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SUMMARY

We consider a recurrent events model with time-varying coefficients motivated by two clinical 

applications. A random effects (Gaussian frailty) model is used to describe the intensity of 

recurrent events. The model can accommodate both time-varying and time-constant coefficients. 

The penalized spline method is used to estimate the time-varying coefficients. Laplace 

approximation is used to evaluate the penalized likelihood without a closed form. The smoothing 

parameters are estimated in a similar way to variance components. We conduct simulations to 

evaluate the performance of the estimates for both time-varying and time-independent 

coefficients. We apply this method to analyze two data sets: a stroke study and a child wheeze 

study.
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1. Introduction

In longitudinal studies, events of interest are often observed for multiple times, for example, 

hospital readmissions after stroke, or episodes of wheezing among young children. This type 

of recurrent events data have been studied extensively using marginal (rate or mean) models 

[1]) and random effects (frailty) models [2]. In these models, it is often assumed that the risk 

factor’s effect is unchanged over the follow-up period. This convenient assumption may not 

be realistic, and may lead to bias in the coefficient estimates.

Varying-coefficient models for survival analysis have been studied by many authors. Cai et 

al. used a local polynomial method for a marginal survival model with time-varying 
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coefficients [3]. Yu and Lin studied a semiparametric marginal model with time-varying 

coefficients for clustered survival data [4]. Sun and colleagues studied a recurrent events 

model with time-varying coefficients using a marginal modeling approach [5, 6]. Other 

related work includes [7, 8, 9, 10, 11]. But to the best of our knowledge, no work has been 

published for a recurrent events model with time-varying coefficients under the random 

effects (frailty) model framework.

Our work was motivated by two clinical studies. A childhood wheeze study was designed to 

examine the effect of airway reactivity during infancy on recurrent wheezing. For many 

children, more than one episode of wheezing were observed during the follow-up. To 

accommodate the correlation among the occurrences of multiple episodes, a random effects 

(frailty) model can be used. While the wheezing symptom at an older age is most often 

related to airway reactivity, this is not the case in very early life. Clinical experience 

indicates that wheezing in very early life is caused by multiple factors that may not be 

related to airway reactivity. Therefore, it is important to accommodate the age- or time- 

varying effect of an infant’s airway reactivity, which motivated us to develop a recurrent 

events frailty model with time-varying coefficients. The proposed model demonstrates that 

airway reactivity measured at baseline has a significant effect on wheezing at a later age (> 

52 months), but not at an early age (< 52 months). In another study, we are interested in the 

effect of stroke care quality on readmission rate for stroke patients. We suspect that the risk 

of readmissions in a short term after discharge is mainly determined by the severeness of the 

disease, while a better stroke care may reduce the long term risk. Therefore, we apply the 

proposed models to analyze the readmission rate with time-varying coefficients for stroke 

care quality.

In our model, a Gaussian frailty is used to characterize the correlation among recurrent 

events. To approximate the marginal likelihood with an integral due to the unobserved 

random effects, we employ the Laplace approximation in a similar fashion to generalized 

linear mixed models [12]. We use the penalized spline method to characterize the time-

varying coefficient function. The variance components and smoothing parameters are 

estimated using a likelihood method.

The remainder of the article is arranged as follows. We present the model in Section 2, and 

propose the estimation method in Section 3. The estimation method is evaluated by a 

simulation study in Section 4. In Section 5, we apply our model to data from two 

prospective cohort studies. We conclude with a discussion in Section 6.

2. Models

For the ith subject (i = 1, 2, …, n), we observe ri recurrent events times 0 < Ri1 < Ri2 < ⋯ < 

Riri before being censored at time Ci, which is independent of Rij. Let Zi be a p−dimensional 

covariate vector with time-varying coefficients, and Xi be a q−dimensional covariate vector 

with constant coefficients. Denote the observed recurrent events process as 

, at risk process as Yi(t) = I{Ci ≥ t}. The observed information of 
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the ith subject at time t is  The filtration 

generated by the observed information is ℱ(t) = σ{Oi(s), 0 ≤ s ≤ t, i = 1, ⋯, n}.

