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Summary. We propose a new sparse estimation method for Cox (1972) proportional hazards models by optimizing an
approximated information criterion. The main idea involves approximation of the �0 norm with a continuous or smooth
unit dent function. The proposed method bridges the best subset selection and regularization by borrowing strength from
both. It mimics the best subset selection using a penalized likelihood approach yet with no need of a tuning parameter. We
further reformulate the problem with a reparameterization step so that it reduces to one unconstrained nonconvex yet smooth
programming problem, which can be solved efficiently as in computing the maximum partial likelihood estimator (MPLE).
Furthermore, the reparameterization tactic yields an additional advantage in terms of circumventing postselection inference.
The oracle property of the proposed method is established. Both simulated experiments and empirical examples are provided
for assessment and illustration.
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1. Introduction

Consider the usual setup for censored survival data. Let
(T ′

i , C
′
i) denote the failure and censoring times for the ith

individual for i = 1, ..., n. The observed failure time is Ti =
min(T ′

i , C
′
i) with failure status indicated by δi = I{T ′

i ≤ C′
i}.

Let zi ∈ Rp denote the p-dimensional covariate vector asso-
ciated with subject i. Without loss of generality (WLOG),
we assume that all the covariates have been standardized.
For identifiability concern in the ensuing modeling and infer-
ence, we assume that T ′

i and C′
i are independent given zi, i.e.,

T ′
i �C′

i | zi. Thus, the observed data consist of {(Ti, δi, zi) : i =
1, ..., n}. The Cox (1972) proportional hazards (PH) model
formulates the hazard function of T ′

i given zi as

h(t|zi) = h0(t) exp(βTzi), (1)

where β = (βj) ∈ Rp is the unknown regression parameter vec-
tor. Estimation of model (1) is based on the partial likelihood
(Cox, 1975). Throughout the article, we shall restrict our dis-
cussion to the traditional finite dimension scenario, i.e., p is
fixed and p < n, while possible high-dimensional extensions
will be discussed later. Assuming no or few ties in the observed
failure times, the partial log-likelihood function for β is given
by

l(β) =
n∑

i=1

δi

[
zT

i β − log

n∑
i′=1

{
I(Ti′ ≥ Ti) exp(zT

i′ β)
}]

.

Concerning variable selection, the true β is often sparse in
the sense that some of its components are zeros. By “sparse

estimation,” we refer to methods and procedures that allow
for identification of zero components in β and estimation of
its nonzero components simultaneously.

There are two major types of variable selection techniques
for survival models. Both can be generally formulated as a
penalized partial likelihood form:

min
β

− 2l(β) + λ · pen(β), (2)

where pen(β) is a penalty function and the penalty parameter
λ is either fixed a priori or treated as a tuning parameter. The
first type is the best subset selection (BSS) method, where a
model selection criterion such as AIC (Akaike, 1974) or BIC
(Schwarz, 1978) is employed to compare models of all choices.
BSS solves

min
β

− 2 l(β) + λ0 ‖ β ‖0, (3)

where the �0 norm ‖ β ‖0= card(β) = ∑p

j=1
I{βj �= 0} mea-

sures the model complexity and the penalty parameter λ0 is
fixed as λ0 = ln(n0) for BIC, with n0 being the total number
of uncensored failures (Vollinsky and Raftery, 2000). If AIC is
used, then λ0 = 2. Due to the discrete nature of the �0 norm,
solving (3) is NP-hard and its optimization is proceeded in
two steps: fit every model with the maximum partial likeli-
hood method and then compare the fitted models according
to an information criterion. Although faster algorithms such
as branch-and-bound (Furnival and Wilson, 1974) and iter-
ative hard thresholding (Blumensath and Davies, 2009) and
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heuristic surrogates such as stepwise procedures are available
for this combinatorial optimization problem, the best subset
selection is infeasible for moderately large p.

The second type is regularization, as exemplified by Least
Absolute Shrinkage and Selection Operator (LASSO; Tibshi-
rani, 1997), adaptive LASSO (ALASSO; Zhang and Lu, 2007),
and Smoothly Clipped Absolute Deviation penalty (SCAD;
Fan and Li, 2002). LASSO replaces the �0 norm with the �1

norm for convex relaxation, i.e., pen(β) =‖ β ‖1=
∑p

j=1
|βj|,

so that the problem becomes

min
β

− 2 l(β) + λ ‖ β ‖1 . (4)

The significance of LASSO is that it reformulates sparse
estimation into a continuous convex programming problem.
Nevertheless, the performance of LASSO is unsatisfactory in
either variable selection or parameter estimation. To improve,
ALASSO applies a weighted �1 norm and SCAD employs a
nonconvex penalty, both enjoying the oracle property, i.e.,
consistency in selecting variables and efficiency in estimating
the nonzero coefficients, under certain conditions given that
λ can be appropriately chosen.

