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Computer-modeled characters resembling real people
sometimes elicit cold, eerie feelings. This effect, called the
uncanny valley, has been attributed to uncertainty about
whether the character is human or living or real.
Uncertainty, however, neither explains why
anthropomorphic characters lie in the uncanny valley nor
their characteristic eeriness. We propose that realism
inconsistency causes anthropomorphic characters to appear
unfamiliar, despite their physical similarity to real people,
owing to perceptual narrowing. We further propose that
their unfamiliar, fake appearance elicits cold, eerie feelings,
motivating threat avoidance. In our experiment, 365
participants categorized and rated objects, animals, and
humans whose realism was manipulated along consistency-
reduced and control transitions. These data were used to
quantify a Bayesian model of categorical perception. In
hypothesis testing, we found reducing realism consistency
did not make objects appear less familiar, but only animals
and humans, thereby eliciting cold, eerie feelings. Next,
structural equation models elucidated the relation among
realism inconsistency (measured objectively in a two-
dimensional Morlet wavelet domain inspired by the
primary visual cortex), realism, familiarity, eeriness, and
warmth. The fact that reducing realism consistency only
elicited cold, eerie feelings toward anthropomorphic
characters, and only when it lessened familiarity, indicates
the role of perceptual narrowing in the uncanny valley.

Introduction

Resolving category uncertainty and perceptual
mismatch theories

Human replicas in computer-animated films and in
robotics prompt us with increasing frequency to

examine how they make us feel. These replicas may
elicit cold, eerie feelings because of the perceived
salience of their nonhuman features. Mori (1970/2012)
graphed this effect as a valley of uncanniness in an
otherwise positive relation between human likeness and
affinity (Mathur & Reichling, 2016).

Kätsyri, Förger, Mäkäräinen, and Takala (2015)
identified two main groups of theories in the uncanny
valley literature: category uncertainty and perceptual
mismatch (also reviewed in MacDorman & Chatto-
padhyay, 2016). While the former concerns the entity as
a whole, the latter concerns relations among its features
(Moore, 2012; Pollick, 2010). Category uncertainty
theories propose uncanniness is caused by doubt about
what an entity is, such as whether it is human or
nonhuman, living or inanimate, real or simulated
(Jentsch, 1906/1997; MacDorman & Ishiguro, 2006).
Category uncertainty theories, as broadly construed,
include explanations based on categorical perception
(Burleigh, Schoenherr, & Lacroix, 2013; Cheetham,
Pavlovic, Jordan, Suter, & Jäncke, 2013; Looser &
Wheatley, 2010), category ambiguity (Burleigh &
Schoenherr, 2015), conflicting representations (Ferrey,
Burleigh, & Fenske, 2015), cognitive dissonance (Han-
son, 2005; MacDorman, Green, Ho, & Koch, 2009a;
MacDorman, Vasudevan, & Ho, 2009b), balance
theory (Tondu & Bardou, 2011), sorites paradoxes
(Ramey, 2005), and categorization difficulty (Chee-
tham, Wu, Pauli, & Jäncke, 2015; Yamada, Kawabe, &
Ihaya, 2013).

Perceptual mismatch theories propose uncanniness is
caused by a mismatch in the human likeness of an
entity’s features, such as in their visual or multimodal
realism (e.g., human skin paired with computer-
modeled eyes, MacDorman et al., 2009a; robot head
with human voice, Meah & Moore, 2014; Mitchell et
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al., 2011; or human skin with enlarged eyes, Seyama &
Nagayama, 2007). We have previously proposed
realism inconsistency theory, a kind of perceptual
mismatch theory, as an explanation of the uncanny
valley. Realism inconsistency theory predicts viewers
will experience cold, eerie feelings only when perceiving
anthropomorphic entities that possess features at
different levels of realism (see Figure 1; MacDorman &
Chattopadhyay, 2016). Our study found that increasing
an entity’s overall category uncertainty did not cause
cold, eerie feelings. These feelings were instead caused
by reducing consistency in the realism of its features.
Kätsyri and colleagues (2015) likewise found scant
support for category uncertainty theories but strong
support for perceptual mismatch theories. We assume
that any computer model that can be distinguished
from reality is inherently inconsistent in realism
because the achievement of realism varies in difficulty
by feature, thus resulting in some features appearing
more realistic than others.

Moore (2012) proposed a Bayesian model that
resolves the apparent incompatibility of category
uncertainty and perceptual mismatch theories. Cold,
eerie feelings are not caused by uncertainty about an
entity’s category but by unequal levels of uncertainty
about the category of its features. Moore’s proposal is
based on categorical perception: A physical difference

in a feature at a category boundary appears much
larger than an equal-sized difference within a category
(viz., the perceptual magnet effect; Feldman, Griffiths,
& Morgan, 2009). In simultaneously perceiving features
of an entity that are closer to and farther from a
category boundary, categorical perception causes dif-
ferences in perceptual distortion among features, which
Moore defines as perceptual tension. In other words,
perceptual tension results from features that differ in
their level on a perceptual dimension, such as
humanness, animacy, or realism. Although Moore
attributes the valley of negative affinity in Mori’s graph
to perceptual tension, he explains the broader positive
trend using an objective measure of familiarity, the
probability of occurrence of the stimulus. Thus, a
viewer’s affinity for the stimulus is graphed by
subtracting from its probability of occurrence the
perceptual tension it elicits, weighted by the viewer’s
sensitivity to perceptual tension (Figure 1; Equation 1
in the Method section of Quantitative evaluation of the
Bayesian model).

Operationalizing shinwakan

Moore’s (2012) model addresses another conun-
drum—the multidimensionality of the dependent var-

Figure 1. Moore (2012) proposed that affinity for a stimulus is its objective familiarity (probability of occurrence) minus its perceptual

tension, weighted by the viewer’s sensitivity to perceptual tension. The affinity curve resembles Mori’s (1970/2012) uncanny valley

graph. This study situates Moore’s model for the observational dimension objective realism (fraction of real): Real entities are more

familiar than their artistic depictions and thus are predicted to engender greater affinity; however, stimuli lying between depiction and

real may have some features that appear more real than others, thus causing perceptual tension. This study found reverse-scaled

eeriness ratings of human faces transitioning from computer modeled to real arose from a valley of eeriness with the predicted curve

(solid blue); by contrast, inanimate objects cleared the valley completely (dashed blue).
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iable in the uncanny valley graph. The dependent
variable must measure not only affinity for the
humanlike but also the uncanniness of the nearly
human—its characteristic eeriness—because this is the
experience a theory of the uncanny valley must explain
(Mangan, 2015).

In his original essay, Mori (1970/2012) referred to
the dependent variable as shinwakan, which is a
Japanese neologism. Shinwakan has been variously
translated as familiarity, affinity, comfort level, likabil-
ity, and rapport (Ho & MacDorman, 2010). However,
as MacDorman and Ishiguro (2006) observed, it is
incoherent to conceive of the dependent variable simply
as familiarity, because the zero crossing in the graph is
total novelty, and an entity cannot cross below total
novelty into negative familiarity. Given the conceptual
problems with operationalizing shinwakan as familiar-
ity, it is unsurprising that Cheetham and colleagues
(Cheetham, Suter & Jäncke, 2014; Cheetham et al.,
2015) were unable to find an uncanny valley effect: In
their studies familiarity increased with human likeness
with no decrease for ambiguously humanlike entities.

Ho and MacDorman (2010) found the eeriness of the
uncanny valley to be conceptually and empirically
distinct from the primary dimension of person percep-
tion, typically denoted by warmth or likability (Cuddy,
Fiske, & Glick, 2007). People dislike villainous charac-
ters, regardless of whether they are human actors,
computer models, or hand-drawn cartoons, and re-
gardless of whether they appear eerie or unfamiliar or
neither. Likability could also be confounded with
human likeness, the independent variable in Mori’s
graph. Ho and MacDorman (2010) found human traits
are typically more likable than nonhuman traits; indeed,
the high correlation between human likeness and
likability (r¼ .73, p , .001) raises concerns for studies
that only use likability as the dependent variable in the
uncanny valley graph (e.g., Ferrey et al., 2015; Yamada
et al., 2013). Thus, although Mori (1970/2012) and his
translators use the layman’s term affinity to describe the
dependent variable, this paper will sidestep the resulting
complications by treating affinity as a technical term
defined by Moore’s (2012) equation (Equation 1). We
evaluate predicted affinity primarily in terms of per-
ceived eeriness because eeriness is essential to the
uncanny valley experience (Mangan, 2015).

