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Abstract 

Many oncoproteins are considered undruggable because they lack enzymatic activities. In 

this study, we present a small molecule-based anticancer agent that acts by inhibiting dimerization 

of the oncoprotein survivin, thereby promoting its degradation along with spontaneous apoptosis 

in cancer cells. Through a combination of computational analysis of the dimerization interface and 

in-silico screening, we identified one compound that induced proteasome-dependent survivin 

degradation. Analysis of a set of structural analogues led us to identify a lead compound (LQZ-7F) 

which was effective in blocking the survival of multiple cancer cell lines in a low micromolar 

concentration range. LQZ-7F induced proteasome-dependent survivin degradation, mitotic arrest, 

apoptosis, and it blocked the growth of human tumors in mouse xenograft assays. In addition to 

providing preclinical proof of concept for a survivin-targeting anticancer agent, our work offers 

novel in silico screening strategies to therapeutically target homo-dimeric oncogenic proteins 

considered undruggable.  



3 
 

Introduction 

Survivin is a member of the Inhibitor of apoptosis (IAP) gene family containing a single 

Baculovirus IAP Repeat (BIR) domain, a zinc-finger fold, and an extended C-terminal helical 

coiled coil (1). It is a homo-dimer of a 16.5-kDa protein (2,3). Ectopic survivin over-expression 

causes inhibition of cell death induced by intrinsic and extrinsic stimuli in cell lines (4-9) and in 

animals (10). Survivin is over-expressed essentially in all cancers, but not expressed in most adult 

normal tissues (1,11). Survivin has also been shown to contribute to radiotherapy and 

chemotherapy resistance, and inhibition of survivin sensitizes cancer cells to these treatments (12-

14). Treatments with molecular probes such as antisense oligonucleotide, ribozyme, siRNA, and 

dominant negative mutant all resulted in caspase-dependent cell death and increased apoptosis 

induced by radiation and anticancer drugs (6,14-19). These findings clearly established survivin 

as an ideal target for discovery of anticancer therapeutics. 

Unfortunately, survivin belongs to a group of proteins that are considered undruggable due 

to lack of enzymatic activities. Although small molecule inhibitors have been identified that would 

interfere with the function of this type of proteins by blocking their interaction with other essential 

proteins, this approach has not led to drug candidates for clinical trials except in rare cases. In the 

case of survivin, targeting its expression has been attempted to avoid targeting survivin protein 

directly. For example, YM155, a small molecule compound, has been identified to inhibit survivin 

expression by targeting its transcription (20) and later was shown to inhibit transcription factors 

such as SP1 (21). However, several phase II trials of YM155 showed only limited or modest at 

best efficacy on human cancers (21). An antisense oligonucleotide, LY2181308, that inhibits 

survivin expression has also been tested as a single agent in phase I trial for solid tumors (22) and 

in combination with docetaxel in phase II trial for castration-resistant prostate cancers (23). 
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Unfortunately, neither of these two trials showed any benefit of using LY2181308. Thus, new 

inhibitors of survivin are clearly needed perhaps by developing a strategy to target directly at the 

survivin protein itself.  

It is known that exposure of the hydrophobic interface of a dimeric protein often leads to 

conformational change (24,25), which causes destabilization and degradation of the protein by 

proteasome or autophagy (26). Because survivin exists as a homo-dimer, we hypothesized that a 

small molecule compound that inhibits survivin dimerization may promote survivin degradation 

via the proteasome and, thus, eliminates the protein and leads to spontaneous apoptosis. We 

recently developed a novel strategy to identify interfacial hydrophobic core units critical for homo-

dimerization (27,28). Using this strategy, we tested the above hypothesis by first identifying the 

hydrophobic core residues critical for survivin dimerization followed by in-silico screening for 

inhibitors targeting the critical core residues as well as in-vitro and cell-based assays. We identified 

a hit compound, LQZ-7, which dissociated dimeric survivin and induced proteasome-dependent 

survivin degradation. Further analysis helped identify several active analogues of the hit compound, 

which resulted in a potential lead compound (LQZ-7F) that inhibits survival of multiple cancer 

cell lines with low micromolar IC50, suppresses xenograft tumor growth, and inhibits survivin in 

vivo.   