With the regularization approach, the penalty function
does not correspond well to the model complexity ‖ β ‖0 . As
a result, the value of the penalty parameter λ is no longer
trackable by referring to AIC or BIC. Therefore, optimization
of (4) has to resort to two steps as well: first solve (4) for every

fixed λ > 0 to obtain a regularization path {β̃(λ) : λ > 0}, and
then select the best λ via an information criterion along the
path. While two fast algorithms, homotopy (Osborne, Pres-
nell, and Turlach, 2000) and coordinate descent (Fu, 1998),
have been proposed for �1 regularization, the two-step pro-
cedure can be time-consuming when solving (4) with a fixed
λ entails iterative procedures, which is the case in Cox PH
models. Compared to BSS, the �1 regularization procedure
amounts to seeking minimum AIC or BIC only along the reg-
ularization path, which is a much reduced search space since
β̃(λ) is nothing but a one-dimensional curve indexed by λ in
the original search space Rp. Therefore, it is reasonable to
deduce that the regularization-based estimators may not per-
form as well as the estimator obtained with BSS, if AIC or
BIC is used as the performance criterion.

Besides the concerns about performance and computational
efficiency, another major challenge that both methods face is
postselection inference. Statistical inference is routinely done
based on the nonzero coefficient estimates in the regulariza-
tion or these selected variables in BSS. In such a practice, it
has been taken for granted that model selection has no or little
effect on the subsequent inferences, a myth recently debunked
by Leeb and Pötscher (2005) who discussed an impossibil-
ity result for some postselection estimation. The problem
can be manifested by the fact that no standard error results
are available for zero coefficient estimates in regularization
approaches. One is referred to Berk et al. (2013) and Lockhart
et al. (2014) for further discussions and recent developments
on this issue.

In this article, we put forward a new method of conduct-
ing sparse estimation for Cox PH models that helps address
the aforementioned deficiencies. The main idea is to approxi-

mate the information criteria so that it yields a continuous or
smooth objective function for easier optimization. For simplic-
ity, we abbreviate the proposed method as MIC for “minimum
information criterion.” MIC extends the best subset selection
to scenarios with large p. At the same time, MIC can be
regarded as a regularization method, yet free of tuning. In
order to circumvent the postselection inference, we also pro-
pose a technical maneuver to obtain a valid statistical testing
for parameters with zero estimates. The remainder of the arti-
cle is organized as follows. Section 2 presents the proposed
method in detail, as well as its asymptotic properties. Sec-
tion 3 addresses the postselection inference problem. Section
4 contains numerical results based on both simulated exper-
iments and a real data example. Section 5 ends the article
with a short discussion.

2. Minimizing the Approximated Information
Criterion

We seek a new sparse estimation method that can borrow
strength from both BSS and regularization and bridge them.
We start with BSS by approximating the discrete �0 norm
and make further improvement by capitalizing on knowledge
of regularization.

2.1. Approximation of �0 Norm

While the idea of optimization plays a critical role in both BSS
and regularization, the primary motivation of our approach
comes from approximation. The discrete nature of �0 norm
in (3) poses the main obstacle for BSS, which motivates us
to seek a continuous or smooth approximation to it with
a continuous surrogate function. This essentially involves
approximation of I(β �= 0). For this purpose, we introduce the
concept of unit dent functions. We call a continuous function
w : R→ [0, 1] a unit dent function at 0 if it satisfies: (i) w(·)
is an even function such that w(β) = w(−β); (ii) w(0) = 0 and
lim|β|→∞ w(β) = 1; and (iii) w(β) is increasing on R+. Denote
by D0 the space of all unit dent functions at 0. It can be seen
that D0 is closed under operations such as composition and
product. Clearly, any unit dent function in D0 can be viewed
as a continuous approximation of I(β �= 0).

Among many others, one natural choice in D0 is the hyper-
bolic tangent function given by

tanh(a |β|r) = exp (2a |β|r) − 1

exp (2a |β|r) + 1
,

where a > 0 is a scale parameter that controls the sharpness
of the approximation and r ∈ N has typical values of 1 and 2.
Figure 1 plots the tanh function with r = 1 in (a) and r = 2
in (b), for different choices of a = 1, 2, . . . , 200. It can be seen
that a relatively large a is needed in order to provide a good
approximation. It is also interesting to note that the curve
with r = 2 is smooth while the curve with r = 1 has a cusp at
β = 0.