Evaluating Moore’s model quantitatively by com-
paring predicted affinity and perceived eeriness (reverse
scaled) can provide supporting or contrary evidence to
refine perceptual mismatch theories. To this end, we
conducted a pilot study with a subset of data from prior
work (MacDorman & Chattopadhyay, 2016). However,
Moore’s model failed to predict perceived eeriness in
part because it did not include as a factor the entity’s
level of anthropomorphism. Only for human and other
vertebrate faces had reducing realism consistency

increased the uncanny valley effect; for plants and
artifacts no such effect was found (MacDorman &
Chattopadhyay, 2016). These results align with the
finding that the face perception network is highly
sensitive to realism in human faces but not to realism in
other kinds of objects (James et al., 2015). What
Moore’s equation does not explain is why an anthro-
pomorphic appearance is necessary for perceptual
tension to cause the uncanny valley effect (Figure 1).

Anthropomorphism, perceptual narrowing, and
threat avoidance

We propose that, within Moore’s Bayesian frame-
work, the effect of anthropomorphic appearance on
eeriness could partly be explained by perceptual
narrowing. Although human infants start out discrim-
inating human faces and those of other primates
equally well, as they mature they become better at
discriminating human faces and worse at discriminat-
ing those of other primates (Lewkowicz & Ghazanfar,
2006; Pascalis, de Haan, & Nelson, 2002; Scott,
Pascalis, & Nelson, 2007). Perceptual narrowing also
occurs in perceiving faces of other races and faces of
nonprimate animals (Kelly et al., 2007; Simpson,
Varga, Frick, & Fragaszy, 2010). Elsewhere we have
proposed various mechanisms that are compatible with
perceptual narrowing to explain how perceiving small
deviations from human appearance could produce
large prediction errors in brain regions honed for
recognizing human faces, hands, and bodies, thus
engendering the cold, eerie feelings associated with the
uncanny valley (MacDorman & Chattopadhyay, 2016;
MacDorman et al., 2009a; MacDorman & Ishiguro,
2006; also see Saygin, Chaminade, Ishiguro, Driver, &
Frith, 2012).

Thus, Moore’s equation needs to be revised because
perceptual narrowing can cause a stimulus to appear
unfamiliar even though its appearance is physically
similar to familiar anthropomorphic stimuli. To
overcome this issue, in our analysis we replace
probability of occurrence in Moore’s equation (an
objective measure) with perceived familiarity (a sub-
jective measure). We argue that small deviations from
norms look more unfamiliar in anthropomorphic
entities than deviations of the same magnitude in
nonanthropomorphic entities. Thus, people may be
inclined to rate stimuli that are relatively similar to
human as unfamiliar because of perceptual narrowing.
That effect needs to be captured by the dependent
variable affinity.

A second issue with Moore’s equation is that
affinity increases with probability of occurrence,
which implies we feel the greatest affinity for what is
most familiar. However, the familiar is not necessarily
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pleasant but could be boring, while the extremely
novel could be terrifying. The relation between
novelty and pleasure has typically been graphed as an
inverted U. Pleasure rises as novelty increases to peak
at a moderate degree of novelty and then rapidly falls;
thus, high levels of novelty elicit unpleasant sensations
and aversive responses (Berlyne, 1970, 1971; Lang,
Bradley, Sparks, & Lee, 2007; Zuckerman, 1976,
2014). A prerequisite for perceiving novelty and, in
turn, for responding aversively to excessive or
unanticipated novelty is the perceptual narrowing that
comes with the formation of new categories (Hebb,
1946; exposure learning, Gottlieb, 2002; van Kampen,
2015; for a review, see Bronson, 1968a). For example,
human infants develop a fear of strangers only after
they can distinguish a stranger from their mother
(Bronson, 1968b).

In this paper, we extend realism inconsistency
theory. After introducing our general method (see the
General method section), we quantify Moore’s
Bayesian model of the uncanny valley, replacing
probability of occurrence with perceived familiarity.
We evaluate the model by comparing its affinity
predictions with participants’ reverse-scaled eeriness
ratings of the stimulus (see the Quantitative evalua-
tion of the Bayesian model section). The revised
model’s predictions closely followed participants’
responses for humans (anthropomorphism: high).
Based on this result, we set out to test whether, owing
to perceptual narrowing, realism inconsistency in-
hibits the perceived familiarity of anthropomorphic
entities (H1), and in turn causes the uncanny valley
effect (H2; see the Unfamiliar anthropomorphic
entities elicit eerie feelings section). The results
support these hypotheses. Finally, we define realism
inconsistency objectively at multiple scales and ori-
entations in a two-dimensional (2-D) Morlet wavelet
domain inspired by the primary visual cortex and use
this concept to elucidate the role of familiarity in the
perception of objects, animals, and humans by
constructing corresponding structural equation mod-
els (see the Why unfamiliar anthropomorphic entities
elicit eerie feelings section).

General method

Design

This study adopted a within-group design with three
rounds of experiments. In each round unique partici-
pants observed task stimuli derived from four to five
real entities and their three-dimensional (3-D) com-
puter models. The experiment consisted of a two-

alternative forced choice categorization task and
ratings of the task stimuli.

Participants

Participants were recruited by email from a ran-
domized exhaustive list of undergraduates attending a
Midwestern public university system. Participants
received no compensation. The study was approved by
the Indiana University Office of Research Administra-
tion (Study No. 1210009909).

A total of 365 participants were recruited. In the first
round, Zlatko, Ingrid, dog, and parrot were presented to
118 participants (Mdnage¼ 21, IQRage¼ 1; 67% female);
in the second round, Clint, Emelie, Juliana, Simona, and
Ferrari were presented to 104 participants (Mdnage¼ 21,
IQRage¼ 4.5; 58% female); and in the third round,
camera, washer, and water lily were presented to 143
participants (Mdnage¼ 22, IQRage¼ 4; 56% female).

Participants reflected the demographics of the
university system’s undergraduate population: 74%
White, 7% African American, 6% Hispanic, 3% Asian,
3% multiracial, 6% foreign, and 1% unknown. Partic-
ipants had no or mild visual impairment with corrective
lenses (100%, Mdn ¼ no impairment), were mostly
right-handed (82%), native English speakers (91%),
raised (95%) and residing (98%) in the United States.
The three rounds of experiments were conducted
sequentially between October 2013 and March 2014.

Stimuli

The task stimuli from MacDorman and Chattopad-
hyay (2016) were used. The dataset contained images
(6003 600 pixels) of 12 entities representing three levels
of anthropomorphism: low (four nonanimal objects:
car, camera, washing machine, and water lily), inter-
mediate (two nonhuman animals: dog and parrot), and
high (six humans: Clint, Zlatko, Emelie, Ingrid,
Simona, and Juliana).

For each of the 12 entities, a 3-D replica was
modeled using computer software (Figure 2), and 17
representations were derived using the original photo-
graph and the computer model as follows. First, two
observational dimensions were defined for each of the
12 entities: Feature Set 1 and 2 (Table 1). Then, for
both feature sets, the fraction of real was systematically
varied by sixths along three transitions from 0% real
(100% computer modeled) to 100% real (0% computer
modeled; Figure 3). For instance, the fraction of real of
Feature Set 1 could be 0, 1/6, 1/3, 1/2, 2/3, 5/6, or 1.
The three transitions entail only 17 of 49 possible
combinations to reduce participant fatigue and attri-
tion.
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Procedure

Using an access-controlled website, participants
completed the following sequence of activities:
informed consent, the dichotomous thinking inven-

tory (Oshio, 2009), categorization tasks, task stimuli
ratings (see Dependent variables section), and a
demographics survey. A pilot study found each
round requires approximately 15–30 min to com-
plete.

Figure 2. Objects, animals, and humans constitute the low, intermediate, and high anthropomorphism groups, respectively. The right

half of a photograph of each entity is shown beside the left half of its 3-D computer model.

