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Abstract

Background: Drug repositioning is a cost-efficient and time-saving process to drug development compared to
traditional techniques. A systematic method to drug repositioning is to identify candidate drug’s gene expression
profiles on target disease models and determine how similar these profiles are to approved drugs. Databases such
as the CMAP have been developed recently to help with systematic drug repositioning.

Methods: To overcome the limitation of connectivity maps on data coverage, we constructed a comprehensive in
silico drug-protein connectivity map called DMAP, which contains directed drug-to-protein effects and effect
scores. The drug-to-protein effect scores are compiled from all database entries between the drug and protein
have been previously observed and provide a confidence measure on the quality of such drug-to-protein effects.

Results: In DMAP, we have compiled the direct effects between 24,121 PubChem Compound ID (CID), which were
mapped from 289,571 chemical entities recognized from public literature, and 5,196 reviewed Uniprot proteins.
DMAP compiles a total of 438,004 chemical-to-protein effect relationships. Compared to CMAP, DMAP shows an
increase of 221 folds in the number of chemicals and 1.92 fold in the number of ATC codes. Furthermore, by
overlapping DMAP chemicals with the approved drugs with known indications from the TTD database and
literature, we obtained 982 drugs and 622 diseases; meanwhile, we only obtained 394 drugs with known indication
from CMAP. To validate the feasibility of applying new DMAP for systematic drug repositioning, we compared the
performance of DMAP and the well-known CMAP database on two popular computational techniques: drug-drug-
similarity-based method with leave-one-out validation and Kolmogorov-Smirnov scoring based method. In drug-
drug-similarity-based method, the drug repositioning prediction using DMAP achieved an Area-Under-Curve (AUC)
score of 0.82, compared with that using CMAP, AUC = 0.64. For Kolmogorov-Smirnov scoring based method, with
DMAP, we were able to retrieve several drug indications which could not be retrieved using CMAP. DMAP data
can be queried using the existing C2MAP server or downloaded freely at: http://bio.informatics.iupui.edu/cmaps

Conclusions: Reliable measurements of how drug affect disease-related proteins are critical to ongoing drug
development in the genome medicine era. We demonstrated that DMAP can help drug development professionals
assess drug-to-protein relationship data and improve chances of success for systematic drug repositioning efforts.
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Background
To reposition drugs [1-3] from one approved indication
to a new indication, drug developers could significantly
save associated development cost [4] and lower develop-
ment risks[5]. With the rapid accumulation of genomics,
functional genomics, and chemical informatics data in
the past decade, several new systematic approaches to
drug repositioning have been proposed. For example,
one may study the drug-ligand structural binding rela-
tionships systematically for all approved drugs to dis-
cover their new targets implicated in other diseases
using chemoinformatic tools [6]. If the drug-drug simi-
larity relationships, disease-disease similarity relation-
ships, or side-effect-to-side-effect similarity relationships
[7] are characterized, one may populate indications from
one drug to another among all drugs under study that are
closely related through shared disease, shared side effect,
or shared target relationship profiles. Machine learning [1]
and biomedical literature text mining [8] approaches can
also help uncover non-obvious relationships between
approved drugs and potential new indications.
Recently, there has been surging interest to apply

“connectivity map” (CMAP) techniques, which attempt to
match a repositioned drug’s effects by their shared disease
perturbation gene expression profiles [2,3,9-11]. A major
resource–CMAP–was developed by Lamb et al. [11] to
assay genome-wide transcriptional expression data across
a wide range of cell lines treated with small drug mole-
cules. Based on the CMAP data, Iorio et al. [3] proposed a
drug repositioning method by constructing drug-drug
similarity networks. Hu and Agarwal[9] and Sirota et al.
[2] also investigated how to pair drugs and disease indica-
tions based on negative correlation of drug perturbation

and disease gene expression patterns identified from
CMAP. The anti-correlation relationships between the
drugs and diseases are demonstrated to suggest novel
therapeutic indications for existing drugs. The primary
advantage of CMAP is that it does not require prior
knowledge of drug targets or a drug’s detailed mechanism
of actions to work. However, CMAP’s limitation is also
quite apparent: limited coverage of drugs, limited drug
perturbation gene expression data, limited dosage-depen-
dent conditions, and the dubious transferability of expres-
sion patterns from cell lines or animal models to human
systems. Ultimately, it can be time-consuming and costly
before a significant portion of current drugs in all safe
dosage conditions can be tested in even a limited number
of cell lines for CMAP according to the statistics in [12].
In this work, we describe our development of a new

