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Abstract 
Our appreciation of crosstalk between muscle and bone has recently expanded beyond 
mechanical force-driven events to encompass a variety of signaling factors originating in 
one tissue and communicating to the other. While the recent identification of new 
‘myokines’ has shifted some focus to the role of muscle in this partnership, bone-
derived factors and their effects on skeletal muscle should not be overlooked. This 
review summarizes some previously known mediators of bone-to-muscle signaling and 
also recent work identifying a new role for bone-derived TGF-β as a cause of skeletal 
muscle weakness in the setting of cancer-induced bone destruction. Oxidation of the 
ryanodine receptor/calcium release channel (RyR1) in skeletal muscle occurs via a 
TGF-β-Nox4-RyR1 axis and leads to calcium mishandling and decreased muscle 
function. Multiple points of potential therapeutic intervention were identified, from 
preventing the bone destruction to stabilizing the RYR1 calcium channel. This new data 
reinforces the concept that bone can be an important source of signaling factors in 
pathphysiological settings. 
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Introduction 
Interactions between skeletal muscle and bone have long been considered primarily 
based on a simple mechanical understanding. Bone is shaped by mechanical force 
applied by muscles and gravity and bone provides an attachment site for muscle to 
maintain shape and drive locomotion. Recently, however, we have begun to understand 
an additional and more complex endocrine-based crosstalk between bone and muscle 
that goes beyond the mechanical connection. Given the close ties between bone and 
muscle, it is not surprising that development and maintenance of these two tissues are 
coordinated. Further, it would be expected that compromising either bone or muscle by 
disease, disuse/unloading or aging would affect both tissues. It is with this backdrop that 
we describe some previously-known bone-to-muscle signaling factors and then a newly 
identified cause of skeletal muscle weakness in osteolytic cancer in bone.  
Developmental links between muscle and bone 
Muscle and bone develop in close physical association and are interdependently 
regulated throughout development and adult life by mechanical strain, direct signaling 
crosstalk, and endocrine mechanisms. Physical factors such as exercise, aging, or 
disuse cause coordinated changes in bone and muscle mass in both experimental 
animal models and humans. While the anabolic effects of increased movement and 
loading and, conversely, the catabolic effects of immobilization or disuse have been 
well-documented, a clearer understanding of the molecular mechanisms by which bone 
and muscle are so tightly coupled is still very much a work in progress.  
During embryonic development, mesenchymal precursors condense at sites of future 
bone formation. This is followed by differentiation to chondrocytes of the cartilage 
anlage in endochondral ossification or direct differentiation to osteoblasts in the case of 
intramembranous ossification [1]. The skeleton undergoes a modeling phase during 
postnatal growth and then remodels continuously throughout life. These processes are 
controlled by the activities of three major bone cells: osteoblasts, osteocytes, and 
osteoclasts. Osteoblasts line the surface of the bone and, when active, are responsible 
for the deposition of the mineralized matrix of the bone. Osteoclasts are bone-resorbing 
cells derived from the myeloid lineage. They secrete acid and proteases to dissolve the 
mineral component and degrade the collagen matrix, respectively. Osteocytes are 
terminally differentiated cells of the osteoblast lineage which are embedded within the 
bone matrix. They have a unique morphology with long dendritic processes that extend 
through canaliculi in the bone matrix. As such, they are considered the primary sensors 
of mechanical loading in bone, and they also play an important signaling role, both by 
secretion of paracrine factors that regulate osteoblasts and osteoclasts, as well as 
endocrine signals [2, 3]. This is, of course, a highly simplified overview. Each of these 
cell types has multiple other important roles in a biological context. Coordinated activity 
of the bone cells maintains a steady bone mass and controls calcium homeostasis, 
whereas unbalanced activity of osteoblasts or osteoclasts has pathological 
consequences.  
Concomitant with skeletal development during embryogenesis, myogenesis occurs as 
mesodermal precursors differentiate to myoblasts, which then fuse to form myofibers. 