Entity Feature Set 1 (FS1) Feature Set 2 (FS2)

Camera lens mount, reflex mirror, parts

visible behind the lens

front, lens release, mode dial, shutter button

Car headlights, front grilles bumper, hood, outside mirrors, windshield

Flower stamen, stigma, style petals, stem

Washing machine door, door handle, window front panel, controls, filter cover, dispenser

Dog eyes, flew, tongue cheek, foreface, nose, stop

Parrot eyes, eyelids, beak, cere, left nostril cheek, forehead, lore

Humans eyes, eyelashes, mouth skin, nose, eyebrows

Table 1. Feature sets for objects, animals, and humans.
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In the categorization task, participants categorized
the task stimuli as either computer animated or real.
(The term computer animated was used instead of the
more accurate descriptor computer modeled because
participants were familiar with it.) The order of stimulus
presentation was randomized for each participant, and
the first two trials of each block were practice trials.
Each trial began with the presentation of a task stimulus.

On the left of the stimulus was an anchor (e.g., real) with
the instruction ‘‘Press e,’’ and on the right of the stimulus
was another anchor (e.g., computer animated) with the
instruction ‘‘Press i.’’ Participants were instructed to
categorize the stimuli as quickly and as accurately as
possible. They could pause and restart the task by
pressing the spacebar. If no response was provided
within 3000 ms, the task paused automatically. The task

Figure 3. The diagonal depicts a consistent change in the objective realism (fraction of real) of all features of an entity, from the 3-D

model to the original. The lower-right path depicts an inconsistent change in which Feature Set 2 (e.g., skin, nose, and eyebrows)

changes first and then Feature Set 1 (e.g., eyes, eyelashes, and mouth). The upper-left depicts an inconsistent change in which

Feature Set 1 changes first and then Feature Set 2. The colored bands indicate the consistency-reduced representations and control

being compared.
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restarted with the next stimulus, and the current
stimulus was randomly inserted into the remaining trials.
Each stimulus was presented twice to swap the left–right
order of the anchors. The task continued until responses
to all stimuli were provided. Furthermore, after each
trial, three masks were presented in sequence for 100 ms
each to suppress the afterimage of the stimulus (a 19 3
19 checkerboard, a 38 3 38 checkerboard, and a 50%
gray panel). Thus, the minimum interval between trials
was 300 ms. For each trial, the categorization response
was recorded as was the response time (elapsed time in
milliseconds between the presentation of the image and
the registration of an e or i keypress).

For task stimuli ratings, participants rated realism,
eeriness, warmth, and familiarity for 68 stimuli (4
entities 3 17 representations) in the first round, 85
stimuli (5 entities 3 17 representations) in the second,
and 51 (3 entities3 17 representations) in the third (see
the Dependent variables section).

Independent variables

The independent variables for this study were
anthropomorphism (low, intermediate, and high) and
fraction of real. Fraction of real was varied along one
control transition (diagonal) and two consistency-
reduced transitions (lower right and upper left). For the
diagonal transition, the stimuli had consistent fractions
of real for Feature Set 1 and 2 (FS1–FS2): 0�0, 1/6�1/6,
1/3�1/3, 1/2�1/2, 2/3�2/3, 5/6�5/6, and 1—1. For the
lower-right consistency-reduced transition, FS1–FS2
were 0�0, 0�1/3, 0�2/3, 0�1, 1/3�1, 2/3�1, and 1�1,
and for the upper-right consistency-reduced transition,
0�0, 1/3�0, 2/3�0, 1�0, 1�1/3, 1�2/3, and 1�1.

Dependent variables

The dependent variables were the percentage of times
each task stimulus was categorized as real, its mean
response times, and its rating on indices of realism,
eeriness, warmth, and familiarity. The indices were used
experimentally in hypothesis testing. Each index used
three 7-point semantic differential items, ranging from
�3 toþ3 (i.e., from left to right: very, moderately,
slightly, neutral, slightly, moderately, very). The anchors
were, for realism: computer animated–real, replica–
original, and digitally copied–authentic; for eeriness:
ordinary–creepy, plain–weird, and predictable–eerie; for
warmth: cold-hearted–warm-hearted, hostile–friendly,
and grumpy–cheerful; and for familiarity: rarely seen–
common, unfamiliar–recognizable, and unique–familiar.
Task stimuli ratings followed the categorization tasks to
reduce bias from exposure to the realism, eeriness,
warmth, and familiarity indices.

Quantitative evaluation of the
Bayesian model

Method

Moore (2012) based his Bayesian model of the
uncanny valley on Feldman and colleagues’ (2009) model
of categorical perception. In his model, Moore defines
perceptual tension as the perception of stimuli whose
features differ in the certainty of their category member-
ship across observational dimensions. Moore’s model
defined affinity (the dependent variable in Mori’s graph)
as the probability of occurrence of a stimulus minus the
perceptual tension arising from its conflicting features:

F S½ � ¼ pðSÞ � kV S½ � ð1Þ
where F [S] represents affinity for stimulus S, p(S) the
probability of its occurrence, k the viewer’s sensitivity to
perceptual tension, and V[S] the perceptual tension.
Perceptual tension is measured as the variance in
perceptual distortions for each dimension on which a
stimulus can be perceived:

V Si½ � ¼ E ðD Si½ �Þ2
h i

� ðE D Si½ �½ �Þ2 ð2Þ

where D[S] is along dimension i (Feldman et al., 2009;
Moore, 2012). D[S] is calculated using the variance of a
feature’s category and the probability of perceiving the
feature as belonging to that category (see Appendix A).

This model’s predictions were compared with the
eeriness and warmth ratings from experiments in
MacDorman and Chattopadhyay (2016). These data
were selected because objects, animals, and humans
(both male and female) were represented by at least two
individuals of each group and because the two
observation dimensions, Feature Set 1 and 2, were
controlled with seven equidistant levels of objective
realism. Features were designed to be perceived as
either real or computer modeled. Stimuli had either
consistency-reduced or control levels of realism across
the two feature sets. This enabled the model’s
predictions to be tested with both matched cues (less
perceptual tension) and mismatched cues (more per-
ceptual tension). We next explain how model param-
eters were computed to predict the empirical data.
Model parameters were calculated separately for each
of the three transitions (two consistency-reduced and
one control transition, see the Stimuli section).

To parametrize the Bayesian model, we adapted the
calculations of Feldman and colleagues (2009, pp. 13–
15). In our experimental setup, realism was the
dimension along which features varied and thus were
perceived as either real (category 1) or computer
animated (category 2). The two observation dimensions
were Feature Set 1 and 2 (Table 1).
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The parameters to be set were

lreal: mean of the category real
lcomputer_modeled: mean of the category computer animated
r2

c : category variance

r2
s : uncertainty in the observed signal

k: viewer’s sensitivity to perceptual tension, and
p(S): probability of occurrence of the stimulus.

Similar to the computation of goodness ratings of
categories in Iverson and Kuhl (1995), we computed
the mean of the category real using the categorization
responses and realism ratings. For objects, animals,
and humans, lreal was the fraction of real of the
stimulus’s Feature Set 1 and 2 that received the highest
realism ratings, when we rank-ordered realism ratings
for all stimuli categorized as real.

The means of the category computer animated for
objects, animals, and humans were calculated based on
lreal and the category identification curves (probability
of belonging to the category computer animated or real,
see figure 5 in Feldman et al., 2009). Curves were plotted
using the percentage of times stimuli were categorized as
real (Appendix C, Figure C1). To identify the category
boundary, we fitted a logistic function and calculated the
gain g and the bias b of the logistic function. Equations
for these calculations are described in Appendix B.
Feldman and colleagues’ computations used the empir-
ical data of Iverson and Kuhl (1995), whose stimuli,
speech sounds, were expressed orthogonally—in terms
of their first two formants (F1–F2 space, see figures 1 and
2 in Iverson & Kuhl, 1995). Similarly, in calculating our
logistic parameters, we used eigenvectors to represent
orthogonally the two observational dimensions of a
stimulus. For each entity, first an eigenface was
generated using all 17 variants (Turk & Pentland, 1991).
Then each image was represented by their reconstruction
errors from projection onto the first and second
eigenvectors, sorted by decreasing eigenvalues. Finally,
assuming high category variance, we set the free
parameter, r2

S/r
2
c to 0.1. (Predictions, however, did not

change significantly for 0.1 � r2
S/r

2
c � 1.) To measure

individual differences in the viewer’s sensitivity to
perceptual tension k, we used the dichotomous thinking
inventory (Oshio, 2009) as a rough analogue, averaging
all 15 items for each participant. We measured p(S) as
the perceived familiarity ratings of the stimulus.