Materials and Methods 

Materials and cell lines.  Antibodies against FLAG tag (F3165), α-tubulin (T9026), and β-

actin (A5316) were obtained from Sigma-Aldrich (St. Louis, MO, USA). The antibody against 

survivin (2808), iScriptTM cDNA Synthesis Kit, StepOnePlusTM Systems kit, and the Metafectene 

Pro transfection reagent were purchased from Cell Signaling Technology (Danvers, MA, USA), 

Bio-Rad Laboratories (Hercules, CA, USA), Applied Biosystems (Warrington, UK), Biontex 
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(München, Germany), respectively. The enhanced chemiluminescence reagents and CNBr-

activated Sepharose 4B were from GE Healthcare (Uppsala, Sweden). Cell culture media and fetal 

bovine serum were from Media Tech (Herndon, CA) or Applied Biosystems-Life Technologies 

(Carlsbad, CA, USA). All other chemicals were purchased from Sigma or Fisher Scientific. The 

human cancer cell lines used in this study were all from ATCC and have been authenticated by 

short tandem repeat analysis on January 21, 2013. 

MD Simulation analysis of water trafficking. MD simulations of survivin dimers and water 

trafficking were carried out using the AMBER9 package as previously described (27). Crystal 

structure of survivin dimer with PDB code 1F3H was acquired from RCSB protein databank (2). 

Zinc parameters were developed by Y.P. Pang using the cationic dummy atom (cada) approach 

(29). Survivin dimer was solvated in a truncated octahedron box with edges no closer than 10Å to 

any atom in the solute with appropriate number of counter ions added to neutralize each system. 

Particle Mesh Ewald (PME) was used to calculate the long-range electrostatic interactions and the 

nonbonded cutoff was set to 8.0 Å. Each system was equilibrated by a four-step protocol prior to 

the 20-ns production MD simulation.  

Total buried dimeric interface areas and buried surface areas decomposed to each residue 

were calculated by areaimol of the CCP4 package. Dimerization core residues that have more than 

75% solvent accessible area buried in the dimeric interface were selected. Survivin has one 

dimerization core unit consisting of four residues: Leu98 and Phe101 from one chain and same 

residues from another chain. This dimerization core entity is further validated by its water 

exchange rate determined via 20-ns water explicit MD simulation as previously described (27,28). 

A sphere of 6 Å in radius was drawn from the center in the mass of the core. Water molecules that 

fell into the sphere during the simulation were monitored and their residue IDs were recorded by 
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VMD program. Then, water molecules from every 20 frames (representing a 200 ps timespan) 

were pooled and compared with that from the previous 20 frames. Water molecules with residue 

IDs that existed in the current 20 frames but did not appear in the previous 20 frames were 

considered water molecules that moved in during the current 200 ps timespan. Water molecules 

with residue IDs found in the current 20 frames but did not show up again in the next 20 frames 

were considered water molecules that moved out during this 200 ps timespan. 

In-Silico Virtual Screening. Structure-based in-silico screening was performed as 

previously described (30,31). Briefly, the 3-D coordinates of survivin were acquired from PDB 

code 1F3H. Only one of the two chains was kept and the protein chain was prepared for docking. 

Molecular surface was calculated using DMS (Distributed Molecular Surface) program. Partial 

charges and protons were added to the protein by UCSF Chimera Dock Prep module (32). In-silico 

dock screening of 200,000 compounds from SPECS’s library (www.specs.net) was performed 

using UCSF DOCK 6.0 program (33). The docking of each compound was first scored with the 

DOCK GRID scoring function (34). The top-scoring 1000 compounds were analyzed again and 

re-scored using the AMBER scoring function of DOCK 6.0 package (35). These compounds were 

clustered using MOE (Molecular Operating Environment) program and visually examined using 

the UCSF Chimera ViewDock function. Final 100 compounds were selected based on the 

combination of GRID and AMBER score, drug likeness (Lipinski’s rule of five), and on 

consideration of maximizing compounds from different clusters. 

Non-denaturing PAGE. 1-g purified survivin were incubated with 20 µM candidate 

compounds, DMSO vehicle control, or different concentrations of LQZ-7 before mixing with 

equal volume of 2 sample buffer (100 mM Tris, pH 8.0, 20% glycerol, 0.005% bromophenol blue, 

2% Triton X-100, and 100 mM DTT) followed by incubation at room temperature for 30 min. 
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After centrifugation at 11,000 × g for 10 minutes, the supernatants were separated by 

electrophoresis on 15% Tris/glycine polyacrylamide gel followed by transfer to PVDF membrane 

for western blot analysis as previously described (36). 