Myofibers, which are post-mitotic, are renewed and repaired in response to injury or 
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growth stimulus by the activation of satellite cells. Satellite cells reside between the 
basal lamina and sarcolemma in resting muscles. Upon stimulation, they undergo a 
myogenic differentiation program and fuse into existing myofibers [4]. Adult muscle 
gains mass primarily through increased myofiber size (hypertrophy).  Overall muscle 
force production is controlled both by the size and the contractile capabilities of 
individual myofibers.  Measurements of the latter, termed muscle specific force, are 
corrected for differences in the size and weight of the muscle [5, 6].   
The mechanical influence of muscle on bone begins during embryonic development [7]. 
Muscle contractions in utero are required for proper bone formation and growth [8-12], 
joint positioning and development [13], and bone morphology [11, 14]. Additional 
studies at early postnatal time points describe the role of muscle force in spontaneous 
fracture reduction [15] and development of the tendon-bone attachment site [16]. There 
are many studies describing the anabolic effects of physical activity and loading on both 
bone and muscle, some of which have been reviewed elsewhere [17, 18]. Indeed, for a 
detailed discussion of mechanotransduction and also the signaling mechanisms behind 
muscle-to-bone effects, we refer readers to several excellent recent reviews [19-22].  
Bone-derived signals can affect muscle mass and function 
Far from being a passive mineral storehouse, bone is increasingly recognized as an 
active signaling mediator and endocrine organ. Both osteoblasts and osteocytes secrete 
signaling molecules that can act in paracrine and endocrine fashions. Osteocalcin is a 
peptide secreted by osteoblasts that can signal to multiple cell types, including skeletal 
muscle, via the Gprc6a receptor. Osteocalcin production and activation in bone is 
increased in response to insulin signaling in osteoblasts. Circulating osteocalcin then 
promotes a feed-forward loop by increasing insulin synthesis in the pancreas as well as 
increasing insulin sensitivity in adipose tissue and skeletal muscle [23, 24]. There is 
some evidence for additional effects of osteocalcin on skeletal muscle, including 
increases in mitochondrial surface area [25]. In humans, undercarboxylated (active) 
osteocalcin (as percent of total osteocalcin) was positively correlated with lower limb 
strength [26]. Interestingly, skeletal muscle mass, specific force, fiber number and 
myosin heavy chain isoforms abundance were altered in mice with an 
osteoblast/osteocyte targeted deletion of connexin 43 [27]. Circulating levels of 
osteocalcin were reduced in these connexin 43 mutant mice but there was no evidence 
of alterations in insulin signaling or glucose homeostasis. Treating these mice with 
synthetic (undercarboxylated) osteocalcin rescued some of the muscle abnormalities, 
thus raising the possibility that osteocalcin may have other, more direct effects in 
skeletal muscle [27]. 
Other signaling molecules that can originate in bone and have anabolic/hypertrophic 
effects on skeletal muscle include insulin-like growth factor 1 (IGF1), bone 
morphogenetic protein 2 (BMP2), and prostaglandin E2 (PGE2). IGF1 and BMP2 
produced by osteoblasts can either be freely secreted or incorporated into the bone 
matrix, to later be released through osteoclast-mediated bone resorption [28]. IGF1 is 
an important regulator of muscle mass during development by promoting both 
proliferation and differentiation of myogenic cells [29]. Akt activation (which can occur 
downstream of IGF1 signaling) in adult skeletal muscle has a rapid and dramatic 
hypertrophic effect. The hypertrophic muscles showed an increase in absolute force but 
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when the force measurements were normalized to cross-sectional area (i.e. specific 
force) the values were unchanged compared to control mice [30].  
A role for BMP-Smad1/5/8 signaling in promoting and maintaining adult muscle mass 
has recently been elucidated [31-33]. Constitutively active BMP signaling promoted 
muscle hypertrophy and reduced muscle atrophy following denervation. Interestingly, 
this model of growth factor signaling-induced hypertrophy also increased absolute 
muscle force, yet specific force was unchanged or even slightly decreased [31]. Results 
from two independent groups strongly suggest that BMP signaling may influence 
muscle mass at least in part via competition with the activin/myostatin/TGF-β pathway 
(see below) for common cofactors and transcriptional targets.  