From the perspective of regularization, Fan and Li (2001)
spelled out three desired properties for the penalty function:
unbiasedness, sparsity, and continuity. It can be seen that
both unbiasedness and continuity are easily satisfied by both
choices. To enforce sparsity, the choice of r = 1 is favorable
as opposed to r = 2 at the first sight. However, setting r = 1
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Figure 1. Hyperbolic tangent penalty functions tanh(a|γ|r)
that approximate the indicator function I(γ �= 0): (a) r = 1
and (b) r = 2. The value of a ranges from 1 to 200.

leads to a nonsmooth optimization problem and the resultant
estimates suffer from the same postselection inference. These
concerns motivate us to restrict our attention to r = 2 in
order to ensure smoothness. We then devise a different way of
enforcing sparsity and circumventing postselection inference.

2.2. Reparameterization

With r = 2, solving minβ {−2 l(β) + λ0

∑p

j=1
tanh(aβ2

j )} facil-

itates a surrogate BSS method as in (3). This is a smooth
optimization problem; however, it does not provide sparse
estimates. To remedy, we shall reparameterize the problem
by introducing γ = (γj) ∈ Rp, which relates to β as follows.
Define wj = w(γj) = tanh(a γ2

j ) for j = 1, . . . , p and matrix
W = diag(wj). Then, set βj = γjwj for each j. That is, we
reparameterize β in terms of γ such that β = Wγ. Now, we
consider the following optimization problem

min
γ

− 2 l(Wγ) + λ0 tr(W), (5)

where tr(W) = ∑p

j=1
wj is the trace of matrix W. It turns

out that this simple reparameterization step not only helps
enforce sparsity while keeping the optimization problem
smooth but also addresses the inference issue with zero esti-
mates.

One original motivation of the above reparameterization
step came from nonnegative garotte (NG; Breiman, 1995).
NG is formulated as a sign-constrained regularization prob-
lem based on the decomposition β = sgn(β) · |β|. Assuming
that the signs of β can be correctly specified by another con-
sistent estimator, say, the MPLE β̂, it remains to estimate
|β|. Reparameterizing β = diag(β̂)γ for γ = (γj) with γj ≥ 0,

NG first estimates γ by solving

min
γ

− 2 l(β) s.t.

p∑
j=1

γj ≤ τ and γj ≥ 0,

with τ being a tuning parameter, and then obtains the esti-
mated regression coefficients β̂j = γ̂jβ̂j for j = 1, . . . , p. One
fundamental problem with NG is that if any sign of the initial
estimator β̂ is wrongly specified, which occurs often with real
data owing to multicollinearity or other complexities, then it
becomes hopeless for NG to make correction. Comparatively,
MIC is based on a different decomposition β = β · I{β �= 0}.
Setting γ = β and approximating I{γ �= 0} by w(γ) lead to
the reparameterization β = γw(γ), which does not depend on
an initial estimate.

With the reparameterization, the regression coefficient vec-
tor remains β. However, the decision vector in (5) becomes γ.

This helps keep the optimization problem smooth. We first
obtain the estimate of γ, γ̃, and hence W̃ = diag{w(γ̃j)}, then

we compute the estimate of β as β̃ = W̃γ̃. The function w(γ)
is smooth in γ with the first two derivatives given by ẇ =
dw/dγ = 2aγ(1 − w2) and ẅ = 2a(1 − w2)(1 − 4aγ2w). To see
why (5) leads to sparse estimation of β, it is helpful to exam-
ine the penalty w(γ) = tanh(aγ2) as a function of β. First of
all, there is one-to-one correspondence between β and γ, as
shown in Figure 2a. As a function of β, w(γ) is a unit dent
function that can be used to approximate its �0 norm. Apply-
ing the chain rule and differentiation of the inverse function
yields

d w(γ)

d β
= d w(γ)

d γ
·
(

d β

d γ

)−1

= ẇ

w + γẇ
.

Similar arguments can be applied to obtain its higher order
derivatives. A closer look reveals that w(γ) is a smooth func-
tion in β everywhere except at β = 0 where d β/d γ = 0. Figure
2b plots w(γ) versus β, showing that w(γ) possesses all the
properties of the desired penalty function for sparse estima-
tion of β.