We now formulate the intensity function for recurrent events as

with

(1)

where r0(t) is the baseline intensity of recurrent events, β(t) = (β1(t), ⋯, βp(t))T, and we use 

R0(t) to denote the cumulative baseline intensity function. The unobserved random effect (or 

frailty) is denoted by νi, which is used to capture the correlation among recurrent events. 

Denote the density of νis by ϕσ(·). In this paper, we assume νis to be independently Gaussian 

distributed with mean 0 and variance σ2. We use β(t) to denote the unspecified smooth time-

varying coefficients, whose functional form is of interest. Using these notations, we write 

the complete likelihood of {(Oi,νi), i = 1, ⋯, n} as

where

The complete likelihood involves νi, and the time-varying coefficients β(t) with an infinite 

number of parameters. We will employ the penalized spline method to describe the time-

varying coefficients β(t). Laplace approximation will be adopted for evaluating the complete 

likelihood. The estimation procedure is given in next section, which can be easily extended 

to accommodate time-dependent covariates X(t) and Z(t).

3. Estimation method

3.1. Penalized Spline

We use a penalized spline to estimate the time-varying coefficients. The penalized spline 

method uses a penalty term to control the smoothness of the spline estimate but includes a 

smaller number of knots to reduce the computational load, compared to the smoothing spline 

method. Specifically, we model the nonparametric function βl(t) through a cubic spline with 

basis functions {B1(t), B2(t), ⋯, BM(t)}, where M is the number of spline basis functions. 

The number and the shape of the basis functions are determined by the number and location 

of knots. With a penalized spline, one can choose a larger number of knots without 

introducing much more variation. But there should be little advantage to use more than 10–
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20 knots as Gray recommended [13]. We will use 8 knots in our simulation study for 

demonstration. It is suggested that the knots are placed so that an equal number of events 

happen within each interval.

We write  for l = 1, ⋯, p, where ηl = (ηl,1, ⋯, ηl,M)T and 

B(t) = (B1(t), ⋯, BM(t))T. The penalized log-likelihood with a penalized spline for {(Oi,νi), i 

= 1, ⋯, n} is

where P = ∫ B(2)(s)B(2)(s)T ds, the vector  is the second 

derivatives of the B-spline basis, and ρl is the smoothing parameter. Note that the roughness 

of the likelihood function was penalized by subtracting the integral of the squared second 

derivative function. In practice, the cubic spline basis functions and the penalty matrix can 

be easily generated by the fda package in R-project or matlab.

3.2. Evaluating the Marginal Likelihood

To estimate the coefficients α and η = (η1, ⋯, ηp) in the penalized likelihood, the frailty has 

to be integrated out. The logarithm of the penalized marginal likelihood is

(2)

where ν = (ν1, ⋯, νn)T. There is no closed form for the logarithm integral part in (2). To 

evaluate (2), we use the Laplace approximation for integral calculation by following 

Breslow and Clayton’s derivation for generalized linear mixed models [12], i.e.,

(3)

where D is the covariance matrix of ν, ν̃ is the solution to the first derivative K′(ν) = 0, and 

K″(·) is the second derivative of K(·) with respect to ν. After applying the approximation on 

the logarithm part of pml, we have

by noting that ϕσ(νi) is normal distributed with mean 0 and variance σ2.

Assuming that the first two terms in (3) vary little when (η, α) changes, as indicated by 

Breslow and Clayton and Ripatti and Palgram [12, 14], the logarithm part of (2) can be 

further approximated by −K(ν̃). Thus, we have
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To profile out the the cumulative baseline intensity R0(t), we take the derivative of above 

pml with respect to r0(Rij), and obtain

(4)

Substituting the solution back into the penalized marginal likelihood, we simplify the pml to

(5)

Note that 

We then derive the estimating equations of (η, α) by taking the derivative of (5) with 

respected to (η, α) as follows:

(6)

for s = 1, ⋯, p;

(7)

and

(8)

where 
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The estimates of regression coefficients can be obtained by solving the estimating equations 

(6, 7, 8) using the Newton-Raphson algorithm. After obtaining the estimates of η, the 

varying-coefficient estimates are then . We propose using −I(η, α, 
ν), the inverse of the negative second derivative of pml with respect to (η, α, ν), as their 

covariance estimate. The variance of β̂l(t) can then be estimated by V̂ar{β̂l(t)} = 

B(t)TVηlηlB(t), where Vηlηl is the submatrix of −I(η, α, ν) corresponding to ηl. Estimation 

for α and its variance can be done similarly. The baseline intensity functions r0(t) can be 

estimated by plugging (η̂, α̂, νî) back into (4).