PGE2 is one of several factors released by osteocytes in response to fluid shear stress 
[34]. It has been shown to promote osteocyte survival [35] and induce bone formation 
[36]. In vitro, PGE2 accelerates myogenic differentiation [37]. Further studies will be 
required to test the significance of PGE2 signaling in skeletal muscle in vivo, yet it has 
the potential to join a growing list of growth factors and “osteokines” that mediate bone-
to-muscle communication in postnatal mammalian systems. Additional factors produced 
by bone that may affect muscle, including sclerostin, FGF23, and Wnt proteins, will not 
be discussed in detail here. 
In contrast to bone-derived factors provoking a hypertrophic response in skeletal 
muscle, transforming growth factor beta (TGF-β) and its family members myostatin, 
activin, and GDF-11 reduce muscle function. Abundant amounts of TGF-β and activin 
are stored within the bone matrix following production by osteoblasts [38-40]. Activin, 
myostatin, and GDF11 all signal through the activin receptor type 2B to affect muscle 
[41]. Activin and TGF-β can be released from the bone matrix during osteoclastic bone 
resorption and be circulated throughout the body. While both factors cause muscle 
dysfunction, the mode by which they do so differs. Activin induces systemic muscle 
wasting and cachexia when expressed from muscle via an adeno-associated viral 
vector. In the muscle expressing elevated activin levels, there was profound muscle 
mass loss and decreases in peak force production, yet no change in specific force [42]. 
In contrast, muscles treated in vivo with TGF-β did not change in measured mass but 
did experience significant fibrosis and decreased cross-sectional area, leading to 
decreases in both peak force and specific force values [43].  
Calcium handling in skeletal muscle 
Proper calcium handling in muscle is critical for contraction. During excitation-
contraction (E-C) coupling in skeletal muscle, sequestered calcium in the sarcoplasmic 
reticulum (SR) is released through activated ryanodine receptors (RyR1) into the 
cytoplasm, permitting calcium-dependent actin-myosin cross-bridging and muscle 
contraction [44]. Cytosolic calcium is then transferred back to the lumen of the SR via 
the calcium-ATPase pump (SERCA1) (Figure 1). Maladaptive oxidative modifications of 
RyR1 resulting from chronic oxidative stress have been linked to pathologic SR calcium 
leak and diseases characterized by contractile dysfunction and muscle weakness, 
including heart failure [45-48], muscular dystrophy [45] and age-related sarcopenia [49]. 
RyR1 oxidation disrupts a critical interaction between RyR1 and its stabilizing subunit 
calstabin1, resulting in leaky channels with impaired calcium handling and weakened 
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muscle force production [45, 49]. The RyR1 calcium release channel stabilizer, Rycal 
S107, is a small molecule in the 1,4-benzothizepine family that fixes leaky RyR1 
channels by inhibiting oxidation-induced depletion of the channel-stabilizing subunit 
calstabin1 from the RyR1 complex, thereby stabilizing the closed state of the channel 
and improving muscle strength.  
Osteolytic cancer in bone and skeletal muscle weakness 
Bone is a frequent site for cancer metastases, with more than 450,000 patients affected 
per year in the U.S. Osteolytic cancer in bone is a major contributor to decreased 
survival and quality of life for patients [50, 51]. Pathologic fractures caused by osteolytic 
cancer in bone in breast cancer patients increases risk of death compared to breast 
cancer patients without fractures [51]. Similarly, elevated serum bone resorption marker 
levels are highly predictive of negative outcomes in patients with osteolytic cancer in 
bone [52]. Systemic muscle weakness is under-appreciated or unrecognized by many 
clinicians and increases the risk of falls that result in fractures and further negatively 
impact performance status and survival.  
The initiation and progression of bone metastasis is a complex multistep process. 
Tumor cells must detach from the primary tumor and enter the systemic circulation 
(intravasation), evade detection by the immune system and adhere to capillaries in the 
bone marrow leading to extravasation into the bone marrow space [53]. Tumor cells in 
the bone first form micro-metastases that can either develop into overt metastatic 
lesions or lay dormant for long periods before reactivating in the bone 
microenvironment. In either case it is believed that the invading tumor cells prime the 
bone microenvironment by enriching the pre-metastatic niche (local environment) for 
further colonization and growth of tumor cells [54-57]. 