Survival assays (MTT and colony formation). These assays were performed as previously 

described (37,38). Briefly, MTT assay was performed by seeding 2500 cells in 96-well plate and 

cultured 24 hours before addition of survivin inhibitors at different concentrations and continuous 

culture for 3 days. The cells were then subjected to MTT assay. For colony formation assay, 100 

cells/well were seeded in 6-well plates and cultured for 24 hours before addition of survivin 

inhibitors or DMSO vehicle. The cells were continuously cultured in the presence of survivin 

inhibitors or DMSO for 10-14 days followed by staining with crystal violet and counting manually. 

 Fluorogenic assay. Fluorogenic assay was performed as previously described (39). Briefly, 

LQZ-7 was pre-incubated without or with 10 µg purified survivin for 30 min at 37oC followed by 

determination of fluorescence emission at 485 nm with excitation at 590 nm. A dose response-

curve was fitted to an equation describing one-site binding model to determine the Kd of LQZ-7 

binding to survivin using GraphPad Prism 4.0 software. 

 Apoptosis assay. Annexin V apoptosis assay was performed using a kit as described by the 

manufacturer (Invitrogen). Briefly, treated cells were harvested after washing with PBS and then 

resuspended in annexin-binding buffer (10mM HEPES, pH7.4, 120 mM NaCl, 2.5mM CaCl2) at 

the density of 1×106 cells/ml. After addition of Alexa Fluor 488 annexin V and propidium iodide, 

the cells were incubated for 15 minutes at room temperature followed by dilution with annexin-

binding buffer and FACS analysis of fluorescence emission at 530 nm and 575 nm with 488 nm 

excitation. 
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 Half-life determination and effect of proteasome inhibitors on survivin degradation. The 

effect of survivin inhibitors on the half-life of survivin was determined as previously described 

(40). Briefly, PC-3 or DU145 cells were pre-treated with 2 µM cycloheximide for 1 hour followed 

by incubation without or with 9 µM LQZ-7 or 5 µM LQZ-7F for different times. The cells were 

then harvested for Western blot analysis of survivin. 

           For the proteasome inhibitor rescue experiment, PC-3 cells were seeded in 10-cm dishes at 

8×105 cells/dish and cultured for 48 hours followed by replacement with fresh media containing 

DMSO control, 7 µM MG-132 or 70 nM bortezomib and incubation for 2 hours.  LQZ-7 and LQZ-

7F were then added to the culture to final concentrations of 10 and 5 µM, respectively, and 

incubated for additional 24 hours. The cells were then harvested and washed with PBS and lysed 

for Western blot analysis of survivin. 

Efficacy analysis in xenograft mouse model. For efficacy study, 3×106 PC-3 cells were 

injected subcutaneously in the flanks of 10 4-6 week old male NOD/SCID mice. When the tumor 

volume reached ~100 mm3, the mice were randomized into two different groups (5/group) with 

one group treated by vehicle control and the other by LQZ-7F at 25 mg/kg via IP injection once 

every three days for total of 8 treatments. Tumor volume and body weight were measured every 

two days. On the 30th day after the initial treatment, mice were euthanized and the tumor tissues 

were harvested, weighed, and subjected to hematoxylin and eosin (H&E) staining as well as 

Western blot and immunohistochemistry analysis of survivin. 

Results 

Analysis of dimerization domain of survivin. To effectively target the dimerization domain 

of survivin, we first analyzed the dimerization interface to identify residues that are critical for 

survivin dimerization as targets for in-silico screening. The interacting residues between the two 
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identical subunits are comprised of residues 6-10, 93-99 and 101-102 (Leu6, Pro7, Pro8, Ala9, Trp10, 

Phe93, Glu94, Glu95, Leu96, Thr97, Leu98, Gly99, Phe101, Leu102). About 80% of these residues are 

hydrophobic, which is comparably high considering the average of non-polar interaction is only 

~50% in dimeric proteins 1. The dimeric survivin has a total calculated solvent accessible area of 

18,039 Å2. The buried accessible area in the dimeric interface of a monomeric survivin is 550 Å2 

and it occupies only 6% of the total accessible area of a monomer (9,044 Å2), which is much less 

than the average value (~20%) in dimeric or oligomeric proteins 1,2,3. The relatively small area and 

the high hydrophobicity of the interactive surface indicate that it may be a good target site for drug 

discovery.  

