences between high and low-preferring lines of 

rodents (Hofstetter et al., 2003; Rosenwasser et al., 2005b), per2 SNP associations with 

human alcoholism (Spanagel et al., 2005a), and contributions of clock genes to 

physiological processes (e.g., sensitization, reward) that have been implicated in addiction 

(Abarca et al., 2002; McClung, 2007). The present study, however, unambiguously 

establishes that gross experimental manipulation of the most fundamental clock property -- 

its endogenously expressed period -- produces no change in alcohol intake or preference in 

three mouse genotypes: under constant darkness, prior T cycles produced robust group 

differences in circadian period of 0.6 h of C57 and of 1.0 h in both HAP2 and LAP2 mice. In 

no case, however, was there any evidence of either increases or decreases in ethanol intake 

or preference. Driving the pacemaker at even more extreme periods – 22 and 26 h – with the 

consequent changes in phase angle of entrainment, also had no effect on alcohol 

consumption. This lack of effect on alcohol drinking was seen across a variety of baseline 

alcohol consumption levels, including low (LAP), moderate (C57), and high (HAP). The 

absence of effects is not attributable to our manipulations being too subtle because our 

induced period after-effects were markedly greater than period differences between selected 

strains. Nor were null effects on drinking due to low statistical power, because we were able 

to discern effects of sex, other dimensions of the lighting condition and their interaction. In 

short, alcohol intake is very stable and well conserved across these circadian manipulations. 

Thus, we can conclude that prior associations between circadian period and phase on the one 

hand, and ethanol intake or preference on the other, despite repeated co-occurrence, are not 

likely to be causal. Instead, these associations may reflect selection artifacts and/or 

pleiotropic actions of genes.

Aside from prior empirical associations, there are several reasons why a causal relationship 

between circadian period and alcohol intake could be reasonably expected. The first relates 

specifically to lighting. Gross experimental manipulation of the lighting cycle (e.g., constant 

light, constant dark) reportedly alters the drinking behavior of rats (Burke and Kramer, 1974; 

Geller, 1971; Geller and Purdy, 1979), although a lack of adequate control groups (Sinclair 

and Geller, 1972) leaves these studies open to alternative interpretations. In general support 

of this proposition, Experiment 3 showed increased drinking of HAP2 and LAP2 mice in 

T24 compared to DD (Fig. 4), an effect of light that is opposite in direction to that reported 

in rats. This effect could be either a direct action of light or a secondary consequence of 

pacemaker entrainment. Arguing against a direct effect of light during the daytime, we 

previously reported equivalent drinking behavior in male C57 mice kept under a normal 12 h 

light phase and those under “skeleton” photoperiods (Trujillo et al., 2009). In the latter case, 

entrainment is maintained by 1 h light pulses at dawn and dusk that replace the entire 12 h 

light phase, which is otherwise dark. Conversely, breaking up daily presentation of 12 h of 

light into two 6 h epochs decreased consumption in this same strain (Millard and Dole, 

1983). Because this manipulation alters the manner in which the circadian system is 

entrained, at least some actions of light depend on their interaction with the circadian clock.
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Actively driving the pacemaker at periods of 22 or 26 hours as in Experiment 2 induces 

differential engagement of the circadian pacemaker by light. In the former case, entrainment 

requires the endogenous period (~24 h) to be shortened, and this is achieved by light falling 

late in the subjective night to produce daily phase advances of ~ 2 h. For entrainment to T26, 

light must fall in the early subjective night to produce daily ~ 2 h delays. The mechanisms 

and consequences of phase advances and delays, moreover, differ markedly (Illnerova, 1991; 

Yan and Silver, 2004): for example, the circadian pacemaker requires longer to return to its 

steady state after advances than after delays, and repeated exposure to advances but not 

delays accelerates mortality in aged mice (Davidson et al., 2006). T22 mimics the “owl” 

chronotype associated with higher alcohol intake in humans and exposes mice to health 

compromising phase advances, whileT26 mimics the “lark” chronotype through less 

stressful phase delays. Thus, although this and prior studies establish entrainment-mediated 

effects of light on alcohol intake (Fig. 5; Millard and Dole, 1983), the relative phasing of 

light and the pacemaker is of no measurable significance to male C57 mice. A subsidiary 

hypothesis – that an abrupt transition between entrainment periods would alter alcohol 

intake – was also not supported.

The effects of the lighting cycle (versus DD) in Experiment 3 differed by sex and line, with 

HAP2 females drinking nearly twice as much in T24, and males little affected. Sex affects 

myriad aspects of ethanol response in rodents (Devaud et al., 2003), and sex by lighting 

interactions specifically have been reported in HAD1 rats under a repeating jetlag protocol 

(Clark et al., 2007). In HAP2 mice, as well, sex can determine the influence of external 

factors (e.g., stress) on ad libitum alcohol consumption (Chester et al., 2006).

A second reason for expecting a connection between circadian period and alcohol intake 

relates to the temporal organization of multiple physiological systems under SCN control. 