3.3. Inferences on Variance Components and Smoothing Parameters

Estimation of variance components σ using a restricted maximum likelihood method 

(REML) has been proposed by Ripatti and Palgrem [14]. For a shared frailty model where 

the covariance of ν is a diagonal matrix with σ2 on the diagonal, the variance component can 

be estimated as

(9)

where nc is the number of clusters (or subjects), and tr(·) is the trace operation of a matrix. 

The information matrix K″(ν) requires the estimate of the baseline intensity function.

In general, estimation of the smoothing parameter ρl can be performed using the cross-

validation method [15]. In survival analysis, there is not a well accepted cross-validation 

score, to our best knowledge. Here, we suggest estimating ρl in a similar way to variance 

components [16]. Equation (9) includes the number of parameters (random effects) in the 

denominator, while the numerator include two terms: sum of square of estimators and trace 

of covariance matrix. Therefore, we mimic the estimating equations for variance component 

σ2 in (9) as follows:

for l = 1, ⋯, p, where Cov(β̂(Rij)) is the covariance matrix of the nonparametric function, M 

is the number of basis functions for the penalized spline. The performance of the resulting 

estimates will be evaluated in the next section.

4. Simulation

In this section, we used simulation to evaluate the performance of the proposed estimates. 

We considered an intensity model for recurrent events as follows:

where νi was normal distributed with mean 0 and variance 0.5. The covariates Zi and Xi1 

were generated as independent uniformly distributed random variables on [0, 1]. Xi2 took 
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value 0 or 1 with an equal probability. We adopted a baseline intensity function  to 

simulate an increasing risk. The censoring times were generated as an exponential 

distributed variable independent of the recurrent events process. Event processes were 

censored at the maximum follow-up time, 4, if not censored before.

We simulated intensity models in two parameter settings. In the first setting, we generated 

the time-varying coefficient function as β(t) = (sin(t × 3π/8) + 1)/4 as showed in panel (a) of 

Figure 1, the function increased first and then diminished to 0 along the time. We set (α1, 

α2) = (1, 1) in Setting I. To examine the performance of the proposed estimate when time-

varying coefficient function has a stronger curvature, we ran simulation studies with β(t) = 

(2 × beta(t/4, 8, 8) + beta(t/4, 5, 5))/9 in Setting II, where beta represented the density 

function of a beta distribution. The shape of the true function was shown in Figure 2. We 

setted (α1, α2) = (2, 2) in Setting II. In each setting, we also evaluated the performance when 

the numbers of subjects were 200 and 100, and the numbers of event per subjects were 5 and 

3, respectively. Under each simulation, we generated 800 data sets for evaluation. We 

implemented the estimation procedure in R-project. The code is available upon request.

Figure 1 shows the simulation results of the time-varying coefficients in Setting I with 200 

subjects and 5 events per subject on average. In the left panel, the solid line is the true 

function and the dotted line is the mean of the estimated function over 800 replicates. The 

bias of the estimated function is very small. The right panel shows that the pointwise 

empirical coverage probabilities, calculated at each of 100 equally spaced grid points. The 

coverage probabilities are around 95% for most of the follow-up period. The average 

coverage probability over 100 grid points in the follow-up period is 96.4%. To test how 

sensitive the estimate to the number of events per subject, we also run the simulation with a 

sample size of 200 but 3 events per subject. The time-varying coefficient estimate shows 

very little bias (not shown) and the empirical coverage probability is 96.5% on average. 

Meanwhile, we also run simulations with smaller sample size of 100 and 3 and 5 events per 

subject. The varying-coefficient estimate shows a similar or slightly larger bias (not shown).

Figure 2 shows the estimate of the time-varying coefficient function in Setting II. In the left 

panel, the dotted line is the mean of estimated function and the solid line is the true function. 