Predictions of the Bayesian model

Predicted affinity and perceived eeriness (reverse
scaled) were compared for matched stimuli for low,
intermediate, and high levels of anthropomorphism
(i.e., objects, animals, and humans) and for one control
(diagonal) and two consistency-reduced (lower right
and upper left) transitions. The Bayesian model closely

fit the data (Figures 4 through 6). Table 2 lists the
parameters used in the model (derived from the
equations in Appendix A and B). Predicted perceptual
tension and sensitivity to perceptual conflict were
rescaled from 0 to 1. Rescaled sensitivity was approx-
imated using the dichotomous thinking inventory
(round 1:M¼0.48, SD¼0.03, round 2:M¼0.57, SD¼
0.04, and round 3: M ¼ 0.54, SD ¼ 0.03).

We computed the mean distance between predicted
affinity and perceived eeriness (reverse scaled) for all three
transitions in perceiving objects: diagonal, L1¼�0.04,
lower right, L1¼�0.16, and upper left, L1¼�0.03;
animals: diagonal, L1¼�0.41, lower right, L1¼�0.63
and upper left, L1¼�0.47; and humans: diagonal, L1¼
�0.27, lower right, L1¼�0.28, and upper left, L1¼�0.34.
To assess curve similarity, Fréchet distance (Alt &
Godau, 1995) between predicted affinity and perceived
eeriness (reverse scaled) was computed after subtracting
their mean L1 distance. The curves were similar for all
three transitions in perceiving objects: diagonal, d¼ 0.31,
lower right, d¼ 0.43, and upper left, d¼ 0.29; animals:
diagonal, d¼ 0.19, lower right, d¼ 0.24, and upper left, d
¼ 0.30; and humans: diagonal, d¼ 0.09, lower right, d¼
0.07, and upper left, d¼0.16. As these results indicate, the
Bayesian model of the uncanny valley predicted perceived
eeriness from the fraction of real of the stimulus for
Feature Set 1 and 2, its perceived realism and familiarity,
its percentage categorized as real, and the viewer’s
sensitivity to perceptual tension, measured by the
dichotomous thinking inventory. (See Appendix D for a
comparison of predicted affinity and perceived warmth.)

Excluding the 100% real representation, realism
across the 16 remaining representations was rated higher
for object (M¼�0.26, SD¼ 0.89) than animal (M¼
�0.70, SD¼ 1.75) or human models (M¼�0.87, SD¼
1.56). However, 100% real human (2.04) and animal
faces (2.14) were perceived as more real than 100% real
objects (1.18). The familiarity across 100% or partly

Entity Transition

Maximum

real

Maximum

computer modeled

Feature

Set 1

Feature

Set 2

Feature

Set 1

Feature

Set 2

Humans Diagonal 100 100 96.41 93.60

Lower right 100 100 94.62 90.82

Upper left 100 100 96.85 94.39

Animals Diagonal 83 83 95.87 98.17

Lower right 100 100 74.33 76.90

Upper left 100 100 75.81 79.07

Objects Diagonal 100 100 101.62 99.08

Lower right 100 100 99.54 99.47

Upper left 100 100 100.81 98.85

Table 2. Parameters used to evaluate the Bayesian model of the
uncanny valley.
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computer-modeled representations was rated higher in
object (M¼ 1.42, SD¼ 0.09) than animal (M¼ 0.77, SD
¼ 0.60) and human models (M¼ 0.53, SD¼ 0.41). The
difference in familiarity between fully real objects (1.56)
and fully real humans (1.19) and animals (1.75) was
much less.

Unfamiliar anthropomorphic
entities elicit eerie feelings

Theory and hypotheses

Realism inconsistency theory predicts that features
at inconsistent levels of realism in an anthropomorphic

entity cause perceptual processes in viewers to make
conflicting inferences regarding whether the entity is
real, thus resulting in the uncanny valley effect
(MacDorman & Chattopadhyay, 2016). Prior research
has found realism inconsistency increases eeriness
(MacDorman et al., 2009a; Mitchell et al., 2011) or
unpleasantness (Seyama & Nagayama, 2007). This
study extends realism inconsistency theory. We hy-
pothesize that, owing to perceptual narrowing, higher
levels of anthropomorphism amplify the inhibitory
effect of realism inconsistency on perceived familiarity.
Put briefly, realism inconsistency makes anthropo-
morphic entities look unfamiliar.

However, this does not explain why anthropomor-
phic entities that appear unfamiliar should elicit cold,
eerie feelings and avoidance behavior. Eeriness and
creepiness are associated with basic emotions, elicited

Figure 4. For objects, perceived familiarity and eeriness ratings of the stimulus are plotted against its fraction of real for the control

(diagonal) and the consistency-reduced transitions (lower right, upper left). The dashed line represents affinity as predicted by the

revised Bayesian model. (The lines in Figures 4 through 6 depict cubic spline interpolation.)
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by threats, that motivate avoidance behavior—emo-
tions like fear, anxiety, and disgust (Ho, MacDorman,
& Pramono, 2008).

The uncanny valley effect could be a symptom of an
adaptive mechanism for threat avoidance

Proposed threat avoidance mechanisms vary widely
in their origin and function, from preserving the
biological self and its genes to preserving the socially
constructed self and its cultural worldview (MacDor-
man & Ishiguro, 2006). For example, we could be more
disturbed by abnormalities in an anthropomorphic
entity because they activate a mechanism for pathogen
avoidance; the entity’s physical and behavioral simi-
larity indicate genetic relatedness and, thus, a higher
risk of infection from exposure (Curtis et al., 2004;

MacDorman et al., 2009a; Moosa & Ud-Dean, 2010;
Park, Faulkner, & Schaller, 2003). Alternatively,
abnormalities could indicate low fitness in a potential
mate, thus activating a mechanism for unfit mate
avoidance (MacDorman & Ishiguro, 2006; MacDor-
man et al., 2009a). A propensity of threat avoidance
mechanisms to register false positives for human
replicas could be explained by the high fitness cost of
not registering existential and reproductive threats
(Burleigh et al., 2013; Nesse, 2005) and the absence of
human replicas in our evolutionary environment. From
a sociological standpoint, a human replica could
threaten an individual’s religious and cultural world-
view and sense of personal and human identity, thus
eliciting psychological defense mechanisms (MacDor-
man & Entezari, 2015; MacDorman et al., 2009b;
Ramey, 2005).

Figure 5. For animals, perceived familiarity and eeriness ratings of the stimulus are plotted against its fraction of real for the control

(diagonal) and the consistency-reduced transitions (lower right, upper left). The dashed line represents affinity as predicted by the

revised Bayesian model.

Journal of Vision (2016) 16(11):7, 1–25 Chattopadhyay & MacDorman 10

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/935705/ on 09/19/2016



We tested our extension of realism inconsistency
theory with two hypotheses:
H1. The more anthropomorphic the entity, the more
reducing consistency in feature realism decreases
perceived familiarity.
H2. Only when reducing realism consistency reduces
perceived familiarity does it also increase the uncanny
valley effect.

Method

The independent variables remained anthropomor-
phism and fraction of real, while the dependent variable
familiarity was used from the task stimuli ratings to test
H1, and eeriness and familiarity were used to test H2
(see the General method section). The uncanny valley

effect is operationalized as an increase in eeriness
because eeriness is the experience that a theory of the
uncanny valley must explain (see the Operationalizing
Shinwakan section). The index used to measure eeriness
has both discriminant and content validity (Ho &
MacDorman, 2010). (An analysis of perceived warmth
is reported in Appendix E.)

Data analysis preliminaries

H1 was tested using a mixed-design analysis of
variance (ANOVA). H2 was tested using paired-
samples t tests and within-group repeated-measures
ANOVAs. Because a preliminary analysis using a
linear mixed-effects model found little effect of entity
as a random factor, the hypotheses were tested using

Figure 6. For humans, perceived familiarity and eeriness ratings of the stimulus are plotted against its fraction of real for the control

(diagonal) and the consistency-reduced transitions (lower right, upper left). The dashed line represents affinity as predicted by the

revised Bayesian model.
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only the fixed factor: fraction of real (MacDorman &
Chattopadhyay, 2016, supplementary material, sec-
tion 1).

Response times were log10-transformed to remove
positive skew. Q-Q plots were linear, confirming
normality (Thode, 2002). Test statistics were interpret-
ed with a significance threshold of a ¼ .05. Effect sizes
for ANOVAs are reported as partial eta-squared (g2

p)
with the thresholds small¼ .01, medium¼ .06, and large
¼ .14 and for t tests as Cohen’s d with the thresholds
small¼ .20, medium ¼ .50, and large¼ .80 (Cohen,
1992). Pairwise comparisons are reported with Bon-
ferroni–Holm correction, and violations of sphericity
with Greenhouse–Geisser correction.