resource called DMAP that can help drug development
researchers evaluate what effects a drug may have on
disease-relevant genes or proteins. DMAP compiles each
drug’s stimulatory or inhibitory effects on genes or their
protein products (Figure 1), based on the computational
integration of such data from different databases. It cov-
ers 438,004 chemical-to-protein effect relationships
between 24,121 PubChem compounds that cover
289,571 chemical entities with a synonymous name, and
5,196 distinct UniProt proteins. DMAP may be used
wherever CMAP data coverage is poor for drug reposi-
tioning applications. To evaluate the DMAP perfor-
mances, we calculated drug-to-drug similarity based
on newly generated DMAP profiles [3] and obtained
Kolmogorov-Smirnov test scores [2,11]. We demonstrate
that DMAP can successfully recall known drugs for
examined disease indications. In addition, by applying

Figure 1 Computational framework. Construct the Drug directionality Map (DMAP) dataset from STITCH and HAPPI and evaluate DMAP’s
utility for drug repositioning with drug similarity network and K-S algorithms.
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DMAP, we propose novel indications for drugs currently
in NCATS [13].

Methods
Develop DMAP context from existing databases
In DMAP, we collected, integrated and ranked each pair of
drug-to-protein/gene relationship. The primary data for
drug-protein information comes from the STITCH [14]
database, and may be expanded easily to include other
sources such as CTD [15] data. STITCH is an aggregated
Cheminformatics database of chemical-to-protein interac-
tions connecting over 300,000 chemicals and 2.6 million
proteins for many species mined from biomedical litera-
ture. We parsed out STICH chemical protein interactions
for Homo sapiens with those chemical-protein “edge
actions” being either “activation” (stimulatory interaction)
or “inhibition” (inhibitory interactions). To eliminate the
synonymous chemicals with the same chemical structure,
we mapped 289,571 chemicals to the PubChem database
in the result of 24,121 distinct PubChem Compound ID
(CID).
Next, we calculated a probability-weighted summary

of all the evidence to determine an overall mechanism
of “edge action” for each specific chemical-protein inter-
action using conf(d,p).

conf(d, p) =
∑i=N

i=1
(probi(d, p) ∗ signi) (1)

where d and p are specific drugs and proteins, respec-
tively. N is the number of evidence for the interaction
between d and p. probi(d,p) is the confidence of each evi-
dence i with a value within the range of 0[1]. signi has a
value of 1 if the evidence i represents activation while has
a value of -1 if the evidence i represents inhibition.
Then, to rank each interaction, we used HAPPI [16], an

integrated protein interaction database that comprehen-
sively integrated weighted human protein-protein interac-
tion data from HPRD, BIND, MINT, STRING, and OPHID
by assigning a weight weight(p) for each drug’s interacting
proteins using the following formula adapted from [17].

weight(p) = k × ln
(∑

q∈NET
conf (p, q)

)
− ln

(∑
q∈NET

N(p, q)
)

(2)

Here, p and q are proteins on the protein interaction
network, k is an empirical constant (k=2 in this study),
conf(p, q) is the confidence score assigned by HAPPI to
each interaction between protein p and q, and N(p, q)
holds the value of 1 if protein p interacts with q or the
value of 0 if protein p does not interact with q.
Finally, we developed an intuitive pharmacology score

(P-Score) to combine the probability for each interac-
tion and the weight of the interacting proteins:

P - Score(d, p) = conf (d, p) × weight(p) (3)

Here, P-Score contains both the information of each
drug’s action on their interacting proteins and the
importance of the protein in the protein-protein inter-
action network. This is different than the expression
level based ranking in CMAP, which may be more
suitable for biomarker discovery instead of drug
discovery. With P-Score for each drug-protein interac-
tion, DMAP is thus in a compatible format with
CMAP [11].

Integrate drug therapeutic indication data
To construct a golden standard of known drug indica-
tions to evaluate DMAP’s drug repositioning perfor-
mance, we integrated the Therapeutic Target Database
(TTD) [18] and the dataset from the PREDICT [1]
paper. TTD is a database that provides information
about drugs’ known therapeutic protein targets and
their targeted diseases. The PREDICT paper provides a
compiled list of drug indications. We integrated these
two sources to get 2,912 drug indication associations
corresponding to 1,180 drugs and 726 indications.