The bias is generally small over the whole range of time. The right panel shows that the 

empirical coverage probabilities are approximately 95% with an average coverage 

probability of 96.5%. Simulation with 3 events per subjects displays a similar performance 

and study with 100 subjects shows a slightly larger bias. These results demonstrate that the 

time-varying coefficient estimates have little bias and the pointwise coverage probabilities 

are close to the nominal level for a moderate sample size 200 and a small number of events 

per subjects of 3. In the settings with small sample size of 100, bias is similar or slightly 

larger but the estimate still catch the shape of the true function well.

Table I lists the simulation results for the parametric coefficients and variance components. 

In Setting I, with 200 subjects and 5 events per subject, the estimates for (α1, α2) have about 

3% biases. The empirical coverage probabilities of 95% confidence intervals using the 

estimated standard error are 94.4% and 94.0%, which are close to the nominal level. The 

true value of the variance component σ2 is 0.5 and the mean estimated value is 0.465 which 
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is biased slightly downward. This bias is similar to Ripatti and Palgrem where they used 

Laplace approximation for a frailty model with parametric coefficients only [14]. When the 

number of events per subjects is 3 and the sample size is 100, the coefficient estimates show 

similar bias, but with a larger standard error due to the smaller sample size. The coverage 

probabilities of the 95% confidence interval for these parameters are also close to the 

nominal level. In Setting II, the estimates of parametric coefficients show similar 

performance.

In summary, the bias of the proposed estimates for the time-varying function and parametric 

coefficients are small even with a small sample size of 100 or a number of events per subject 

of 3. The confidence intervals based on the proposed standard error estimates have 

appropriate coverage probabilities. The variance component estimate has a modest 

downward bias and should be used with caution.

5. Application

5.1. A Child Wheezing Study

Older children with asthma have frequent episodes of wheezing and exhibit airway hyper-

reactivity when assessed by bronchial challenge testing with inhaled methacholine. Airway 

reactivity can be characterized by log PC30, the logarithm of the provocative concentration 

of methacholine required to decrease airway function by 30%. A lower value indicates 

greater airway reactivity. Wheeze is also a common respiratory symptom for infants and 

toddlers; however, most of these subjects would have episodes of wheezing in very early 

life, and not develop childhood asthma. We evaluated whether measurement of airway 

reactivity very early in life could predict the risk of wheezing at an older age, which would 

likely represent asthma, rather than transient wheezing of infancy. In a cohort of 116 infants 

at high risk for developing childhood asthma, PC30 was measured upon enrollment, prior to 

any episodes of wheezing [17]. The subsequent episodes of wheezing were assessed by 

monthly telephone contacts with families. Eighty-nine subjects completed the assessment of 

airway reactivity upon entry to the study and were included in the analysis. Among them, 

52% were boys, and 11.2% had mothers smoking during pregnancy. The mean value for log 

PC30 was 0.809 with standard deviation of 1.0017.

Among the 89 subjects (with median follow-up time 64.8 months), a total of 663 wheezing 

events were recorded. To accommodate correlation among the multiple events, we applied 

the recurrent events model with a frailty term to analyze the effect of airway reactivity upon 

entry on the recurrent wheezing risk. We first fitted a recurrent events model with constant 

effect for log PC30, gender, and mother smoking during pregnancy. A higher log PC30, or 

lower airway reactivity, was associated with a lower risk of wheezing (hazard ratio = 0.899), 

but the relation was not statistically significant (p-value = 0.530). This is consistent with 

clinical experience that early wheezing is a multiple-cause symptom, which may not be 

related to airway reactivity. However, the wheezing symptom at an older age is more related 

to childhood asthma. Therefore, the effect of airway reactivity log PC30 at baseline may be 

age-varying. Treating the initial airway reactivity effect as a constant over time would bias 

the estimate. We then applied our model with time-varying coefficients for log(PC30) effect. 