Testing H1

H1 states that the more anthropomorphic the entity,
the more reducing consistency in feature realism
decreases familiarity. To test H1, we conducted a
mixed-design ANOVA with anthropomorphism as a
between-groups factor and realism consistency as a
within-group factor. We analyzed low, intermediate,
and high levels of anthropomorphism, namely, objects
(camera, washer, and water lily, n ¼ 2,145, Round 3),

animals (dog and parrot, n¼ 1,180, Round 2), and
humans (Clint, Emelie, Juliana, and Simona, n¼ 2,080,
Round 1; Figure 7), respectively, and control (diagonal)
and consistency-reduced (lower right, upper left)
transitions. The ANOVA confirmed the level of
anthropomorphism significantly affected the difference
in eeriness ratings between the control and consistency-
reduced transitions. An interaction effect of anthro-
pomorphism 3 realism consistency was found for both
the lower-right, F(2, 5,391)¼ 20.06, MSE¼ 0.87, p ,

.001, g2
p¼ .007, and upper-left transition, F(2, 5,388)¼

21.16, MSE ¼ 0.89, p , .001, g2
p ¼ .008. These results

indicate that reduced realism consistency affected
familiarity ratings of objects, animals, and humans
differently.

For the lower-right transition, a post hoc Tukey’s
honest significant difference (HSD) test found that
reduced realism consistency decreased familiarity sig-
nificantly more for humans than for objects and
significantly more for animals than for objects, p ,

.001. For the upper-left transition, a post hoc Tukey’s
HSD found that reduced realism consistency decreased
familiarity significantly more for humans than for
objects, p , .001, and significantly more for animals
than for objects, p , .001, but significantly more for
animals than for humans, p ¼ .001.

H1 was supported for four of six comparisons (3
levels of anthropomorphism 3 2 transitions). H1 was
not supported in comparing humans and animals in the
upper-left and lower-right transition.

Testing H2

A nested-factor ANOVA (familiarity ; transition/
fraction of real with five levels of fraction of real, except
the two endpoints) found that transition significantly
affected familiarity in perceiving humans, F(2, 9,753)¼
26.02, MSE¼ 2.44, p , .001, g2

p ¼ .005, and animals,
F(2, 3,517) ¼ 12.43, MSE¼ 2.52, p , .001, g2

p ¼ .007,
but not objects, F(2, 7,975) ¼ 0.12, p ¼ .885.

Object models

For the four object models (n ¼ 533) in the low
anthropomorphism group, fraction of real significantly
affected familiarity ratings for all three transitions with
a small effect size: diagonal, F(5.53, 2,911)¼ 7.55, MSE
¼ 0.75, p , .001, g2

p ¼ .01; lower right, F(5.40, 2,866)¼
8.49, MSE ¼ 0.73, p , .001, g2

p ¼ .02; and upper left,
F(5.64, 2,995)¼ 12.03, MSE¼ 0.73, p , .001, g2

p ¼ .02
(Figure 4). Fraction of real also significantly affected
eeriness ratings for each transition with a small effect
size: diagonal, F(5.18, 2,724) ¼ 9.78, MSE¼ 0.86, p ,
.001, g2

p¼ .02; lower right, F(5.00, 2,654)¼ 9.84, MSE¼

Figure 7. Familiarity ratings are plotted against the level of

anthropomorphism (low: objects, intermediate: animals, and

high: humans) for the control (diagonal) and the consistency-

reduced transitions (lower right, upper left).
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0.94, p , .001, g2
p¼ .02; and upper left, F(5.11, 2,711)¼

7.69, MSE ¼ 0.92, p , .001, g2
p ¼ .01 (Figure 4).

Pairwise comparisons showed that for objects,
reduced realism consistency did not significantly affect
eeriness or familiarity for any pairs, either between the
lower-right or upper-left transition and the control.

Animal models

For the two animal models (n ¼ 236) in the
intermediate anthropomorphism group, fraction of real
significantly affected familiarity ratings for all three
transitions with a large effect size: diagonal, F(3.85,
886) ¼ 80.79, MSE¼ 2.49, p , .001, g2

p ¼ .26; lower
right, F(3.92, 912)¼ 82.12, MSE¼ 2.26, p , .001, g2

p ¼
.26; and upper left, F(3.83, 885)¼ 73.98, MSE¼ 2.57, p
, .001, g2

p ¼ .24 (Figure 5). Fraction of real also
significantly affected eeriness ratings for each transition
with a large effect size: diagonal, F(4.12, 947) ¼ 149,
MSE¼ 2.53, p , .001, g2

p ¼ .39; lower right, F(4.32,
1,006)¼ 129, MSE¼ 2.40, p , .001, g2

p¼ .36; and upper
left, F(4.08, 944)¼ 131, MSE¼ 2.6, p , .001, g2

p ¼ .36
(Figure 5).

Pairwise comparisons showed that for animals
reduced realism consistency significantly increased
eeriness for four of five pairs in the lower-right
transition: 1/3�1/3 and 0�2/3, 1/2–1/2 and 0�1, 2/3�2/
3 and 1/3�1, and 5/6�5/6 and 2/3�1; and three of five
pairs in the upper-left transition: 1/3�1/3 and 2/3�0, 1/
2�1/2 and 1�0, and 2/3�2/3 and 1�1/3 (Table 3).
Pairwise comparisons further showed that for animals
reduced realism consistency significantly decreased
familiarity for two pairs in the lower-right transition: 1/
2�1/2 and 0�1, and 2/3�2/3 and 1/3�1; and two pairs
in the upper-left transition: 1/2�1/2 and 1�0, and 2/
3�2/3 and 1�1/3. Thus, H2 was supported for all pairs
except one between the lower-right transition (2/3�0

fraction of real) and the control and two between the
upper-left transition (0�2/3 and 2/3�1) and the control.

Human models

For the six human models in the high anthropo-
morphism group (n ¼ 652), three within-group repeat-
ed-measures ANOVAs confirmed that fraction of real
significantly affected familiarity ratings for all three
transitions with a large effect size: diagonal, F(3.91,
2,529) ¼ 106, MSE¼ 2.17, p , .001, g2

p ¼ .14; lower
right, F(4.14, 2,664)¼ 114, MSE¼ 2.09, p , .001, g2

p ¼
.15; and upper left, F(4.11, 2,634)¼ 102, MSE¼ 1.93, p
, .001, g2

p ¼ .14 (Figure 6). Fraction of real also
significantly affected eeriness ratings for each transition
with a large effect size: diagonal, F(3.71, 2,396) ¼ 186,
MSE¼ 2.53, p , .001, g2

p ¼ .22; lower right, F(3.96,
2,553)¼ 190, MSE¼ 2.52, p , .001, g2

p¼ .23; and upper
left, F(4.32, 2,792)¼ 150, MSE¼ 2.16, p , .001, g2

p ¼
.19 (Figure 6).

Pairwise comparisons showed that for humans
reduced realism consistency significantly increased
eeriness for three pairs in the lower-right transition, 1/
3�1/3 and 0�2/3, 1/2�1/2 and 0�1, and 2/3�2/3 and 1/
3�1, and three pairs in the upper-left transition, 1/2�1/
2 and 1�0, 2/3�2/3 and 1�1/3, and 5/6�5/6 and 1�2/3
(Table 4). Pairwise comparisons further showed that
for humans reduced realism consistency significantly
decreased familiarity for three pairs in the lower-right
transition, 1/3�1/3 and 0�2/3, 1/2�1/2 and 0�1, and 2/
3�2/3 and 1/3–1, and two pairs in the upper-left
transition, 1/2�1/2 and 1�0, and 2/3�2/3 and 1�1/3.
Thus, H2 was supported in all except one in the upper-
left transition (5/6�5/6).