2.3. Asymptotic Results

In this section, the asymptotic properties of the MIC esti-
mator β̃ are studied. Owing to the use of the counting
processes and martingale theories, all the arguments hold for
time-dependent covariates z = z(t). WLOG, we work on the
time interval t ∈ [0, 1]. Our notations follow those similar to
Anderson and Gill (1982), Fan and Li (2002), and Zhang and
Lu (2007). We consider the MIC estimator β̃ as the solution
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Figure 2. Illustration of the reparameterization step: (a)
plot of β vs. γ and (b) plot of w(γ) as a function of β, where
w(γ) = tanh(aγ2) and β = γw(γ) for a = 1, 2, . . . , 200.

of minβ Qn(β) with the objective function

Qn(β) = −2

n
· l(β) + ln(n0)

n
·

p∑
j=1

ρn(βj), (6)

where the penalty function ρn(βj) is defined through
the reparametrization βj = γjw(γj) and ρn(βj) = w(γj) =
tanh(an γj

2). Furthermore, we assume that an = Op(n).
Let β0 denote the true sparse parameter vector and par-

tition it as β0 = (βT
0(1), β

T
0(2))

T , where β0(1) ∈ Rq consists of
all q nonzero components and β0(2) consists of all the (p − q)
zero components. Let Yi(t) = I {Ti ≥ t} be the at-risk process.
Define

S(k)(β, t) = 1

n

n∑
i=1

Yi(t) exp
{
βTzi(t)

}
z⊗k

i , (7)

for k = 0, 1, and 2, where the outer product notation ⊗ is
operated as follows: a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT for
any vector a. Let s(k)(β, t) = E

[
Y(t) exp

{
z(t)T β

}
z(t)⊗k

]
be

the expected value of S(k)(β, t). Then, the expected Fisher

information matrix associated with the true model is

I(β0) =
∫ 1

0

[
s(2)(β0, t) −

{
s(1)(β0, t)

}⊗2

s(0)(β0, t)

]
h0(t) dt.

The following theorem shows that, under regularity con-
ditions, there exists a local minimizer β̃ of Qn(β) that is√

n-consistent and this
√

n-consistent β̃ enjoys the “oracle”
property.

Theorem 1. Assume that {(T ′
i , C

′
i, zi) : i = 1, . . . , n} are n

i.i.d. copies of (T ′, C′, z), T ′
i �C′

i | zi for each i, and n0 = Op(n).
Under the regularity conditions (A)–(D) in Anderson and Gill
(1982) or Fan and Li (2002), we have

(i). (
√

n-Consistency) there exists a local minimizer β̃ of
Qn(β) such that ‖ β̃ − β0 ‖= Op(n

−1/2).
(ii). (Sparsity and Asymptotic Normality) Partition the√

n-consistent local estimator in (i) as β̃ = (β̃
T

(1), β̃
T

(2))
T

in a similar manner to β0. With probability tending to
1, β̃ must satisfy that β̃(2) = 0 and

√
n(β̃(1) − β0(1)) → N

{
0, I−1

11 (β0)
}

,

as n → ∞, where I11(β0) is the leading q × q submatrix
of I(β0).

Theorem 1 is analogous to Theorems 1 and 2 in Zhang and
Lu (2007). Its proof, deferred to the Supplementary Materi-
als, follows Fan and Li (2002) in principle. Nevertheless, since
there is no further flexibility offered by adjusting the tun-
ing parameter as in SCAD or ALASSO, properties of the
hyperbolic tangent penalty also play a critical role in the
proof.

Theorem 1 offers a way of computing the standard errors
(SE) for nonzero components β̃(1) in β̃. Note that I11, the
leading q × q submatrix of I, is exactly the same as the
Fisher information matrix associated with the reduced model
obtained by eliminating terms associated with zero compo-
nents β̃(2). An alternative sandwich SE formula for β̃(1) is also
available following arguments similar to Fan and Li (2002), for
which we shall not pursue further. However, the SE formulas
in both approaches are only available for nonzero MIC esti-
mates. Thus, these practices belong to postselection inference
and should be used with caution.

3. Inference on β via γ

Postselection inference is inherent for the best subset selection
and regularization due to their two-step estimation process.
In MIC, variable selection and parameter estimation are com-
pleted in one single optimization step. This offers us a unique
opportunity to circumvent this fundamental problem. We
achieve this with the aid of reparameterization.

The transformation β = γw(γ) facilitates an important con-
venience: inference on β can be made via γ. This is because
the mapping between β and γ is a bijection and β = 0 if and
only if γ = 0. Therefore, testing H0 : βj = 0 is equivalent to
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testing H0 : γj = 0. For a zero estimate β̃j, we cannot compute
its standard error. But the objective function remains smooth
in γ. The statistical properties of γ̃ are readily available fol-
lowing standard M-estimation arguments. In particular, its
asymptotic normality is given in the following theorem.