Prepare disease expression signatures and drug
expression signatures
To apply the Kolmogorov-Smirnov algorithms with
DMAP or CMAP for the drug repositioning, we need
the disease expression dataset as one of the inputs. We
thus retrieved the disease gene expression profiles from
Pacini C et al. [19]’s paper. In total, 87 disease asso-
ciated microarray experiments were compiled to repre-
sent 45 distinct diseases. According to Pacini C’s paper,
these datasets were obtained from the GEO microarray
repository [20]. The raw CEL files were normalized with
RMA [21]. For those gene expression profiles represent-
ing the same disease, they were combined with the med-
ian rank normalization by Warnat et al. [22].
The drug-gene expression datasets were obtained from

Iorio et al.[3]’s paper instead of directly from CMAP
[11] to reduce the batch effect. Iorio et al.[3] computed
a single synthetic ranked list of genes, called Prototype
Ranked List (PRL), by merging all the ranked list of the
same compound in CMAP. Only consistently overex-
pressed/underexpressed genes are placed at the top/bot-
tom of the RPL. This helped capture a consensus
transcriptional response for each drug. We thus chose
to use the PRL to represent the drug signatures from
CMAP in this study.

Design drug similarity measurement
The hypothesis for the drug similarity network approach
is: if two drugs were similar, the disease indication for
one drug could be potentially assigned to the other
drug. To measure the similarity among each drug pair,
we computed SIM(dx,dy) based on the Tanimoto
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Coefficient between their interacting proteins (4).

SIM(dx, dy) =
|px+ ∩ py+| − |px− ∩ py−|

|px ∪ py| (4)

Here, dx and dy represent the two specific drugs, px
represents the set of proteins interacting with dx, py
represents the set protein interacting with dy. |px ∪ py|
is the number of total distinct proteins in px and py. |px
+ ∩ py+| is the number of overlapped proteins on which
both drugs have identical interactions (i.e. both activate
or inhibit the shared proteins). |px- ∩ py-| is the number
of shared related proteins on which the two drugs have
opposite interactions (i.e. one activates while the other
inhibits the shared proteins). SIM(dx,dy) lies in the range
of [-1,1] with 1 representing that the two drugs share
the same interacting proteins and the drugs’ action on
each protein is the same while -1 representing that the
two drugs share the same proteins but the drugs’ action
on each protein is opposite.

Evaluate the prediction performance
To assess the prediction performance, we implemented the
‘Guilt by Association’ (GBA) concepts (Figure 2.) presented
by Chiang et al[23] and conducted “Leave-One-Out” cross-
validation. For each drug, we removed its known indica-
tions and attempted to recover them by considering the
indications for its top N similar drugs found. We calculated
overall sensitivity and specificity by varying N–the number

of similar drugs–from 1 to 981. The area under the ROC
curve (AUC) score was used to measure the performance.

Implement Kolmogorov-Smirnov strategy
We implemented the nonparametric, rank-based strat-
egy based on the algorithm originally introduced by
Lamb et al.[11] to generate a ranked list of candidate
drugs for each disease. For each disease signature, we
computed an enrichment score separately for the up- or
down- regulated genes: esup and esdown. In specific, we
constructed a vector V of the position of each of the
up- or down- regulated genes on the basis of the values
from the reference drug dataset. The vector was then
sorted in ascending order such that V(j) is the position
of disease gene j. The computation of the enrichment
score is based on Kolmogorov-Smirnov statistic and the
details can be referred to in the supplementary material
in Lamb et al. [11]. The drug score is set to zero, where
esup and esdown have the same algebraic sign. Otherwise,
we set the drug score to esup-esdown. To evaluate the
statistical significance of the score, we applied a permu-
tation approach by randomly selecting any drug signa-
tures and re-calculated the score accordingly. We did
the permutation 200 times for each drug-disease pair
and computed the p-value by checking the actual score
with the score distribution after randomization. We
hypothesized that those drugs with a statistically signifi-
cant negative score might be a possible treatment for
the disease of interest.