These results support H2. Reducing consistency in
feature realism decreased familiarity significantly in
perceiving humans and animals with a small effect size
but not objects. Reducing consistency in realism also

Consistency-reduced

vs. control transition

Familiarity Eeriness

t df p d t df p d

0�1/3 vs. 1/6�1/6 �1.19 234 .117 0.09 234 .465

0�2/3 vs. 1/3�1/3 2.17 235 .016 �3.65 235 ,.001 0.24

0�1 vs. 1/2�1/2 5.45 235 ,.001 0.35 �6.91 235 ,.001 0.45

1/3�1 vs. 2/3�2/3 3.22 235 .001 0.21 �5.83 235 ,.001 0.38

2/3�1 vs. 5/6�5/6 0.70 233 .243 �2.36 233 .010 0.15

1/3�0 vs. 1/6�1/6 1.49 234 .069 �0.87 234 .192

2/3�0 vs. 1/3�1/3 0.87 235 .192 �3.00 235 .002 0.20

1�0 vs. 1/2�1/2 5.95 233 ,.001 0.39 �7.55 233 ,.001 0.49

1�1/3 vs. 2/3�2/3 4.29 233 ,.001 0.28 �6.69 233 ,.001 0.44

1�2/3 vs. 5/6�5/6 2.06 232 .021 �1.60 232 .056

Table 3. Familiarity and eeriness for all 10 comparisons in perceiving animals. Notes: Boldface indicates reduced realism consistency
significantly increasing eeriness. Fraction pairs indicate the fraction of real for Feature Set 1 and 2. Effect sizes are provided for
significant outcomes in Tables 3 and 4.
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caused a small uncanny valley effect, shown as
increased eeriness, in perceiving humans and animals
but not objects. In humans and animals, the results
show that for nine out of 13 pairwise comparisons, only
when reduced realism consistency decreased perceived
familiarity did it also increase the uncanny valley effect.
(See Appendix E for a comparison of perceived
familiarity and warmth.)

Why unfamiliar anthropomorphic
entities elicit eerie feelings

To confirm the relations among realism inconsis-
tency, realism, familiarity, eeriness, and warmth, a
structural equation model was calculated for each level
of anthropomorphism: low (objects), intermediate
(animals), and high (humans). A first step in this
process was to define realism inconsistency objectively.
We define it in a 2-D Morlet wavelet domain
functionally analogous to how the primary visual
cortex represents physical properties of the stimulus.

A multiscale and orientation measure for
realism inconsistency

Daugman (1980) proposed that a parametrized
family of 2-D Morlet basis functions (Gabor kernels)
could model the anisotropic receptive field profiles of
single neurons in several areas of the primary visual
cortex, including their selective tuning for characteristic
scale, localization, orientation, and quadrature phase
relations. Daugman (1985) found using chi-squared
tests that this wavelet family fit the profiles of 97% of
single neurons in the cat visual cortex.

To compare a target representation to its 100% real
representation, both representations were decomposed
in a family of 2-D Morlet basis functions, analogous
to neurons, resulting in wavelet coefficients, analogous
to their firing rates. By definition, the realism
inconsistency of the 100% real representation is zero.
For the 16 remaining representations, we define
realism inconsistency as the standard deviation of the
differences between corresponding wavelet coefficients
of the target representation and the 100% real
representation.

Prior to computing its distance from the 100% real
representation, each image was converted to gray-
scale and decomposed in 2-D Morlet basis functions
at four scales (1, 2, 3, and 4) and six orientations (08
to 1508 at 308 intervals) using cwtft2 in Matlab
(MATLAB 8.0 [R2016a] and Statistics Toolbox 8.1,
The MathWorks, Inc., Natick, MA) (Arivazhagan,
Ganesan, & Priyal, 2006; Lee, 1996). Figure 8 shows
an example. For each of the 24 decompositions of the
target and 100% real representation, the difference in
the values of corresponding wavelet coefficients was
computed to obtain their standard deviation. Then,
the 24 standard deviations were averaged to derive
the realism inconsistency of each representation.

Parameter estimates

Figure 9 presents our model, reporting the stan-
dardized path coefficients. The model depicts a causal
relation from the stimulus variable realism inconsisten-
cy to the perceptual variables realism and familiarity
(and from realism to familiarity) to the affective
variables eeriness and warmth.

Model fit and parameter estimates were computed
with maximum likelihood estimation using the lavaan
package in R (Rosseel, 2012). The model had good fit
(root mean square error of approximation [RMSEA] ,

Consistency-reduced

vs. control transition

Familiarity Eeriness

t df p d t df p d

0�1/3 vs. 1/6�1/6 2.09 650 .019 �1.48 650 .069

0�2/3 vs. 1/3�1/3 3.66 649 ,.001 0.14 �4.46 649 ,.001 0.17

0�1 vs. 1/2�1/2 8.92 650 ,.001 0.35 �13.22 650 ,.001 0.52

1/3�1 vs. 2/3�2/3 7.36 649 ,.001 0.29 �9.60 649 ,.001 0.38

2/3�1 vs. 5/6–5/6 0 648 .500 �1.37 648 .086

1/3�0 vs. 1/6–1/6 0.38 650 .353 1.79 650 .037

2/3�0 vs. 1/3�1/3 �0.08 650 .470 1.84 650 .033

1�0 vs. 1/2�1/2 6.01 650 ,.001 0.24 �6.98 650 ,.001 0.27

1�1/3 vs. 2/3�2/3 6.40 649 ,.001 0.25 �6.59 649 ,.001 0.26

1�2/3 vs. 5/6�5/6 1.40 649 .081 �2.88 649 .002 0.11

Table 4. Familiarity and eeriness for all 10 comparisons in perceiving humans. Note: Boldface indicates reduced realism consistency
significantly increasing eeriness.
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.06, nonnormed fit index [NNFI] � .95, comparative fit
index [CFI] � .90; Hu & Bentler, 1999) for humans (n¼
11,070, df ¼ 2, v2 ¼ 59.53, p , .001, RMSEA ¼ .051,
NNFI ¼ .978, CFI ¼ .996, expected cross validation
index [ECVI] ¼ .0008) but poor fit for animals (n¼
4,002, df ¼ 2, v2¼ 357.91, p , .001, RMSEA ¼ .211,
NNFI¼ .750, CFI¼ .950, ECVI¼ .095) and objects (n
¼ 9,055, df¼ 2, v2¼ 675.87, p , .001, RMSEA¼ .193,
NNFI ¼ .406, CFI ¼ .881, ECVI¼ .077).

We proposed that perceptual narrowing enhances
the discriminability of physically similar anthropo-
morphic entities and, thus, small deviations from
norms can cause an entity to appear unfamiliar. We
further proposed that, owing to threat avoidance,
anthropomorphic entities that look fake or unfamiliar
elicit cold, eerie feelings and avoidance behavior. Thus,
we hypothesized that anthropomorphism increases the
inhibitory effect of realism inconsistency on familiarity
and of familiarity on eeriness. The structural equation
models support these hypotheses.

As the structural equation models show, perceived
realism increases familiarity, especially the familiarity
of humans and animals. This may explain why studies
that did not manipulate perceptual tension and
operationalized affinity solely as familiarity were

unable to find an uncanny valley effect (Cheetham et
al., 2014; Cheetham et al., 2015).

Discussion

Perceptual tension and perceived familiarity
predict the uncanny valley

Moore (2012) proposed a Bayesian model of the
affinity curve in Mori’s (1970/2012) uncanny valley
graph. The model resolves an apparent incompatibil-
ity between category uncertainty and perceptual
conflict theories of why human replicas appear
uncanny. The uncanniness is not caused by uncer-
tainty about an entity’s category but by perceptual
tension, that is, unequal levels of uncertainty about
the category of the entity’s features. In Moore’s (2012)
model, a viewer’s affinity for a stimulus is graphed by
subtracting from its probability of occurrence the
perceptual tension it elicits, weighted by the viewer’s
sensitivity to perceptual tension. But using probability
of occurrence to operationalize perceived familiarity
fails to account for perceptual narrowing during early

Figure 8. The desaturated 0% real representation of Clint was decomposed in 2-D Morlet basis functions at four scales (1, 2, 3, and 4)

and six orientations (08 to 1508 at 308 intervals). Coefficients are visualized from black to white for scales 1–4 in the range 0–0.01, 0–

0.5, 0–1.0, and 0–2.0, respectively.
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Figure 9. To explore the relations among physical, perceptual, and affective variables at low, intermediate, and high levels of

anthropomorphism, a structural equation model was calculated for objects, animals, and humans, respectively. Only the model for

humans had a good fit (RMSEA¼ .051, NNFI¼ .978, CFI¼ .996). All standardized gammas were significant (p , .001) except realism

inconsistency � realism for objects.
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childhood development. Our pilot study found per-
ceived familiarity in fact deviates from probability of
occurrence.