Just as the light/dark cycle entrains the master pacemaker, the SCN entrains the oscillatory 

function of a vast array of tissues through diverse signals via both humoral and neural 

mechanisms (Guo et al., 2006; Liu et al., 2007). Thus, cells in the heart, liver, spleen, 

thymus, esophagus, kidney, etc. are themselves rhythmic and the phase relation between 

these various tissues is determined by the SCN (Guo et al., 2006; Yamazaki et al., 2000). 

Both entrainment theory and empirical results establish that period after-effects would 

produce changes in phase relationships among peripheral oscillators (Molyneux et al., 

2008). As temporal ordering in the internal milieu is of profound significance for 

physiological organization (Hrushesky, 1993), rearrangements of temporal order would be 

considered by many chronobiologists to be a form of circadian disruption and thus a general 

physiological stressor. Because of the formal properties of entrainment mechanisms, even 

0.5 to 1.0 h changes in circadian period could be expected to produce substantial changes in 

phase angle.

Whereas substantial functional reorganization of the circadian system did not alter total 

alcohol intake, we nonetheless confirm an important role of the circadian system in drinking 

behavior. Regardless of whether they are in DD or on T cycles, C57 mice are shown here to 

express very distinct circadian rhythms in alcohol licking. In HAP2 and LAP2 mice, 

drinking rhythms free-running in DD were not directly assessed, but drinking and activity 
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rhythms were very similar in T24 (Fig. 6) just as they were as previously reported in C57 

mice (Trujillo et al., 2009).

An unexpected finding was the association between high activity levels and high ethanol 

intake (e.g., female HAP2 mice were most active and drank the most). In this study, HAP 

mice ran three times as much LAP mice. Alcohol was not present during this testing, and 

therefore these differences cannot be caused by its acute pharmacological effects. Wheel-

running behavior has been linked to motivation and reward systems (Meeusen, 2005), and 

wheel running and ethanol consumption can substitute for one another in C57 mice (Ozburn 

et al., 2008). As a motivated and rewarding behavior, wheel-running might be expected to 

serve as an index of the tone or sensitivity of reward systems relevant also to drugs of abuse 

(de Visser et al., 2007; Ozburn et al., 2008). Future work might also consider general home 

cage activity as this also strongly correlates with drinking behavior, but which, to our 

knowledge, has not yet been shown to have the same reinforcing properties as wheel-

running. Post-hoc analysis showed that wheel-running and general activity levels are 

themselves highly correlated (r=0.53, n=26, p < 0.01) even though these measures were 

taken 5 months apart. In the present case, activity was detected when a mouse 

simultaneously touched the wire cage lid and a stainless steel plate on the cage floor and 

thus may have captured potentially rewarding behaviors such as play, exploration or 

climbing.

It is unclear why artificial selection for alcohol intake commonly brings along a circadian 

activity phenotype. Prior studies document shorter free-running periods in three independent 

selections for high- versus low-preferring rodents (Hofstetter et al., 2003; Rosenwasser et 

al., 2005b). This convergence is impressive given that the free-running period is often 

considered to be the most fundamental clock property and a close reflection of the activity of 

the master pacemaker. The current data from HAP2 and LAP2, however, do not conform to 

the pattern. Period differences between lines appeared only in the presence of alcohol, and 

here the line difference was opposite that reported in other line pairs (Hofstetter et al., 2003; 

Rosenwasser et al., 2005b). Because alcohol may alter circadian period (Rosenwasser et al., 

2005a; Seggio et al., 2009), the more relevant measures to compare with the prior literature 

are those collected from alcohol naïve or abstinent mice. Neither general locomotion nor 

wheel-running periods collected under these conditions evince any suggestion of a period 

difference. While the lack of difference between replicate 2 HAP and LAP mice is puzzling, 

genetic correlations do not always replicate. Drawing from suggestions provided by Crabbe 

et al. (1990), the overall pattern of differences in tau between HAP and LAP mice (a 

significant difference in one set of replicates but not the other) may be considered to be 

moderately supportive of a genetic correlation between tau and ethanol consumption. The 

convergence of period effects is qualified also by their occurrence only in constant light and 

not constant dark in ethanol-preferring (P) versus nonpreferring (NP) rats (Rosenwasser et 

al., 2005b), suggesting in that case that the strain difference might derive from altered light 

sensitivity rather than to pacemaker period, per se.

As an analytical tool, T cycles have been successfully used to define the contribution of the 

circadian pacemaker to diverse aspects physiological and behavior (Carmichael et al., 1981). 