Perform literature validation
To check whether the predicted drug-disease pairs have
clinical literature evidence, we used the esearch API
provided by NCBI. The query term we used is ‘drug
name AND disease name AND (Clinical Trial[ptyp] OR
Clinical Trial, Phase I[ptyp] OR Clinical Trial, Phase II
[ptyp] OR Clinical Trial, Phase III[ptyp] OR Clinical
Trial, Phase IV[ptyp])’. We recorded the total number of
clinical type PubMed articles for each association.

Results and discussion
Drug directionality Map (DMAP) Construction
We constructed DMAP containing 438,004 chemical
protein interactions for 24,121 PubChem Compound.
(Table 1). Compare to CMAP [11], DMAP shows a
14-fold increase of CID coverage. In addition, DMAP
cover most of the Anatomical Therapeutic Chemical
(ATC) categories: 100% at the first level, 94.3% at the
second level and 92.% at the third level. This fact is sig-
nificant if we compare CMAP coverage on ATC cate-
gories: 100% at the first level, 12.5% at the second level
and 11.7% at the third level. Comparing to all the drugs
from DrugBank, we have 71.5% in approved group and
12.7% in experimental group in DMAP that exceeding

Figure 2 A schematic representation of the GBA method. Given
two drugs × and y and their corresponding indication profiles Ix
and Iy, respectively, the potential novel uses for drug × is Iy,x.
Similarly, potential novel drug uses for drug y is Ix,y.
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the 39.2% and 11.7% respectively in CMAP. The protein
and drug-protein interaction coverage in DMAP does
not match to CMAP due to CMAP is based on the
whole protein screening. The DMAP most popular ATC
category distribution is general balance with the DrugBank
approved drug distribution except for infectious disease
and cancer drugs in category J and L in Figure 3. The rea-
son for the approved drugs in Drugbank little higher rate
than DMAP in J and L is probably due to the favor of
infectious disease and cancer drug discovery in Drugbank.
We also normalize the score range [-1,1] between CMAP
and DMAP to perform Pearson correlation and the result
is 0.017, which indicates the difference exists between the
cell line drug-protein result, and the protein-chemical

association and predicted drug-downstream target associa-
tion in human. Figure 4 shows the number of shared che-
micals between DMAP, CMAP, and for drugs with known
indications which we compiled from the TTD database[24]
and literature [1] (Figure 4). CMAP contains 394 drugs
with known indications. Meanwhile, DMAP contains 982
drugs with known indication. Among these, CMAP and
DMAP share 380 drugs, which cover 96.5% of CMAP but
only 38.70% of DMAP. CMAP only contains 14 drugs not
covered in DMAP; meanwhile DMAP contains 602 drugs
not covered in CMAP. Thus, we argue that DMAP pro-
vides a valuable resource for repositioning existing drug
for new uses. To demonstrate this, in the following section
we applied two representative drug-repositioning methods

Table 1 Database statistics comparing CMAP (build 02) and
the new DMAP.

Count CMAP (Build
02)

DMAP

Chemical entities (including brand
names)

1,309 289,571

Drugs with known indications 394 982

Drug entities with unique PubChem
CID

1,714 24,121

Drugbank Approved (and %) 569 (32.3%) 1260
(71.5%)

Drugbank Experimental (and %) 51 (1.0%) 646 (12.7%)

Coverage of Drug’s Therapeutic Areas 881 1,700

ATC first level categories (and %) 14 (100%) 14 (100%)

ATC second level categories (and %) 72 (81.8%) 83 (94.3%)

ATC third level categories (and %) 152 (76.7%) 184 (92.9%)

Proteins by UniProtID (and %) 11,820 (58.5%) 5,196
(25.7%)

Drug-to-protein effect relationships 20,242,271 438,004

Stimulatory effects 10,156,011 200,310

Inhibitory effects 10,086,260 237,694

Figure 3 ATCCODES distribution of DMAP database, the background is the Drugbank approved drug distribution.

Figure 4 The Venn diagram of drugs from DMAP drug
signatures, CMAP drug signatures and drugs with Indication
(acquired from TTD database).
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with DMAP dataset and proved its utility for computa-
tional drug repositioning.
In Figure 5, we show the scale-free characteristics of

the drug-protein interaction bipartite network in DMAP.
Here, the drug degree of a drug is defined as the number
of proteins interacting with the drug, and the protein
degree of a protein is defined as the number of drugs
interacting with the protein. The R-square for linear
regression in drug degree and protein degree are 0.83
and 0.81 (in log scale), correspondingly.
Figure 6 shows the gene ontology (GO) terminologies

overrepresented (Figure 6A) and underrepresented
(Figure 6B) by protein covered in DMAP. Here, we use
the FDR calculated by DAVID functional annotation
tool [25] on GO to sort the GO terms, and use protein
not covered in DMAP to construct the underrepre-
sented GO terms. We observe that GO ‘respond’ and
‘regulation’ terms are the most represented in DMAP.