Thus, in this study, we revised and quantified
Moore’s (2012) model of affinity, replacing probability
of occurrence with perceived familiarity:

F S½ � ¼ U S½ � � kV S½ � ð3Þ
where F [S] represents affinity for stimulus S, U[S]
familiarity with it, k the viewer’s sensitivity to
perceptual tension, and V[S] the perceptual tension,
operationalized as reduced realism consistency.

Affinity, as predicted by the revised model, tracked
perceived eeriness (reverse scaled) more closely for
humans (mean Fréchet distance 0.11) than for animals
(0.24) or objects (0.34, Figures 4 through 6). These
results indicate higher levels of anthropomorphism
cause perceptual tension to inhibit perceived familiar-
ity, thus amplifying cold, eerie feelings.

The effect of perceptual narrowing on
familiarity

The familiarity of representations decreased as an-
thropomorphism increased (Figure 7). This result can be
explained by perceptual narrowing (Pascalis et al., 2002).
Perceptual narrowing enhances perceptual discrimina-
tion, rendering abnormalities more apparent. Perceptual
narrowing was strongest in perceiving humans and
animals, which could enhance the sensitivity of threat
avoidance mechanisms to their replicas. For humans the
difference in realism between the 100% real representation
and the rest (2.04 vs.�0.87) was much greater than for
objects (1.18 vs.�0.26); the difference in familiarity
followed a similar pattern (100% real humans 1.19 vs. rest
0.53, 100% real objects 1.56 vs. rest 1.42).

Perceptual narrowing may make it more difficult to
model realistic looking eyes, skin, fur, or feathers than
parts of plants and artifacts. Indeed, in comparing 3-D
computer models, realism ratings for objects were
almost double those for humans and animals, indicat-
ing viewers find object models far more realistic than
human and animal models. A similar trend appeared
for familiarity. In sum, computer-modeled features did
not reduce the realism and familiarity of object models
as much as they reduced the realism and familiarity of
human and animal models.

We hypothesized that, due to perceptual narrowing,
reduced realism consistency would decrease familiarity
more in anthropomorphic (humans and animals) than
nonanthropomorphic entities (objects). Our results
bore this out (Figure 7 and the Testing H1 section). For
both humans and animals, the familiarity of represen-
tations along the consistency-reduced transitions was
significantly lower than for paired representations

along the control transition. This effect was not found
in perceiving objects. Thus, H1 was supported. In
addition, reduced realism consistency increased the
uncanny valley effect only when it also reduced
perceived familiarity (see the Testing H2 section).
Again, this effect was not found in perceiving objects.
Thus, H2 was also supported.

A role for threat avoidance

We assume 3-D computer models are inherently
realism inconsistent. Realism varies by feature, because
some features are more difficult than others to model,
texture, light, and render realistically. When a model
falls short of 100% realism, it is highly improbable that
every feature would fall short to the same degree. This
means only the 100% real representation is realism
consistent. The 100% computer-modeled representation
and the 15 representations derived from it are all realism
inconsistent. The consistency reduction manipulation
used in the experiment only offers a relative comparison
of consistency between paired representations in the
consistency-reduced and control transitions.

To address this limitation, we sought to define
realism inconsistency objectively, drawing inspiration
from how the primary visual cortex represents physical
properties of a stimulus at multiple scales and
orientations. Both the target and 100% real represen-
tation were decomposed in 2-D Morlet basis functions
(Gabor kernels), which are analogous to the receptive
field profiles of single neurons (Daugman, 1980, 1985).
Each basis function’s wavelet coefficient, analogous to
a neuron’s firing rate, for the target representation was
subtracted from the corresponding wavelet coefficient
for the 100% real representation. The standard
deviation of these differences provided a measure of
realism inconsistency. This enabled us to explore the
relation among physical, perceptual, and affective
variables in structural equation models at three levels of
anthropomorphism (Figure 9).

The structural equation models indicate that percep-
tual narrowing alone cannot explain the uncanny valley
effect. As an indicator of perceptual narrowing, realism
inconsistency inhibited familiarity more in perceiving
humans (c ¼�.44) than objects but, nevertheless, still
inhibited familiarity in perceiving objects (c¼�.29).
However, familiarity had a negligible effect on the
eeriness (c¼�.03) and only a small effect on the warmth
(c¼ .12) of objects. By contrast, familiarity inhibited the
eeriness (c¼�.26) of humans and increased their warmth
(c ¼ .31) with a medium effect size. Judging from the
models, even an unfamiliar object would be unlikely to
elicit cold, eerie feelings. These results suggest that,
although perceptual narrowing is likely to make abnor-
malities more salient in anthropomorphic entities, an
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additional mechanism is necessary to explain why those
abnormalities are perceived—not only as unfamiliar—but
as strange and uncanny.

Elsewhere we have proposed a mechanism for threat
avoidance could be elicited by human replicas (Mac-
Dorman & Entezari, 2015; MacDorman & Ishiguro,
2006; MacDorman et al., 2009a; MacDorman et al.,
2009b). However, an important area to explore is how
cold, eerie feelings differ from other emotions that
motivate threat avoidance, such as fear and disgust.
Mangan (2015) explained these feelings as fringe experi-
ence, whereby a threat is unconsciously sensed, but its
cause is never consciously identified. This analysis echoes
Freud’s (1919/2003) conception of the uncanny as
something familiar, but long repressed, which elicits
morbid anxiety. Ohman (2000) identified this kind of
anxiety as undirected alarm caused by preattentive
mechanisms falsely locating a threat that remains
unconfirmed and unresolved (e.g., by a fight or flight
response, cf. Burleigh et al., 2013; Misselhorn, 2009;
Nesse, 2005; Zuckerman & Spielberger, 2015). The
relation between the uncanny valley, its peculiar phe-
nomenology, and the mechanism of threat avoidance are
left to future work.

Keywords: anthropomorphism, computer animation,
face perception, familiarity, Gabor kernels, perceptual
narrowing, threat avoidance
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Appendix A: Perceptual magnet
effect

Following Feldman, Griffiths, and Morgan’s (2009,
appendix A) calculations for the expected category of
the target stimulus, the perceptual magnet effect along
a single dimension is calculated as

D S½ � ¼ E TjS½ � � S ðA1Þ
where D[S] is the displacement function (Equation 2)
and E[TjS] is the expected value of the perceptual target
T when a physical stimulus S is observed. Numerically,
S consists of the values describing the feature set in the
observational dimensions. For multiple categories, this
expected value is

E TjS½ � ¼
X

c

pðcjSÞ r
2
cSþ r2

Slc

r2
c þ r2

S

ðA2Þ

which can be rewritten as

E TjS½ � ¼ r2
c

r2
c þ r2

S

Sþ r2
S

r2
c þ r2

S

X
c

pðcjSÞlc ðA3Þ

which is derived from the posterior probability of
membership of a given category c, with lc as the
category mean, r2

c as the category variance, and r2
S as

the uncertainty of the observed signal. The posterior
probability, according to Bayes’ theorem is

pðcjSÞ ¼ pðSjcÞpðcÞ
RcpðSjcÞpðcÞ

ðA4Þ

where the stimulus belongs to the category c with a
normal distribution N:

Sjc;Nðlc;r
2
c þ r2

SÞ ðA5Þ
D[S] measures the perceptual distortion of a stimulus

towards or away from a category boundary along a
given dimension. A zero value indicates no perceptual
distortion.

Appendix B: Category parameters
from identification curves

In the two-alternative forced choice categorization
task, participants categorized stimuli as either com-
puter animated or real. The percentages categorized as
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real were used to plot the logistic identification curves.
To identify the category boundary, the gain g and the
bias b of the logistic function were calculated (Feldman,
Griffiths, & Morgan, 2009). The mean of the category
computer animated was then computed using g, b, and
the mean of the category real (see Equation B4).

The logistic identification function is an empirical
measure of p(c1jS), which according to Bayes’ rule is

pðc1jSÞ ¼
pðSjc1Þpðc1Þ

pðSjc1Þpðc1Þ þ pðSjc2Þpðc2Þ
ðB1Þ

Dividing each part of the fraction by the numerator
and applying two inverse functions to the last term
results in

pðc1jSÞ ¼
1

1þ exp log pðSjc2Þpðc2Þ
pðSjc1Þpðc1Þ

� � ðB2Þ

Now assuming that both categories c1 and c2 have
equal prior probability, and using the distribution for
p(Sjc) from Equation A5, we can simplify Equation B2 to

pðc1jSÞ ¼
1

1þ e�gSþb
ðB3Þ

where g¼ (l1� l2) / (r2
c þ r2

S) and b¼ (l2
1 � l2

2) /
(2(r2

c þ r2
S)). Hence, we can compute the mean of the

second category l2 given the values of g, b, l1 as

l2 ¼
2b

g
� l1 ðB4Þ

We used Equation B4 to calculate the mean of the
category computer animated, and Equation A3 to
calculate perceptual tension with r2

S/r
2
c set to 0.1.