Theorem 2. Let γ0 be the reparameterized parameter vec-
tor associated with β0. Under the regularity conditions
(A)–(D) in Anderson and Gill (1982), we have

√
n [D(γ0)(γ̃ − γ0) + bn]

d−→ N
{
0, I−1(γ0)

}
. (8)

where

D(γ0) = diag(wj + γjẇj)
∣∣
γ=γ0

= diag (Djj) , (9)

and the asymptotic bias

bn = {−L̈(β0)
}−1 ln(n0)

2

(
ẇj

wj + γ̃jẇj

)p

j=1

= (bnj) , (10)

satisfy (i) limn→∞ Djj = I{γ0j �= 0} and (ii) bn = op(1).

The proof of Theorem 2 is given in the Supplementary
Materials. Several comments are in order. Accordingly, an
asymptotic (1 − α) × 100% confidence interval for Djj γ0j can
be simply given as

(D̃jjγ̃j + b̃nj) ± z1−α/2

√
(I−1(γ̃)/n)jj, (11)

where D̃jj is an estimate of Djj by replacing γ0j with γ̃j

and similarly for b̃nj and I−1(γ̃). Empirically, we replace the
expected Fisher information matrix I(γ̃) with the observed
Fisher information matrix In(γ̃) given by

In(γ̃) = −∇2l(γ̃) =
n∑

i=1

δi

{
S(2)(γ̃; Ti)

S(0)(γ̃; Ti)
−

(
S(1)(γ̃; Ti)

S(0)(γ̃; Ti)

)⊗2
}

,

where functions S(k)(γ̃; Ti) are defined earlier in (7). Note that
it is computationally advantageous to use I−1

n (γ̃) rather than
I−1

n (β̃), although both γ̃ and β̃ are consistent for β0. Working
with β̃ entails handling very small or large numbers numeri-
cally.

Further simplification of (11) is available by ignoring both
D̃jj and b̃nj. This is because Djj ≥ 0 is bounded and equals 0
only when γ0j = 0. Asymptotically, limn→∞ Djj = I{γ0j �= 0}.
Moreover, the bias term bnj is op(1) with exponential con-
vergence for estimates of the nonzero components in γ0 and
Op{ln(n0)/

√
n} for estimates of its zero components. Thus, an

asymptotic (1 − α) × 100% confidence interval for γ0j can be
simply given as

γ̃j ± z1−α/2

√
(I−1

n (γ̃)/n)
jj
. (12)

Significance testing on γ0 can be done in a similar manner.

4. Numerical Studies

In this section, we first discuss numerical and optimization
issues in implementing MIC, then present simulation stud-
ies that are designed to assess the performance of MIC and
compare it to other available methods. We also explore the
standard error formula for nonzero components in β̃ and infer-
ence on β via γ. Finally, a real data example illustration is
provided via analysis of the PBC data. Additional numerical
results are presented in the Supplementary Materials.

4.1. Implementation Issues

The asymptotic results in Section 2.3 entail an = Op(n). In
all the reported numerical results throughout the article, we
have set an = n0, i.e., number of observed deaths in the data,

because n0/n
p→ Pr{C′ ≥ T ′} by WLLN. In summary, MIC

have the following simple form

min
γ

− 2 l(β) + ln(n0)

p∑
j=1

wj, (13)

where wj = tanh(n0 γ2
j ) and β = (βj) = (γjwj) . We would like

to emphasize that a is not a tuning parameter as impor-
tant as the penalty parameter λ. In fact, the MIC estimate
stays rather invariant with the choice of a, as demonstrated
with additional numerical results presented in the Supple-
mentary Materials. Comparatively, a small change in λ can
dramatically change the final estimate and hence fine tuning
is necessary in other regularization methods.

The MIC formulation of (13) leads to a smooth pro-
gramming problem. Nevertheless, the unit dent function is
nonconvex in nature. This implies that (13) may have multiple
local optima. In our implementation, we tried to make effi-
cient use of readily available optimization routines. We have
found that simulated annealing (SA; Belisle, 1992) followed
by a BFGS quasi-Newton algorithm (see, e.g., Nocedal and
Wright, 1999), both implemented in R (R Development Core
Team, 2015) function optim(), is quite efficient and effective
in computing MIC estimators. Simulated annealing is a global
optimization technique that helps seek the global optimum.
Succeeding SA with the BFGS method makes sure that the
final estimate converges to a critical point.

4.2. Simulation Results

For the convenience of comparison, we have simulated data
from the same models as in Zhang and Lu (2007). A total of
p = 9 covariates (Z1, . . . , Z9)

T are generated from a multivari-
ate normal distribution MVNp (0, �) , where the covariance
matrix � is given by

� = (
jj′) with element 
jj′ = 0.5|j−j′ | for j, j′ = 1, . . . , 9.