Figure 3 illustrates the effect of log PC30 for both the time-varying coefficient model (solid 
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line) and the constant coefficient model (dashed line). At the very early age (younger than 

12 months), the curvature and wide confidence interval is due to the smaller number of 

wheezing events. In general, the baseline log PC30 value had little effect on the risk of 

wheezing before 50 months of age and started to have significant influence at around age 52 

months. Subjects with a higher log PC30 (i.e. lower airway reactivity) had a lower risk of 

recurrent wheezing after age 52 months and the relative risk decreased with age afterwards. 

This finding suggested that the greater airway reactivity at baseline was a strong indicator of 

persistent wheezers (those who had recurrent episodes after around 4 years of age) or later-

onset wheezers (those who started wheezing after 4 years old). We also adjusted for gender 

and maternal smoking during pregnancy as risk factors for wheezing (see Table 2). Children 

with mother pregnancy smoking had a 82% higher risk than those without (p-value<0.0001). 

Boys had higher risk than girls. The estimate of σ is 0.12. Overall, we demonstrated that 

airway hyper-reactivity prior to episodes of wheezing was a significant risk factor for 

wheezing at a later age.

5.2. A Stroke Study

Stroke affects 795,000 people each year in the United States [18]. Within the veteran affairs 

(VA) health system, approximately 6,000 veterans were admitted to a VA facility for acute 

ischemic stroke in fiscal year 2007 [19]. A natural sample of about 5, 000 veterans 

hospitalized in a VA medical center with acute ischemic stroke were evaluated with a chart 

review. The quality of inpatient stroke care was assessed using 14 indicators, which included 

those reflecting early hospital care period: dysphagia screening before oral intake 

(documentation of stroke severity using the NIH Stroke Scale, and thrombolysis 

administration), in-hospital care (antithrombotic therapy by the end of hospital day two, 

deep vein thrombosis prophylaxis, early ambulation, fall risk assessment, pressure ulcer risk 

assessment, and rehabilitation consultation based on the Functional Improvement 

Measurement documentation), and care at discharge (antithrombotic therapy at discharge, 

atrial fibrillation management, lipid management, stroke education, and smoking cessation 

counseling). A composite performance score of care quality received by each patients was 

calculated as the number of processes performed over the number processes for which the 

patient was eligible.

Among the veterans admitted to VA facilities in 2007, about 1300 were excluded since they 

were not admitted for an acute stroke; 3768 patients remained in the cohort. Patients who 

died while in hospital, were discharged to hospice, or received comfort care only, were 

excluded due to the potential very short follow-up time after discharge. The readmission 

records of all subjects were obtained through the VA administrative data. Among 3730 

patients included in the final analysis, 2127 patients had at least one readmission to a VA 

hospital with a total number of 5168 readmissions (median: 2; range 1 – 26). The mean age 

at baseline was 67 years. There were 2.5% female patients, 67% Caucasians and 25% 

African Americans. The mean Charlson comorbidity score was 4.9 for patients with 

readmission and 4.4 for patient without readmission. The median follow-up time was 782 

days, while 1031 died during the follow-up period.
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We are interested in how the composite stroke performance score and comorbidity affect the 

readmission rate. To accommodate the multiple readmission events from the same patients, 

we first fit a naive frailty model with constant coefficients for performance score, Charlson’s 

score, and smoking status. A higher performance score was associated with a lower risk of 

readmission (hazard ratio = exp(−0.957) = 0.384 with p-value = 0.009). We suspect that the 

risk of readmission in a short term after discharge is mainly determined by the severeness of 

the disease, but not by the stroke care quality. Therefore, we further analyzed the 

readmission by including the stroke care performance score with a time-varying coefficient 

and adjusting for Charlson’s score and smoking status. The coefficient functions from both 

models are shown in Figure 4. Overall, the higher performance score corresponded to a 

lower risk (negative coefficient) of readmission, but it was not significantly in the short term 

according to the time-varying coefficient estimate. The effect increased over time after 

discharge. Starting at 300 days post discharge, the performance score showed a significant 

effect on the risk of readmission. This finding indicated that increasing in-hospital quality of 

care had a significant beneficial effect on the post discharge outcome of readmission in the 

long term. Compared with the naive analysis, the time-varying coefficient analysis provided 

a more detailed interpretation of the performance score effect over time. The estimates of 

Charlson’s score, smoking status effect and σ are summarized in Table 3. A higher 

Charlson’s score corresponded to a higher risk (Hazard ratio 1.208, p-value < 0.0010). 