Previously, we found that dimeric proteins may have dimerization core units that are sealed 

from water penetration and are critical for homo-dimerization (27). Further analysis of the dimeric 

interface using our previously described computational approach (27) shows that survivin has one 

dimerization core unit consisting of four residues, Leu98 and Phe101 from one subunit and the same 

residues from another subunit (Fig. 1A). Water exchange rate in this dimerization core unit was 

determined by performing 20-ns water explicit MD simulation and a computational method 

developed by us previously (27). As shown in Fig. 1B, few water molecules moved in or out of 

the dimerization core during the 20-ns simulation with an estimated water exchange rate of 0.5 

water/200 ps, which is comparable with that of the 14-3-3σ dimerization core (27). It is, however, 

significantly lower than that of the mutant 14-3-3σ molecule, which lost dimerization activity with 

a much higher water exchange rate (>4 water/200 ps). These findings suggest that the dimerization 

core unit of survivin consisting of Leu98 and Phe101 is tightly sealed and may be critical for the 

formation of stable survivin dimers. Disrupting this core formation may affect survivin 



10 
 

dimerization. Indeed, mutation of Phe101 to Ala101 together with Leu102 to Ala102 mutation has been 

shown to disrupt survivin dimerization (41).  

Identification of LQZ-7 targeting the dimerization domain of survivin. To identify small 

molecule compounds that can potentially inhibit survivin dimerization, we performed in-silico 

screening of ~200,000 compounds targeting the critical hydrophobic core residues Leu98 and 

Phe101 in the dimeric interface using DOCK. Of the 100 top-scoring compounds of diversified 

structures, 49 chemical samples were commercially available and tested first for their cytotoxicity 

using two human cancer cell lines DU145 and PC-3. As shown in supplemental Fig. S1, only 

compounds 4, 7, 9, 12, 21, 36, and 42 at 20 µM were able to inhibit ≥50% survival of both DU145 

and PC-3 cells. Consequently, these compounds were chosen for further investigation.  

The selected compounds were tested for their ability to dissociate survivin dimers using 

purified survivin and non-denaturing PAGE analysis. As shown in Fig. 2A, compound #7 (named 

LQZ-7 with structure shown in Fig. 2B) was able to affect the mobility of purified survivin, 

presumably by dissociating the dimeric survivin into monomers. To confirm its activity and test 

its potential selectivity, we had LQZ-7 resynthesized and performed a dose-response analysis of 

its activity in dissociating dimeric survivin and an irrelevant control but similar dimeric protein, 

14-3-3σ. Although 100 µM LQZ-7 appears to be required to completely dissociate dimeric 

survivin (Fig. 2C), LQZ-7 at 100 µM had no effect on 14-3-3σ dimerization (Fig. 2D). We also 

performed non-denaturing PAGE analysis of nascent proteins synthesized in a cell-free system in 

the presence of LQZ-7. As shown in Fig. 2E, 20 µM LQZ-7 achieved a complete inhibition of 

survivin dimerization. Together, these findings suggest that LQZ-7F can inhibit dimerization of 

nascent survivin and dissociate existing dimeric survivin with selectivity over other homo-dimeric 

proteins such as 14-3-3σ. The finding that less LQZ-7 is required to completely inhibit 
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dimerization of nascent survivin than to completely dissociate existing dimeric survivin suggests 

that inhibiting dimerization of newly synthesized proteins may be dynamically favorable than 

dissociating the existing dimeric proteins. 

To verify that LQZ-7 indeed binds to survivin and inhibits survivin dimerization, we took 

advantage of the intrinsic fluorescent property of LQZ-7 and performed a fluorogenic titration 

assay in the presence or absence of survivin as previously described (39). Fig. 2F shows that the 

intrinsic fluorescence of LQZ-7 dramatically increases in the presence of recombinant survivin, 

indicating that LQZ-7 likely interacts with survivin. The Kd of LQZ-7 binding to survivin is 

estimated to be ~0.24±0.11 µM.  

LQZ-7 accelerates proteasome-dependent degradation of survivin. Exposure of 

hydrophobic interface of a dimeric protein often leads to conformational change (24,25), which 

causes destabilization and degradation of the protein by proteasome or autophagy (26). We, thus, 

hypothesized that LQZ-7 may cause proteasome-dependent degradation of survivin by 

dissociating survivin dimers and exposing the hydrophobic dimeric interface. To test this 

hypothesis, we first treated DU145 cells with LQZ-7 for different times followed by determination 

of endogenous survivin using Western blot analysis. Fig. 3A shows that LQZ-7 treatment indeed 

reduces survivin protein level compared with vehicle control treatment. Similar results were also 

observed with PC-3 cells (data not shown). However, LQZ-7 treatment had no effect on the level 

of survivin mRNA as determined using real time RT-PCR (Fig. 3B). LQZ-7 treatment also 