DMAP’s utility for drug repositioning
To check DMAP’s utility for drug repositioning, we
applied the following two well-known drug-repositioning
methods in literatures: (i) drug similarity approach [3],
(ii) Kolmogorov-Smirnov algorithms [11].

DMAP outperforms CMAP in repurposing using drug
similarity approach
We computed 481,671 pairwise drug similarities for the
982 drugs with known indications by calculating the
Tanimoto Coefficient between their interacting proteins
profiles and evaluate the prediction performance with
“Leave-One-Out” cross-validation.
We observe that using the drug-protein interaction in

DMAP, the repurposing performance significantly
increases, compared to the performance using the same
type of information in CMAP. The Overall AUC for the
prediction based on DMAP achieved 0.82. Most impor-
tantly, early retrieval performed well, with a partial AUC

of 0.72 for a specificity of 90% or above[26]. Since one
could only test the limited number of drugs in experimen-
tal setting, the good performance in high specificity region,
approximately corresponding to the top ten candidates
of all the predictions, would make the proposed drug
repositioning more meaningful in practice.
In comparison, we performed similar analysis based on

CMAP transcriptome data and the overall AUC was 0.64.
The early retrieval performance was only 0.55. Figure 7
showed that the ROC curve based on DMAP was above
the curve from CMAP.
To rule out the possibility that the performance differ-

ence was purely due to the drug coverage difference
between DMAP and CMAP, we conducted the ROC
analysis with only the shared drugs between DMAP and
CMAP. The DMAP achieved an AUC of 0.82 while
CMAP only achieved an AUC of 0.64 (Figure 8).
Out of all the possible drug pairs, we identified 3,014

significant pairs by requiring the number of overlapped
proteins to no less than two and the drug similarity score
at the top 5% of the distribution. The resulting drug net-
work showed a scale-free property (Figure 9), commonly
observed in a biological network. Most of the drugs are
well connected and formed communities. In fact, 451
drug pairs out of these 3,014 significant pairs have shared
at least one known disease indication. For the remaining
2,563 pairs without overlapping indications, the novel
drug-disease associations from 1,206 drug pairs were
supported by at least one clinical type PubMed article.
Table 2 lists the top 20 drug-disease pairs and could be a
good starting point for further experimental validations.
DMAP outperforms CMAP in repurposing using
Kolmogorov-Smirnov approach
We compiled the gene expression profiles for 45 distinct
diseases and then queried them against DMAP and
CMAP, respectively, to generate a ranked list of potential
treatments for each of the diseases of interest. By using
DMAP drug-protein interaction data, we were able to

Figure 5 Distribution of protein degrees (A) and drug degrees (B) in DMAP bipartite network.
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correctly retrieve the drugs’ indications, which were
unable to be retrieved using CMAP drug-protein interac-
tion data. We examined results for diseases that are the
leading causes of death in the US [27]. For breast cancer,
with the DMAP, we successfully retrieved Anastrozole,
Capecitabine, Doxorubicin, Estradiol, Megestrol, Pacli-
taxel, Testosterone and Testolactone as possible thera-
peutic drugs for breast cancer. With the CMAP data,
only Paclitaxel was retrieved as a potential therapeutic

drug. For lung cancer, we retrieved Cisplatin and Etopo-
side by using the DMAP. However, when CMAP was
used, we were not able to retrieve any drugs for lung can-
cer. Additional file 1 also contains the results for other
diseases. To have statistical significance, we required a
p-value of less than 0.05. CMAP did relatively better in
the case for Alzheimer’s disease and Leukemia. For these
known relationships covered in CMAP but not DMAP,
or vice-versa, some were due to having a borderline