(14)

Two models, A and B, were considered with true regression
coefficients

Model A:β = (−0.7, −0.7, 0, 0, 0, −0.7, 0, 0, 0)T

Model B:β = (−0.4, −0.3, 0, 0, 0, −0.2, 0, 0, 0)T ,

corresponding to larger and smaller effects, respectively. Two
censoring rates, 25 and 40%, and three sample sizes n = 100,
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Table 1
Comparison of selection methods. Data are generated from Models A and B with 100 simulation runs. Three criteria are
used: the mean squared error (MSE); the average model size (Size); and the percentage of correct selections (Correct%).

Model A Model B

Censoring rate = 25% Censoring rate = 40% Censoring rate = 25% Censoring rate = 40%

n Method MSE Size Correct% MSE Size Correct% MSE Size Correct% MSE Size Correct%

100 Oracle 0.0672 3.00 100 0.0947 3.00 100 0.0542 3.00 100 0.0832 3.00 100
Full 0.2247 9.00 0 0.2948 9.00 0 0.1830 9.00 0 0.2389 9.00 0
Stepwise 0.1198 3.31 72 0.1690 3.32 69 0.1440 2.08 9 0.1851 1.95 4
MIC 0.1108 3.43 72 0.1543 3.35 69 0.1469 2.06 8 0.1835 1.95 8
LASSO 0.1456 5.42 10 0.1989 5.51 8 0.1000 4.20 6 0.1424 3.99 3
ALASSO 0.1178 4.25 35 0.1632 3.97 45 0.1105 3.47 8 0.1572 3.42 4
SCAD 0.1427 3.44 63 0.1644 3.28 58 0.1233 3.20 11 0.1455 2.70 15

200 Oracle 0.0341 3.00 100 0.0459 3.00 100 0.0239 3.00 100 0.0294 3.00 100
Full 0.0863 9.00 0 0.1146 9.00 0 0.0744 9.00 0 0.0980 9.00 0
Stepwise 0.0412 3.18 84 0.0582 3.22 81 0.0644 2.49 32 0.0886 2.42 21
MIC 0.0428 3.21 80 0.0741 3.49 67 0.0662 2.75 32 0.0812 2.60 24
LASSO 0.0627 5.45 8 0.1011 5.76 6 0.0529 5.11 7 0.0671 4.93 10
ALASSO 0.0462 3.97 49 0.0783 4.19 43 0.0554 4.14 15 0.0690 3.77 16
SCAD 0.0589 4.10 53 0.0626 3.81 62 0.0637 4.16 15 0.0814 3.75 13

300 Oracle 0.0208 3.00 100 0.0267 3.00 100 0.0153 3.00 100 0.0208 3.00 100
Full 0.0562 9.00 0 0.0666 9.00 0 0.0469 9.00 0 0.0644 9.00 0
Stepwise 0.0267 3.17 85 0.0331 3.16 86 0.0355 2.79 55 0.0529 2.70 39
MIC 0.0279 3.26 78 0.0343 3.22 81 0.0316 2.93 61 0.0495 2.67 39
LASSO 0.0471 5.60 6 0.0635 5.68 7 0.0288 5.18 9 0.0419 5.20 6
ALASSO 0.0298 3.69 57 0.0445 4.03 51 0.0305 4.27 27 0.0428 4.05 22
SCAD 0.0325 3.78 61 0.0402 3.88 59 0.0333 3.87 36 0.0479 3.89 22

200, and 300 are experimented. For each simulated data set,
seven methods were applied: the oracle model, the full model,
the best subset selection; MIC; LASSO with minimum GCV
selection of λ; ALASSO; and SCAD with BIC selection. All
the computations were conducted in R (R Development Core
Team, 2015). We documented how each method was imple-
mented in the Supplementary Materials.

For performance measures, we reported the mean weighted
squared error (MSE) (γ̂ − γ)T �(γ̂ − γ) with � given by (14),
the averaged model size (i.e., number of nonzero parame-
ter estimates), and percentage of correct selection. Table 1
presents the results based on 100 simulation runs. It can
be seen that MIC performs similarly to BSS. However, BSS
(even backward deletion) becomes infeasible for moderately
large p. More elaboration on this point will be made in
the comparison of computing time (see Section B.1 in the
Supplementary Materials). Compared to the regularization
methods, MIC performs better in terms of all measures in
Model A (the case with stronger signals). With weaker sig-
nals (Model B), all methods perform poorly when n = 100.
As sample size increases, their performances all improve. MIC
compares favorably to others in terms of the correct selec-
tion rate, but less favorably to LASSO or ALSSO in terms of
MSE. This can be explained by the fact that MIC is aimed
to achieve minimum BIC via approximation and BIC works
best with relatively large samples and stronger signals (see,
e.g., McQuarrie and Tsai, 1998).