Percentages categorized as computer animated and real
were used for p(c1jS) and p(c2jS), respectively.

Appendix C: Response times and
categorization responses

A nested-factor ANOVA (categorization responses ;
transition/fraction of real with five levels of fraction of
real, except the two endpoints) found that transition
significantly affected categorization responses: Humans,
F(2, 9,765)¼ 24.9, MSE¼ 0.18, p , .001, g2

p ¼ .005;
animals, F(2, 3,525)¼ 70.48, MSE¼ 0.15, p , .001, g2

p¼
.038; and objects, F(2, 7,980)¼ 44.51, MSE¼ 0.24, p ,
.001, g2

p ¼ .011. However, a similar nested-factor
ANOVA found that transition significantly affected
response times (log10-transformed) in perceiving hu-
mans, F(2, 19,500)¼ 13.11, MSE¼ 0.04, p , .001, g2

p ¼
.001, and animals, F(2, 7,035)¼ 4.00, MSE¼ 0.03, p¼
.018, g2

p ¼ .001, but not objects, F(2, 15,930)¼ 1.27, p¼
.282. Figure C1 shows how categorization responses and

response times varied with the fraction of real in
humans, animals, and objects. The figures depict a cubic
spline interpolating the mean responses to facilitate a
visual comparison with the standard S-shaped logistic
function of categorical perception (Harnad, 1987).

Appendix D: Comparison of
predicted affinity and perceived
warmth

Figure D1 compares predicted affinity and perceived
warmth for matched stimuli at low, intermediate, and
high levels of anthropomorphism for one control and
two consistency-reduced transitions. The mean distance
between predicted affinity and perceived warmth for all
three transitions was, in perceiving objects, diagonal, L1

¼�1.46, lower right, L1¼�1.59, and upper left, L1¼
�1.41; animals: diagonal, L1¼�0.77, lower right, L1¼
�0.66, and upper left, L1¼�0.30; and humans:
diagonal, L1¼�0.61, lower right, L1¼�0.17, and upper
left, L1¼�0.53. Curves were similar for all three
transitions in perceiving objects: diagonal, d¼ 0.64,
lower right, d¼ 0.77, and upper left, d¼ 0.60; animals:
diagonal, d¼2.12, lower right, d¼2.01, and upper left, d
¼ 2.05; and humans: diagonal, d¼ 1.63, lower right, d¼
1.72, and upper left, d¼ 1.55.

Appendix E: Comparison of
perceived familiarity and warmth

In perceiving objects, fraction of real also signifi-
cantly affected warmth ratings for each transition:
diagonal, F(4.83, 2,540)¼ 15.73, MSE¼ 0.51, p , .001,
g2

p ¼ .03; lower right, F(4.93, 2,620) ¼ 16.09, MSE¼
0.49, p , .001, g2

p¼ .03; and upper left, F(5.02, 2,666)¼
16.98, MSE¼ 0.46, p , 0.001, g2

p ¼ .03. Pairwise
comparisons showed that for objects reduced realism
consistency did not significantly affect warmth or
familiarity for any pairs in either the lower-right or
upper-left transition.

In perceiving animals, fraction of real also signifi-
cantly affected warmth ratings for each transition:
diagonal, F(4.16, 957) ¼ 69.20, MSE¼ 1.50, p , .001,
g2

p ¼ .23; lower right, F(4.57, 1,064) ¼ 67.79, MSE¼
1.32, p , .001, g2

p ¼ .23; and upper left, F(3.44, 794) ¼
61.59, MSE¼ 2.07, p , .001, g2

p ¼ .21. Pairwise
comparisons showed that reduced realism consistency
significantly decreased warmth for one pair in the
lower-right transition: 1/2�1/2 and 0�1; and three pairs
in the upper-left transition: 1/3�1/3 and 2/3�0, 1/2�1/2
and 1�0, and 2/3�2/3 and 1�1/3 (Table E1).
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In perceiving humans, fraction of real also signifi-
cantly affected warmth ratings for each transition:
diagonal, F(3.42, 2,211) ¼ 167, MSE¼ 1.77, p , .001,
g2

p¼ .21; lower right, F(3.88, 2,499)¼ 152, MSE¼ 1.56,
p , .001, g2

p ¼ .19; and upper left, F(3.99, 2,574)¼ 128,
MSE¼ 1.44, p , .001, g2

p ¼ .17. Pairwise comparisons

showed that reduced realism consistency significantly
decreased warmth for four pairs in the lower-right
transition, 1/3�1/3 and 0�2/3, 1/2�1/2 and 0�1, 2/3�2/
3 and 1/3�1, and 5/6�5/6 and 2/3�1, and three pairs in
the upper-left transition, 1/2�1/2 and 1–0, 2/3�2/3 and
1�1/3, and 5/6�5/6 and 1�2/3 (Table E2).

Figure C1. For objects, animals, and humans, the mean response time in milliseconds (dashed curve) and percentage of times the

stimulus was categorized as real (vs. computer animated, solid curve) are plotted against its fraction of real for the control (diagonal)

and reduced-consistency transitions (lower right, upper left). Error bars indicate the 95% confidence interval of the true mean.
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Figure D1. For objects, animals, and humans, warmth ratings of the stimulus are plotted against its fraction of real for the control

(diagonal) and the consistency-reduced transitions (lower right, upper left). The dashed line represents affinity as predicted by the

revised Bayesian model. Error bars indicate the 95% confidence interval of the true mean.

Journal of Vision (2016) 16(11):7, 1–25 Chattopadhyay & MacDorman 24

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/935705/ on 09/19/2016



Consistency-reduced

vs. control transition

Familiarity Warmth

t df p d t df p d

0�1/3 vs. 1/6�1/6 �1.19 234 .117 �0.82 234 .206

0�2/3 vs. 1/3�1/3 2.17 235 .016 0.06 235 .475

0�1 vs. 1/2�1/2 5.45 235 ,.001 0.35 4.15 235 ,.001 0.27

1/3�1 vs. 2/3�2/3 3.22 235 .001 0.21 0.51 235 .307

2/3�1 vs. 5/6–5/6 0.70 233 .243 0.43 233 .334

1/3�0 vs. 1/6–1/6 1.49 234 .069 0.86 234 .196

2/3�0 vs. 1/3�1/3 0.87 235 .192 2.58 235 .006 0.17

1�0 vs. 1/2�1/2 5.95 233 ,.001 0.39 6.41 233 ,.001 0.42

1�1/3 vs. 2/3�2/3 4.29 233 ,.001 0.28 4.46 233 ,.001 0.29

1�2/3 vs. 5/6�5/6 2.06 232 .021 �0.14 232 .447

Table E1. Familiarity and warmth for all 10 comparisons in perceiving animals. Note: Fraction pairs indicate the fraction of real for
Feature Set 1 and 2. Effect sizes are provided for significant outcomes in Tables E1 and E2.

Consistency-reduced

vs. control transition

Familiarity Warmth

t df p d t df p d

0�1/3 vs. 1/6�1/6 2.09 650 .019 0.43 650 .335

0�2/3 vs. 1/3�1/3 3.66 649 ,.001 0.14 3.42 649 ,.001 0.13

0�1 vs. 1/2�1/2 8.92 650 ,.001 0.35 9.46 650 ,.001 0.37

1/3�1 vs. 2/3�2/3 7.36 649 ,.001 0.29 8.57 648 ,.001 0.34

2/3�1 vs. 5/6–5/6 0 648 .500 2.37 648 .009 0.09

1/3�0 vs. 1/6–1/6 0.38 650 .353 �2.12 650 .014

2/3�0 vs. 1/3�1/3 �0.08 650 .470 �2.42 650 .008

1�0 vs. 1/2�1/2 6.01 650 ,.001 0.24 2.82 650 .003 0.11

1�1/3 vs. 2/3�2/3 6.40 649 ,.001 0.25 5.98 649 ,.001 0.23

1�2/3 vs. 5/6�5/6 1.40 649 .081 3.19 649 .001 0.13

Table E2. Familiarity and warmth for all 10 comparisons in perceiving humans.
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