Smokers had a higher risk, but not significantly.

6. Discussion

We have proposed a new model for the recurrent events data with both time-varying and 

constant coefficients. The penalized spline method was used to estimate the time-varying 

coefficient. We selected smoothing parameters by treating them as variance components. 

Simulation demonstrated a good performance of the proposed estimation method. We 

applied the method to two data sets and found significant time-varying coefficients in both 

cases. This demonstrated the wide application of our method in clinical studies.

The finding of the time-varying effect of airway reactivity on wheezing is consistent with 

the rapid childhood lung development. This renders the importance of time-varying 

coefficient models in the analysis of childhood asthma study. The finding that the quality of 

inpatient stroke care is related to late but not early reduction in readmission may reflect risk 

factor modification processes that begin while the patient is hospitalized (e.g. starting a 

cholesterol lowering medication) but take a long time to affect the outcome of interest 

(readmission). This is important since at present most hospital-level quality indicators, 

including those reported publically by the federal Centers for Medicare and Medicaid 

Services (available at www.hospitalcompare.hhs.gov), are evaluating the association with 

events in a shorter time horizon, typically 30-day mortality or readmission rates.

The proposed approach analyzed the time from beginning of the follow-up period to each of 

recurrent events. Meanwhile, gaps or waiting times also have been used for recurrent event 

modeling [20, 21], which is desirable when an individual is cured or a system is repaired to a 

similar state after each event. It is of future interest to study the time-varying coefficient 

estimation for gap time modelling.
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In this paper we used a Gaussian frailty to model the correlation. As suggested by a 

reviewer, we also evaluated our estimates in the settings when the random effect was 

generated from other distribution (e.g., Gamma), but was assumed to be log normal in the 

simulation study, along the same lines of Huang and Liu [21].We found that our method still 

performed reasonably well under the misspecification of the frailty distribution assumption 

with Gamma (not shown). This is consistent with the results for frailty models with only 

parametric covariate effects, e.g., [21, 22, 23].

We used the variance component method for smoothing parameter selection in the time-

varying coefficient model. Smoothing parameter selection in survival analysis can be done 

using cross-validation in general. O’Sullivan proposed a generalized cross-validation score 

for Cox models with a nonparametric covariate function [24]. Developing a cross-validation 

score for time-varying coefficient survival model and comparing it with the variance-

component method is of future interest.

Laplace method has been used very often to approximate the integration in complicated 

random effects models, e.g., [12, 14, 25, 26]. In our simulation studies we showed that it 

performed reasonably well for survival outcomes. For sparse data, e.g., binary data, one can 

improve the Laplace approximation using a bias correction method [27] or inclusion of 

higher order terms [28]. However, the implementation of these methods is more involved. 

Other approaches, e.g., Monte Carlo EM algorithm, adaptive Gaussian quadrature can be 

also applied to this model. The implementation of these estimation methods remains a topic 

for our future research.

In this paper we considered the terminal event independent of the recurrent events process. 

This assumption may not be true. For example, Liu et al. jointly modeled the recurrent 

events and a terminal event using shared frailty models to account for the correlation 

between these two types of events [29]. We are currently extending the time-varying 

coefficient model for this type of joint modelling.
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Figure 1. 
Setting I: simulation results for the varying-coefficient function β(t). (a) Penalized spline 

estimate of β̂(t): estimate, dotted; true β(t), solid. (b) Point-wise empirical coverage 

probability of β(t), the average coverage probability is 96.4%.
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Figure 2. 
Setting II: simulation results for the varying-coefficient function function β(t). (a) Penalized 

spline estimate of β̂(t): dotted; true β(t), solid. (b) Point-wise Empirical coverage probability 

of β(t), the average coverage probability is 96.5%.
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Figure 3. 
Application I: Time-varying effect of log PC30 on recurrent wheezing: β̂(age), solid; 95% 

point-wise confidence interval, dotted; log PC30 in constant coefficient model, dashed. A 

horizontal line at 0 is present for better comparison.