Figure 6 Top 10 gene ontology terms over-represented (A) and under-represented (B) covered by DMAP’s proteins. The × axis is the
-log(FDR) of gene ontology analysis acquired from DAVID functional annotation tool.
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p-value while others were due to violating our hypothesis
of negative correlation. Overall, DMAP and CMAP data-
base were complimentary to each other.
Besides recalling the known drug-disease relationships,

with DMAP, the Kolmogorov-Smirnov approach could
also propose novel drug-disease associations. National Cen-
ter for Advancing Translational Sciences (NCATS) [13]

provides a list of drugs for translational medical research.
We cross checked the novel predictions with their drug
list. Here, we highlight three case studies for Vincristine,
Nifedipine and Progestrone. Vincristine is a drug typically
indicated for Leukemia and Wilm’s tumor. A recent study
performed by Indolfi et al.[28] revealed that there is a
potentially higher rate of survival in patients with bilateral
Wilm’s tumor when patients are given a dosage of vincris-
tine/actinomycin D. Nifedipine is indicated to treat high
blood pressure and angina. The DMAP results suggest that
Nifedipine can also be used to treat asthma. Since Nifidi-
pine is a PKC inhibitor and PKC is a potential therapeutic
target for asthma [29], it is a potential treatment for
asthma. Cheng et al [30] demonstrated in their study that
Nifedipine can help control the constriction involved in
sensitized tissue in asthma. Furthermore, another study by
Barnes et al [31] suggested that Nifidipine modifies exer-
cise-induced asthma. Progesterone is a prescription drug
used for women taking estrogens after menopause and is
also used for treating amenorrhea. The DMAP results sug-
gest that progesterone can be used to treat breast cancer.
In the study by Groshong et al [32], it was determined that
treatment with Progesterone can be used to regulate Breast
Cancer cell growth.
Additional file 2 summarized all the novel drug repo-

sitioning predicted by both similarity approach and KS
algorithms, which could be a starting point for further
experimental validation.

Conclusions
Reliable measurements of how drugs affect disease pro-
teins is critical to drug repositioning. In this work we
presented a computational drug directionality resource
called DMAP to address the challenges. We demon-
strated that the resource can greatly facilitate the drug
discovery process for the following reasons: access to
disease gene-drug relationship data with high coverage
and quality; incorporating prior knowledge about biolo-
gical significance with protein interaction network.
This study differs from previous research in that it

provides a comprehensive database of computationally
derived drug-protein relationships. Previous efforts
[2,3,9,10] on pairing the expression of drugs and dis-
eases mainly rely on experimental connectivity map. For
example, Sirota et al.[2] performed a large-scale integra-
tion of expression signatures of human diseases from
the public data with CMAP drug signatures. This work
provides another alternative resource of directed drug-
protein relationships. The drug similarity study proves
the validity of the probabilistic-based directionality for
each drug-protein relationship. The implementation of
K-S algorithm proves the compatibility of the pharma-
cology score based ranking with the expression based
ranking in CMAP for the drug repositioning research.

Figure 7 ROC curves for the prediction performance based on
DMAP (blue line) and CMAP (red line). Blue shade area provides
a partial ROC area corresponding to specificity 90% above.

Figure 8 The ROC curves for DMAP and CMAP using the
overlapped drugs.
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With these two major drug repositioning approaches,
the knowledge base from DMAP performed better than
directly using the microarray data from CMAP. It can
thus serve as a valuable resource for drug repositioning
studies.
One limitation of DMAP lies in that the number of

interacting proteins for each drug is not a constant
number. For the gene expression based profiles in the
CMAP database, each drug was measured against the
same number of proteins in experiments while in
DMAP the number of interacting proteins varies from
drug to drug. In DMAP, 13,717 drugs have at least

10 activated and inhibited proteins. Despite this limita-
tion, the database served its purpose for systematic drug
repositioning as demonstrated in this work.
Another limitation of DMAP is the dependency of

drug-protein interaction scoring on protein-protein
interaction (PPI) databases. As mentioned in [33],
disease gene ranking should be performed using PPI
data not only with reasonable quality but also high data
coverage. In this work, we only used the PPI data to
calculate the protein weight. Therefore, we believe the
conclusions above still hold. In other words, we expect
time and PPI quality to affect primarily drug-protein

Figure 9 Power-law degree distribution of drug similarity network.
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data significantly if and only if the drug-protein relation-
ship score is relatively low; when the drug-protein rela-
tionship is high - suggesting that there’re lots of data
coverage for the relationships across many literature
reports - the time or PPI quality effect is expected to be
relatively small.
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