effectively reduced the level of ectopic Flag-tagged survivin in HEK293 cells under the control of 

an exogenous CMV promoter (Fig. 3C). These observations together suggest that survivin loss 

induced by LQZ-7 is likely at the protein but not mRNA level. 
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We next determined if LQZ-7 causes survivin degradation by examining its effect on 

survivin half-life. For this purpose, DU145 and PC-3 cells were pre-treated with cycloheximide to 

inhibit synthesis of new proteins followed by treatment with LQZ-7 for different times. Fig. 3D-E 

show that the half-life of survivin is 1.5-2.5 hrs in control-treated DU145 and PC-3 cells, consistent 

with previously reported survivin half-life (42,43). However, following LQZ-7 treatment the half-

life of survivin was reduced to ~30 min. Co-treatment with a proteasome inhibitor, MG132 or 

bortezomib, reversed LQZ-7-induced survivin loss (Fig. 3F), consistent with a previous report that 

survivin degradation is mediated by the proteasome (44). We also found that LQZ-7 does not 

inhibit survivin protein synthesis as determined using [35S]methionine pulse-labeling in 

combination with immunoprecipitation of survivin following LQZ-7 treatment (data not shown). 

Together, the above findings suggest that LQZ-7 may cause proteasome-dependent survivin 

degradation possibly by inhibiting dimerization and exposing the hydrophobic core residues of 

survivin. 

Characterization of LQZ-7 analogues. Although LQZ-7 dissociates survivin dimer in vitro 

and causes survivin degradation in cells, cell-based cytotoxicity assays showed that the IC50 of 

LQZ-7 in human PC-3 and DU145 cells was ~25 µM (Fig. 4B). The modest IC50 may be due to 

the possibility that the carboxyl group in LQZ-7 (Fig. 4A) impedes its cellular permeability. To 

improve cellular effect of LQZ-7, we searched the SPECS database and identified six 

commercially available analogues (LQZ-7A, B, C, D, E, and F, Fig. 4A). The chemical samples of 

these analogues were obtained and tested first for their cytotoxicity to DU145 and PC-3 cells 

compared with the initial hit LQZ-7. Fig. 4B shows that 5 of the 6 analogues have much lower IC50 

than LQZ-7 for both cells. These analogues together with LQZ-7 were then used to test their effect 

on the expression of ectopic Flag-tagged survivin in HEK293 cells. As shown in Fig. 4C, while 
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LQZ-7A, D, and E had no effect on the level of Flag-tagged survivin, LQZ-7B, C, and F all reduced 

survivin protein level. It appears that LQZ-7C and F completely eliminated survivin whereas the 

parent compound LQZ-7 did not, consistent with their lower IC50 than the parent compound. The 

fact that LQZ-7E has high IC50 and does not reduce survivin protein suggests that LQZ-7E may not 

bind to and inhibit survivin. It remains unknown why LQZ-7A and D have no effect on survivin 

level while maintaining low IC50 (see Discussion). 

Of the two analogous (LQZ-7C and F) that have the best IC50 and ability to eliminate survivin, 

LQZ-7F is unique, smaller, and simpler in structure with a primary amine group as an advantage for 

further study (see below). Thus, we elected to pursue LQZ-7F further as a potential lead and tested 

its activity in suppressing the expression and inducing degradation of endogenous survivin. Similar 

as LQZ-7, LQZ-7F effectively suppressed endogenous survivin expression in both DU145 and PC-

3 cells (Fig. 4D) and increased degradation of endogenous survivin (Fig. 4E). Furthermore, 

proteasome inhibitors MG132 and bortezomib both were able to rescue LQZ-7F-induced survivin 

degradation (Fig. 4F). Thus, LQZ-7F, similar as its parent compound LQZ-7, also induces survivin 

degradation in a proteasome-dependent manner. 

LQZ-7F interaction with survivin. To investigate if LQZ-7F indeed binds to survivin, we took 

advantage of the primary amine group and immobilized LQZ-7F onto CNBr-activated Sepharose 

for a pull-down assay using purified survivin. As shown in Fig. 4G, survivin was successfully pulled 

down by Sepharose-immobilized LQZ-7F, but not by the control beads without LQZ-7F. Thus, 

LQZ-7F, similar to LQZ-7, may bind directly to survivin. To understand how LQZ-7F interacts with 

survivin, we performed docking analysis of LQZ-7F in the dimerization interface of survivin, 

which revealed two key interactions between LQZ-7F and survivin: (a) H-bond between the 

primary amine group of LQZ-7F and Glu94 of survivin; (b) - stacking and hydrophobic 
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interaction between the tetracyclic furazanopyrazine ring of LQZ-7F and the hydrophobic residues 

Trp10 and Phe93 in addition to the hydrophobic core residues Leu98 and Phe101 (Fig. 4H). 