Yu et al. Page 15

Stat Med. Author manuscript; available in PMC 2015 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Application II: Time-varying effect of the performance score on stroke readmission: β̂(time), 

solid; 95% point-wise confidence interval, dotted; performance score effect in constant 

coefficient model, dashed.

Yu et al. Page 16

Stat Med. Author manuscript; available in PMC 2015 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yu et al. Page 17

T
ab

le
 I

Si
m

ul
at

io
n:

 p
ar

am
et

ri
c 

co
ef

fi
ci

en
t e

st
im

at
es

n@
m

%
P

ar
am

.
M

ea
n

SE
∗

SE
M

†
C

P
⋄

Se
tt

in
g 

I

20
0

5
β 1

1
0.

96
8

0.
17

6
0.

17
9

94
.4

%

20
0

5
β 2

1
0.

97
1

0.
10

4
0.

10
3

94
.0

%

20
0

5
σ

2
0.

5
0.

46
5

N
.A

.

20
0

3
β 1

1
0.

98
5

0.
19

3
0.

19
9

93
.9

%

20
0

3
β 2

1
0.

97
9

0.
11

5
0.

11
6

93
.9

%

20
0

3
σ

2
0.

5
0.

45
6

N
.A

.

10
0

5
β 1

1
0.

97
6

0.
25

1
0.

25
6

94
.3

%

10
0

5
β 2

1
0.

97
7

0.
14

8
0.

14
7

94
.3

%

10
0

5
σ

2
0.

5
0.

45
5

N
.A

.

10
0

3
β 1

1
0.

97
7

0.
27

4
0.

28
7

93
.9

%

10
0

3
β 2

1
0.

97
8

0.
16

4
0.

17
0

93
.9

%

10
0

3
σ

2
0.

5
0.

43
6

N
.A

.

Se
tt

in
g 

II

20
0

5
β 1

2
1.

94
8

0.
19

8
0.

20
3

92
.9

%

20
0

5
β 2

2
1.

94
7

0.
13

0
0.

12
9

92
.9

%

20
0

5
σ

2
0.

5
0.

46
3

N
.A

.

20
0

3
β 1

2
1.

94
8

0.
21

6
0.

22
4

93
.9

%

20
0

3
β 2

2
1.

96
3

0.
14

6
0.

15
1

92
.9

%

20
0

3
σ

2
0.

5
0.

46
0

N
.A

.

10
0

5
β 1

2
1.

94
7

0.
28

3
0.

29
8

93
.1

%

10
0

5
β 2

2
1.

95
4

0.
18

6
0.

18
4

92
.8

%

10
0

5
σ

2
0.

5
0.

45
2

N
.A

.

Stat Med. Author manuscript; available in PMC 2015 November 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yu et al. Page 18

n@
m

%
P

ar
am

.
M

ea
n

SE
∗

SE
M

†
C

P
⋄

10
0

3
β 1

2
1.

95
2

0.
30

6
0.

31
6

92
.8

%

10
0

3
β 2

2
1.

96
0

0.
20

8
0.

21
8

93
.3

%

10
0

3
σ

2
0.

5
0.

43
6

N
.A

.

@
sa

m
pl

e 
si

ze
;

%
nu

m
be

r 
of

 e
ve

nt
s 

pe
r 

su
bj

ec
t;

∗ E
m

pi
ri

ca
l s

ta
nd

ar
d 

er
ro

r;

† M
ea

n 
of

 s
ta

nd
ar

d 
er

ro
r;

⋄ C
ov

er
ag

e 
pr

ob
ab

ili
ty

.

Stat Med. Author manuscript; available in PMC 2015 November 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yu et al. Page 19

Table II

Parametric Coefficient Estimates of Childhood Wheezing

Full model

Risk factors Est. SE Hazards ratio p-value

Pregnancy Smoking 0.138 0.030 1.820 <0.0001

Gender (Male) 0.303 0.099 1.35 0.002

σ 0.12
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Table III

Parametric Coefficient Estimates of Stroke Readmission Model

Risk factors Est. SE Hazards ratio p-value

Charlson’s Score 0.189 0.030 1.208 <0.0001

Smoker 0.103 0.127 1.108 0.421

σ 0.320
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