To investigate the postselection SE formula for nonzero
estimates, we compare the actual standard deviation (ASD) of
estimated β̃j with the mean SE estimates over 500 simulation.

The results are presented in Table 2, together with the cov-
erage probability. It can be seen that the mean SE values are
close to the ASD values in most scenario, except in the case
of weak signal (Model B) with small sample size (n = 100),
where the asymptotic SE is smaller than the ASD to a sub-
stantial amount. This is the scenario where MIC does poorly
in selecting variables due to the use of BIC. The SE formula
performs reasonably well in all scenarios in terms of empiri-
cal coverage probabilities, which are all close to the nominal
confidence level 95%.

To assess the γ-based inference procedure as proposed in
Section 3, we recorded the 95% confidence intervals for each
individual γj and the p-values associated with the Wald test
of H0 : γj = 0. Since MIC is really fast, we have increased the
number of simulation runs to 500. Table 3 presents the cover-
age probability (CP) of the 95% confidence interval, as well as
the empirical power (EP) for testing on nonzero coefficients
at the significance level α = 0.05. It can be seen that the cov-
erage probabilities of the confidence intervals are around the
nominal level of 95% in all scenarios. The proposed signif-
icance testing procedure also performs reliably in terms of
empirical powers, although its performance deteriorates with
smaller sample sizes and weak signals as expected.

4.3. Data Example: A Revisit to PBC Data

To a real data example illustration, we pay a revisit to the
primary biliary cirrhosis (PBC) data set that is well-known
in the survival analysis literature. Another illustration is pro-
vided in the Supplementary Materials (Section B.3) where we
applied the proposed methods to a gene expression data set.
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Table 2
Standard errors for nonzero MIC estimates. The actual sample standard deviation (ASD) of each β̃j, the mean of the

asymptotic standard errors (SE–Mean), and the coverage probability (CP) of the 95% confidence intervals are obtained from
500 simulation runs.

Censoring 25% Censoring 40%

n ASD SE–mean CP ASD SE–mean CP

Model A 100 β̃1 0.174 0.164 93.19% 0.214 0.183 91.55%
β̃2 0.195 0.168 92.15% 0.224 0.190 92.94%
β̃6 0.185 0.156 92.38% 0.223 0.177 92.14%

300 β̃1 0.091 0.089 94.60% 0.102 0.099 94.20%
β̃2 0.094 0.091 95.20% 0.113 0.102 92.40%
β̃6 0.095 0.084 92.60% 0.114 0.095 91.20%

Model B 100 β̃1 0.187 0.146 91.79% 0.228 0.163 91.18%
β̃2 0.214 0.150 91.30% 0.232 0.167 90.34%
β̃6 0.202 0.139 84.76% 0.209 0.157 88.57%

300 β̃1 0.086 0.083 94.80% 0.096 0.092 95.00%
β̃2 0.098 0.083 93.48% 0.109 0.094 96.07%
β̃6 0.099 0.075 94.17% 0.113 0.084 93.29%

A description of the PBC study, which has been omitted here,
can be found in Dickson et al. (1989). This data set has been
analyzed by many authors including both Tibshirani (1997)
and Zhang and Lu (2007). Note that the results presented in
Tibshirani (1997; Table I on p.390) are based on the stan-
dardized predictors while the estimated coefficients in Zhang
and Lu (2007; Table 5 on p.699) have been transformed back
to the original scales. The results from MIC and several other
methods, as presented in Table 4, were based on standardized
data.

MIC selects eight variables, which are the same as those
selected by the stepwise selection and ALASSO. The SCAD
model has eight variables too, yet with slightly different
choices. The LASSO model is much larger, having 11 selected
variables. The final MIC model fit is nearly identical to the
one resulted from the stepwise selection, indicating again that
MIC mimics the best subset selection method well. The indi-
vidual parameter testings based on reparameterized γ in MIC,
free of postselection inference, also support the selected vari-
ables.

Table 3
Inference on β via reparameterized γ in MIC. The coverage probability (CP) of the 95% confidence interval for each

individual parameter and the empirical power (EP) at level α = 0.05 are based on 500 simulation runs.