LQZ-7F inhibits survival of multiple cancer cell lines by inducing apoptosis. Survivin is 

ubiquitously up-regulated in human cancers and, thus, inhibiting survivin may be a general 

approach to help eradicate many cancers. Toward this goal, we tested the effect of LQZ-7F on 

survival of multiple human cancer cell lines representing acute myeloid leukemia and cancers of 

breast, colon, lung, pancreas, prostate, and ovary using MTT assay. As shown in Fig. 5A, LQZ-

7F effectively inhibited survival of all cancer cell lines with IC50 ranging between 0.4-4.4 µM.  

The activity of LQZ-7F in suppressing cancer cell survival was further evaluated using 

colony formation assay for PC-3 and A549 cells.  As shown in Fig. 5B, the colony formation 

efficiency of PC-3 cells was reduced from ~62% of the control to ~52, 12, and 8% following 

treatments with LQZ-7F at 0.2, 0.5, and 1 μM, respectively. A549 cells were more sensitive to 

LQZ-7F with lower IC50 than PC-3 cells and the colony formation efficiency were consistently 

reduced more from 45% of the control treatment to ~2.5% and 0% treated by 0.2 and 0.5 μM of 

LQZ-7F, respectively.  

Previously, it has been shown that dominant negative survivin causes spontaneous 

apoptosis of PC-3, DU145, and LNCaP cells (12). We next tested if LQZ-7F also causes 

spontaneous apoptosis by inhibiting survivin as determined by Annexin V staining. For this 

experiment, we tested PC-3 and HL-60 as representative cells because PC-3 has high while HL-

60 has intermediate IC50 against LQZ-7F (Fig. 5A). As shown in Fig. 5C, 54-69% apoptosis for 

PC-3 and 66-98% apoptosis for HL60 cells were generated following treatments with 5-10 µM 

LQZ-7F. These findings were further validated by determining the cleavage of PARP-1, a substrate 

of caspases during execution of apoptosis, in both PC-3 and HL60 cells following LQZ-7F 
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treatments (Fig. 5D). 

Finally, we tested survivin expression in all 13 cell lines (Fig. 5E) and performed a 

correlation analysis between survivin level and IC50. As shown in Fig. 5F, the IC50 values strongly 

associate with survivin protein level in these cells with a Pearson correlation coefficient of 0.52, 

indicating that LQZ-7F may suppress the survival of these cancer cells by acting on survivin. 

LQZ-7F treatments disrupt microtubule structure and cause mitotic arrest. Survivin has 

been shown to have dual functions in inhibiting apoptosis and in promoting cell cycle progression 

(1). The later was thought to derive from survivin action in destabilizing microtubules both in vitro 

and in vivo (45,46). Thus, to further determine LQZ-7F effect on survivin, we analyzed 

microtubule structure following LQZ-7F treatment in PC-3 cells. As shown in Fig. 6, the control 

DMSO-treated cells have orderly microtubule fibers in all cells. However, the microtubule 

structure was severely disrupted following LQZ-7F treatments. It also appears that many cells are 

arrested in mitotic phase with aberrant spindles following LQZ-7F treatments. These observations 

are consistent with the role of survivin in microtubule dynamics (47,48) and in proper chromosome 

segregation and cytokinesis (49,50).  

LQZ-7F inhibits growth of xenograft tumors by inhibiting survivin. We next determined if 

LQZ-7F is active in suppressing tumor growth in vivo using a xenograft animal model. For this 

purpose, NOD/SCID mice were first implanted subcutaneously with PC-3 cells to establish 

xenograft tumors. PC-3 was chosen because it has the highest IC50 (Fig. 5). When the xenograft 

tumor reached the size of ~100 mm3, the mice were randomized into two groups and treated with 

25 mg/kg LQZ-7F or vehicle control via IP injection once every three days for a total of 8 

treatments. As shown in Fig. 7A, the growth of xenograft tumors was significantly inhibited in the 

LQZ-7F-treated group compared to the tumors in vehicle control-treated group. However, the body 
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weight of mice in the treatment group remained constant after multiple dosing (Fig. 7B), indicating 

that LQZ-7F may not cause major toxicity after multiple dosing. In fact, the body weight of the 

control group dropped slightly possibly due to disease burden of xenograft tumors. This symptom 

appears to be alleviated by LQZ-7F treatment, consistent with the smaller tumor size in the treatment 

group. 