Here we used T cycles to define better the nature of the circadian contribution to alcohol 
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consumption. Although mice exhibit marked circadian rhythms in alcohol intake, the 

amount of alcohol consumed is broadly independent of how the circadian clock is entrained 

or free-runs. The reorganization of the cellular and network properties of the circadian 

pacemaker induced to run at different periods, thus, is insufficient to affect alcohol intake or 

preference. Alteration of the phasing of the pacemaker relative to the entraining light/cycle 

likewise does not imply any change in alcohol consumption nor does rearrangement of the 

phase relationships among multiple organ systems downstream of the pacemaker. In totality 

these results establish a great resilience of alcohol intake mechanisms to major variations in 

the organization of the circadian system. Instead, many of the myriad processes that 

influence alcohol intake (e.g., taste preference, arousal, reactivity, reward, etc.) are certainly 

targets of circadian regulation. Systems operating at this level of physiological organization, 

between the master pacemaker on one hand and global internal milieu on the other, are the 

most likely conduits for circadian influence. Finally, these data do not exclude the possibility 

that more dynamic disruption of circadian organization could influence alcohol consumption 

such as may occur, for example, outside the limits of entrainment or with repeated jetlag or 

shift-work (Clark et al., 2007; Martino et al., 2008; Woelfle et al., 2004).
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Figure 1. 
A–C. Schematic representation of the experimental protocols used in Experiments 1–3. 

Lighting conditions for each phase are indicated with arrows showing the trajectory of 

exposure for different groups. When ethanol was present, it was always delivered in the form 

of 2 bottle choice (2BC) during which EtOH intake and preference were always determined 

volumetrically. The measures collected and reported are indicated for each experimental 

interval. In Experiment 3, asterisk denotes that licking rhythms were recorded in lieu of 

activity rhythms for the control subjects in T24.
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Figure 2. 
A–C. Representative double-plotted actograms of locomotor and licking activity by 

C57BL/6J mice during 28 days of 24 hour ethanol exposure in constant dark (DD) following 

exposure to T22 (A), T24 (B) and T26 (C). Recording was alternated between licking and 

general locomotion, and intervals of licking data are indicated with background shading. D. 

Mean (± SEM) τ over the same interval (n = 7–8/group). E–F. Mean (± SEM) ethanol intake 

per 24 h (g/kg) and alcohol preference by group.
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Figure 3. 
A–C. Average licking rhythms of mice during entrainment to T22 (A), T24 (B) and T26 (C). 

Shown are activity profiles over 24 to 30 cycles at their respective environmental period, T, 

and averaged across the 7–8 animals in each group. Profiles are scaled from zero to the 

averaged group maximum. Shading indicates the half of the cycle in darkness. D-F. 

Representative double-plotted licking rhythms of individual animals maintained 

continuously in T22, T24, and T26, respectively. Examples of animals transferred from T22 

or T26 to T24 are not shown. G. Mean (± SEM) phase angle of entrainment for drinking 

rhythm relative to lights off (negative number indicates drinking begins ahead of lights out). 

H–I. Mean (± SEM) ethanol intake per 24 h (g/kg) and alcohol preference by group.
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Figure 4. 
A–C. Mean (± SEM) circadian period, activity counts, and rhythm power of general 

locomotor activity of HAP2 and LAP2 mice maintained under T24 or exposed to DD. 

Sample size for respective conditions is indicated in A. D–E. Representative double-plotted 

actograms of female HAP2 and LAP2 mice in DD.
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Figure 5. 
A–B. Mean (± SEM) ethanol intake per 24 h (g/kg) and alcohol preference of male and 

female HAP2 and LAP2 mice maintained on T24 or in DD. C–E. Mean (± SEM) measures 

of circadian rhythmicity in DD.
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Figure 6. 
Average daily rhythms in general locomotor activity (solid lines) and in ethanol licking 

(dashed lines) of female and male HAP2 and LAP2 mice maintained under T24. General 

locomotor activity was averaged between animals (n = 4–5) in 30 min bins over 15 days. 

Licking data were processed similarly over 15 days that followed the activity data. Note that 

groups are scaled differently, but in all cases, licking rhythms are scaled at one fifth that for 

activity.
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Figure 7. 
A–C. Mean (± SEM) circadian period, activity counts, and rhythm power of general 

locomotor activity of HAP2 and LAP2 mice maintained in DD following T22 or T26. D–E. 

Mean (± SEM) ethanol intake per 24 h (g/kg) and alcohol preference of male and female 

HAP2 and LAP2 mice under the same conditions and in T24. Sample size in C and E as in 

A and D, respectively.
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Table 1

Wheel-running measures (mean ± sem) of male HAP2 and LAP2 mice under entrained and free-running 

conditions.

LD 12:12

HAP2 LAP2

Phase angle of entrainment (h) −0.05 ± 0.04 −0.07 ± 0.05

Statistical power (Q) 1,652 ± 113 1,074 ± 174

Running intensity (rev/day) 25,294 ± 1,936 10,127 ± 2,715

DD

HAP2 LAP2

Phase angle of entrainment (h) 23.23 ± 0.12 23.24 ± 0.08

Statistical power (Q) 1,164 ± 159 734 ± 123

Running intensity (rev/day) 19,459 ± 3,438 6,319 ± 2,190
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