Model A Model B

Censoring n = 100 n = 300 n = 100 n = 300

rate CP EP CP EP CP EP CP EP

25% γ1 93.6% 99.8% 95.2% 100.0% 94.2% 78.6% 95.6% 100.0%
γ2 96.0% 98.8% 95.4% 100.0% 95.6% 41.6% 97.4% 90.8%
γ3 95.4% 96.8% 93.4% 94.0%
γ4 96.4% 97.0% 96.4% 96.2%
γ5 96.2% 98.0% 95.4% 95.4%
γ6 96.4% 99.0% 96.4% 100.0% 97.6% 18.2% 97.2% 62.4%
γ7 94.6% 96.2% 96.4% 93.2%
γ8 95.2% 97.0% 95.8% 95.0%
γ9 91.6% 97.0% 95.0% 95.0%

40% γ1 94.8% 95.8% 92.8% 100.0% 93.6% 73.8% 95.2% 99.0%
γ2 94.0% 95.8% 96.6% 100.0% 95.2% 40.0% 97.8% 87.0%
γ3 95.4% 96.8% 96.0% 96.8%
γ4 95.8% 96.6% 93.2% 96.8%
γ5 96.2% 95.8% 94.4% 95.2%
γ6 96.4% 95.6% 96.6% 100.0% 96.8% 16.8% 99.2% 51.4%
γ7 96.8% 95.4% 95.2% 93.2%
γ8 97.0% 97.0% 96.8% 97.0%
γ9 96.8% 96.6% 95.0% 96.2%
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Table 4
Analysis of PBC data. The p-value in MIC is computed via the reparameterized γ̃ as discussed in Section 3.

Full model MIC Stepwise

γ̂ SE β̃ SE p-Value� γ̂ SE LASSO ALASSO SCAD

trt −0.062 0.108 0.000 1.0000
age 0.304 0.123 0.331 0.107 0.0067 0.330 0.107 � � �
sex −0.120 0.103 0.000 1.0000 �
ascites 0.022 0.098 0.000 1.0000 �
hepato 0.013 0.126 0.000 1.0000
spiders 0.046 0.111 0.000 1.0000 �
edema 0.273 0.107 0.222 0.094 0.0368 0.222 0.094 � � �
bili 0.368 0.117 0.391 0.089 0.0006 0.392 0.089 � � �
chol 0.116 0.104 0.000 1.0000 �
albumin −0.300 0.125 −0.290 0.110 0.0201 −0.291 0.110 � � �
copper 0.220 0.103 0.252 0.087 0.0165 0.252 0.087 � � �
alk.phos 0.002 0.084 0.000 1.0000
ast 0.231 0.111 0.248 0.103 0.0276 0.248 0.102 � � �
trig −0.064 0.087 0.000 1.0000
platelet 0.084 0.110 0.000 1.0000
protime 0.234 0.107 0.229 0.102 0.0283 0.229 0.102 � �
stage 0.388 0.150 0.369 0.124 0.0124 0.370 0.124 � � �

5. Discussion

MIC offers a new perspective for conducting sparse estimation
by approximating a model selection criterion. Su (2015) first
experimented a preliminary version of this method in linear
regression for the variable selection purpose only, while the
current research comprehensively examines sparse estimation
within the context of Cox PH models. The main advantages
of MIC are summarized as follows. First of all, MIC is free of
tuning owing to its special formulation. As a result, MIC is
computationally more efficient than many other competitors.
MIC only entails the same level of computational complexity
as what one would encounter in computing the MPLE. Sec-
ondly, BIC is optimal not only for its selection consistency
but also because it is derived as an approximation to the pos-
terior distribution of candidate models. The latter property
renders the penalty parameter in BIC, i.e., λ0 = ln(n0), unique
in some sense. This is why BIC is often used as an ultimate
yardstick in many variable selection procedures. MIC mim-
ics BSS but extends well to large p scenarios. MIC is also
advantageous to regularization methods as it seeks to opti-
mize an approximated BIC without reducing the search space.
Even if the fitting algorithm does not guarantee to identify
the true global optimum, the final MIC result should corre-
spond to a competitive model with a relatively small BIC.
Thirdly, the reparameterization step not only yields compu-
tational advantages but also facilitates a leeway to circumvent
the fundamental postselection inference problem.

While all our discussions in this article have been restricted
to fixed finite dimensions, the general approximation idea
of MIC may be extended to scenarios with diverging num-
ber of parameters (i.e., p → ∞ yet p/n → 0) or ultra-high
dimensions with p � n, where various extended, modified, or
generalized information criteria are available as pioneered by
Chen and Chen (2008) and others. As a part of our ongoing
research efforts, we are investigating how to obtain a modified
information criteria for high-dimensional Cox PH models so

that MIC can be readily applied. For future research, MIC can
also be possibly applied to other survival models (e.g., accel-
erated failure time models and frailty models) and various
sparsity structures (e.g., grouped or fused LASSO).

6. Supplementary Materials

Proofs and additional numerical results referenced in Sections
2, 3, and 5, as well as the R source codes for computation, are
available with this article at the Biometrics website on Wiley
Online Library.
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