The final dissected tumors in the treatment group appear to be small and round with smooth 

surface whereas the tumors of the control group appear to be irregular and bigger (Fig. 7C), 

suggesting that the tumors in the treatment group are confined whereas the tumors in the control 

group are aggressive. The average weight of the tumors in the treatment group is significantly less 

than that in the control group (Fig. 7D). The LQZ-7F-treated tumors also appear to have more 

apoptotic cells as indicated by condensed chromatin than the control-treated tumors (Fig. 7E). 

Western blot and IHC staining analyses showed that survivin in xenograft tumors of the LQZ-7F-

treated group was dramatically reduced compared with the tumors of the control-treated group 

(Fig. 7E-F), suggesting that the effect of LQZ-7F on xenograft tumor growth may be due to its 

binding to survivin and induction of survivin degradation in vivo.  

Discussion 

In this study, using in-silico screening targeting the critical hydrophobic core residues in 

the dimeric interface following detailed analysis of the buried surface area, we successfully 

identified a hit compound (LQZ-7) and a potential lead inhibitor (LQZ-7F) that can bind directly 

to survivin and cause proteasome-dependent survivin degradation. LQZ-7F has an IC50 of 0.4-4.4 

µM against multiple cell lines of different human cancers and induces spontaneous apoptosis. It is 

also effective in suppressing xenograft tumor growth and reduces survivin level in xenograft 

tumors.   
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This study provides a proof-of-concept that the hydrophobic core residues in the dimeric 

interface of undruggable homo-dimeric proteins can be targeted for drug discovery. Combining 

computational analysis of the dimeric interface to first identify these core units with in-silico 

screening, as demonstrated here, is likely a viable approach that will help succeed in identifying 

small molecule compounds inhibiting dimerization of the target protein. 

The finding that LQZ-7 and its analogues induce survivin degradation is consistent with 

the concept that exposure of the hydrophobic interface of a dimeric protein often lead to 

conformational change (24,25), which causes destabilization and degradation of the protein by the 

proteasome or autophagy (26). Interestingly, not all LQZ-7 analogues induced survivin 

degradation. LQZ-7E had no effect on survivin expression, consistent with its lack of inhibitory 

effect on cell survival, suggesting that LQZ-7E may not bind to and induce survivin degradation. 

However, compounds LQZ-7A and 7D are effective in suppressing cancer cell growth without 

inducing survivin degradation. This finding is intriguing and suggests that these two compounds 

may bind to survivin and inhibit its function but do not trigger proteasome-dependent survivin 

degradation. Alternatively, these compounds may have off-target effects that inhibit cell survival 

but lost their effect on survivin protein. Clearly, future studies are needed to test these possibilities. 

It is noteworthy that mutation of the hydrophobic core residue Phe101 to Ala101 together 

with mutation of Leu102 to Ala102 disrupted survivin dimerization, which did not appear to result 

in survivin degradation (41). This observation apparently is different from our finding using small 

molecule inhibitors to disrupt survivin dimerization. Although the cause for this difference is 

currently unknown, it is possible that the mutant proteins do not exist as true monomers in 

mammalian cells because they can form heterodimers by binding to other proteins such as CRM1 

(41). On the other hand, the monomers induced by small molecule inhibitor such as LQZ-7F may 
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not form heterodimer with other proteins due to existence of the compound in the interface. It is 

also possible that mutation of the hydrophobic core residues reduced the hydrophobicity of the 

interface and, thus, the protein could escape from the cell quality control system while binding of 

the small molecule compound to the interface may increase the hydrophobicity and attract the 

quality control system. Future studies are warranted to test these possibilities.  

It is also noteworthy that a small molecule compound, LLP3, was synthesized previously 

based on the Abbot8, a survivin inhibitor obtained via a NMR-based screening. LLP3 was thought 

to bind to the dimerization interface of survivin (39). However, LLP3 had no effect on survivin 

dimerization or its expression. Instead, it inhibited interaction between survivin and its partner Ran 

protein. Thus, it is not clear if LLP3 truly binds to the dimerization interface of survivin. 

Nevertheless, LLP3 inhibited proliferation of cancer cells but with a much higher IC50 of 14-38 

µM.  
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Figure Legend 

Figure 1. A. Overall structure of survivin dimer. The two subunits shown in ribbon are 

colored in cyan and orange, respectively. Interfacial non-core residues shown in stick 

representation are colored green. The deeply buried dimerization core is represented by their 

molecular surface in gray. B. Water molecules exchanged in the dimerization core unit from MD 

simulation. 