Bone strength is maintained in healthy adults by a coordinate balance of bone 
destroying osteoclasts and bone forming osteoblasts. Cancer in bone disrupts this 
normal remodeling process by producing factors which stimulate abnormal bone 
destruction and new bone formation, weaken bone and predispose to fractures [57]. 
Bone is a large storehouse for growth factors, such as TGF-β, which are deposited in 
bone matrix by osteoblasts. In fact, bone is the largest storehouse of TGF-β in the body 
[39]. TGF-β plays a central role in tumor growth in bone [58-61] and is released in high 
concentrations from the mineralized bone matrix during osteoclastic bone resorption 
[60]. TGF-β acts on tumor cells to enhance secretion of osteolytic factors [62] that 
increase bone destruction, driving a vicious cycle of skeletal metastases and bone 
destruction [57]. In addition, bone metastases are effectively decreased by TGF-β 
signaling blockade [61]. 
The idea that factors released from bone during tumor-induced bone destruction exert 
systemic musculoskeletal effects beyond the immediate bone microenvironment is new.  
Recent work from our lab has shown that a significant reduction in skeletal muscle 
function occurs in mice with bone metastases from breast, lung, and prostate cancer 
and in multiple myeloma in bone [63]. These changes in muscle function occur without 
direct involvement of tumor cells in muscle and are not observed when tumor growth is 
limited to the primary site (i.e. no bone metastases). The extent of bone destruction and 
muscle weakness were positively correlated, consistent with a causal relationship.  
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Furthermore, muscle weakness developed in the contralateral limb in mice with tumor in 
a single tibia, indicating the systemic nature of muscle weakness due to bone-
destruction [63].   
In our study, mice with osteolytic bone lesions had reduced forelimb grip strength in vivo 
and also decreased ex vivo specific force of the extensor digitorum longus (EDL) 
muscle. Notably, the difference in specific force suggested an internal defect in the 
contractile capability of individual myofibers. An unbiased proteomics approach 
identified RyR1 as being oxidized and nitrosylated in skeletal muscle from mice with 
breast cancer bone metastases compared to muscle from non-tumor bearing mice. 
RyR1 oxidation and loss of its stabilizing subunit, calstabin1, is a unique biochemical 
signature of leaky RyR1 channels. This biochemical signature was present in muscle 
from mice with osteolytic bone metastases and multiple myeloma, but not from mice 
with primary breast cancer (no bone metastases). Importantly, the biochemical 
signature of RyR1 calcium leak was also evident in skeletal muscle samples taken from 
patients with breast cancer that also had bone metastases, validating the clinical 
relevance of the mouse data. Rycal S107 improved in vivo forelimb grip strength and ex 
vivo specific force (EDL) in mice with breast cancer bone metastases. Rycal S107 
prevented dissociation of calstabin1 from the RyR1 complex even in the presence of 
RyR1 oxidation as previously reported [45, 49], and without directly reducing tumor 
progression or bone destruction. These data showed that RyR1 calcium leak plays a 
role in skeletal muscle weakness in osteolytic cancer in bone.  

Bone-derived TGF-β leads to skeletal muscle weakness via increase in oxidative 
stress 
TGF-β has been implicated in muscle weakness [43] and TGF-β is released from bone 
as a consequence of bone metastases [60]. SMAD3 phosphorylation was increased in 
muscle of mice and humans with bone metastases, implicating TGF-β signaling in 
weakness. To investigate the contribution of this signaling pathway, we blocked TGF-β 
in mice with breast cancer bone metastases using: 1) TGF-β receptor I kinase inhibitor 
(SD-208) [64], 2) anti-TGF-β ligand monoclonal antibody (1D11), or 3) bisphosphonate 
(zoledronic acid, ZA) to inhibit release of TGF-β from bone [60]. All three interventions 
significantly improved in vivo forelimb grip strength and ex vivo EDL muscle specific 
force. Importantly, significant improvements of muscle function in mice receiving anti-
TGF-β monoclonal (1D11) therapy confirms the specificity of TGF-β as a mediator of the 
muscle weakness and blockade of bone resorption (ZA) confirms that bone is the 
source of TGF-β.  