Figure 2. Identification and characterization of LQZ-7. A. Non-denaturing PAGE 

analysis of compound effect on survivin dimerization. Purified survivin was incubated with 

different compounds followed by non-denaturing PAGE analysis of the protein and commassie 

blue staining.  B. Chemical structure of LQZ-7. C-D. Dose-dependent effect of LQZ-7 on dimeric 

survivin (C) and 14-3-3σ (D) as described in panel A. E. Non-denaturing PAGE analysis of nascent 

survivin. Survivin cRNA was used to program cell-free translation in rabbit reticulocyte lysate in 

the absence or presence of LQZ-7. [35S]-labeled nascent proteins were subjected to non-denaturing 

PAGE and autoradiography analysis. F. Dose-dependent binding of LQZ-7 to survivin. The 

intrinsic fluorescence of LQZ-7 was measured in the absence or presence of survivin. 

Figure 3. LQZ-7 induces proteasome-dependent survivin degradation. A-C. Effect of 

LQZ-7 on the expression of endogenous and ectopic survivin. DU145 cells were treated with LQZ-

7 or DMSO vehicle control for different times followed by Western blot analysis of survivin (A) 

or for 48 hrs followed by real-time RT-PCR analysis of survivin mRNA (B). Panel C shows 

Western blot analysis of LQZ-7 effect on ectopic Flag-tagged survivin (F-survivin) in HEK293 

cells. D-E. Effect of LQZ-7 on survivin stability and half-life. DU145 and PC-3 cells were pre-

treated with cycloheximide (CHX) to inhibit protein synthesis followed by chasing for different 

times in the presence of LQZ-7 or DMSO control and Western blot analysis of remaining survivin. 
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Panel E shows quantitation of survivin in panel D. F. Effect of proteasome inhibitors MG132 and 

bortezomib on LQZ-7-induced survivin degradation.  

Figure 4. Characterization of LQZ-7 analogues. A. Chemical structures of LQZ-7 and 

its analogues. B. Effect of LQZ-7 and its analogues on PC-3 and DU145 cell survival as determined 

using MTT assay. C. Effect of LQZ-7 and its analogues on ectopic Flag-tagged survivin in 

HEK293 cells. D. Effect of LQZ-7F on endogenous survivin level in DU145 and PC-3 cells. E. 

Effect of LQZ-7F on survivin stability determined using cycloheximide (CHX) chasing as 

described in Fig. 3. F. Effect of proteasome inhibitors MG132 and bortezomib on LQZ-7F-induced 

survivin degradation. G. Pull-down assay. LQZ-7F was immobilized onto CNBr-activated 

Sepharose and used to pull down recombinant survivin, followed by separation on SDS-PAGE and 

silver staining. H. Predicted binding mode of LQZ-7F (stick and ball) in survivin (ribbon) using 

DOCK. 

Figure 5. Effect of LQZ-7F on cancer cell survival. A. IC50 of LQZ-7F in human cell 

lines of different cancers as determined using MTT assay. 231, MDA-MB-231. B. Effect of LQZ-

7F on human cancer cell survival as determined using colony formation assay. C-D. Apoptosis 

assay. Cells were treated without or with different concentrations of LQZ-7F for 24 hrs followed 

by AnnexinV/PI dual staining and analysis of apoptotic cells using flow cytometry (C) or subjected 

to Western blot analysis of cleaved PARP (D). E. Western blot analysis of survivin protein in 

different human cancer cell lines using 10 µg proteins of total cell lysate each. F. Scatter plot 

analysis of IC50 and relative survivin protein level of different cancer cell lines derived from 6 

experiments. 

Figure 6. Effect of LQZ-7F on microtubule structure. PC3 cells were treated without or 

with 2 μM LQZ-7F for 24 hrs followed by immunostaining of α-tubulin and counter stained with 
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DAPI. The images were captured using confocal microscopy.  

Figure 7. In vivo efficacy of LQZ-7F.  A-B. Effect of LQZ-7F on ectopic xenograft tumor 

growth and body weight in male NSG mice. Arrow heads indicate treatments. C. Gross anatomy 

of xenograft tumors. D. Final wet weight of xenograft tumors. (*p<0.05). E-F. 

Immunohistochemistry and Western blot analyses of survivin in xenograft tumors. Arrowheads 

indicate apoptotic cells with condensed chromatin. 

 