Treatments that blocked TGF-β release or signaling also reduced RyR1 oxidation and 
nitrosylation and stabilized calstabin1-RyR1 complexes. Because there was a reduction 
in RyR1 oxidation, we investigated sources of oxidative stress linked to TGF-β. NADPH 
oxidase 4 (Nox4) is a constitutively active oxidase and TGF-β target that generates 
reactive oxygen species (ROS) [65]. We found Nox4 expression was increased in 
muscle from mice with breast cancer bone metastases, whereas Nox4 expression was 
reduced when mice were treated with either anti-TGF-β (SD-208 and ID11) or anti-
resorptive (ZA) agents. In cultured myotubes, TGF-β increased Nox4 expression, RyR1 
oxidation and loss of calstabin1 binding. Nox4 silencing was able to reduce RyR1 
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oxidation and prevent dissociation of calstabin1 from the RyR1 complex. TGF-β also 
increased the direct interaction between Nox4-RyR1 in vitro, an association also found 
in muscle from mice and humans with breast cancer bone metastases.  Finally, using a 
Nox4 inhibitor (GKT137831 [66]) in vivo, we showed significantly improved ex vivo EDL 
specific force in mice with breast cancer bone metastases and reduction in RyR1 
oxidation. These data describe a novel TGF-β-Nox4-RyR1 axis responsible for skeletal 
muscle weakness in osteolytic cancer in bone [63]. 
Summary 
Bone and muscle functions are tightly coupled in normal physiology. Recent studies 
have focused on muscle as an endocrine organ with a predominant role over bone in 
bone-muscle crosstalk. Osteolytic cancer in bone represents a divergence from normal 
bone physiology by tipping the balance of remodeling. Our recently published work 
shows the bone destruction driven by osteolytic tumor cells also directly causes skeletal 
muscle weakness. We have identified the TGF-β-Nox4-RyR1 axis as the mechanism by 
which a factor released from the bone matrix (TGF-β) leads to oxidation of RyR1 and 
calcium mishandling in skeletal muscle that severely compromises muscle function [63] 
(Figure 2). Pharmacological blockade of: 1) RyR1 calcium leak, 2) TGF-β release from 
bone, 3) TGF-β signaling, or 4) Nox4 activity, all improved muscle function in mice with 
osteolytic cancer in bone [63]. This identification of new potential therapeutic targets 
illustrates the importance of considering the bone as a source of signaling factors in 
disease states. Furthermore, this represents a new mechanism of bone-muscle 
crosstalk where bone plays a predominant role over muscle and becomes a source of 
‘osteokines’ that affect muscle function. The continued identification and 
characterization of such factors will provide new possibilities for therapeutic targets in 
muscle weakness associated with malignancy and other diseases.  
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Figure 1. Excitation-contraction coupling. Contraction begins with an action potential 
that propagates through the T-tubule system. Calcium is released from the sarcoplasmic 
reticulum (SR) via interaction of the dihydropyridine receptor (DHPR) and the ryanodine 
receptor 1 (RyR1). Calcium release from the SR store enables actin-myosin cross-
bridging and muscle contraction. Myoplasmic free calcium concentration is restored to 
resting levels primarily by pumping calcium back into the SR via the sarco/endoplasmic 
reticulum ATPase (SERCA).  
 
Figure 2. Skeletal muscle weakness due to osteolytic cancer in bone. Activation of 
the TGF-β-Nox4-RyR1 axis in the skeletal myocyte begins with release of TGF-β from 
the bone matrix during osteoclast-mediated bone resorption. TGF-β signaling leads to 
increased oxidation of ryanodine receptor 1 (RyR1) via the constitutively active NADPH 
oxidase 4 (Nox4). RyR1 oxidation causes sarcoplasmic reticulum (SR) calcium leak and 
muscle weakness.  
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