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SUMMARY 

An experimental investigation was made of laminar free convec­

tion to air from the outer surfaces of vertical cylinders with constant 

surface temperatures,, The object of the experiment was to obtain data 

which would be compared to existing analytical solutions and to obtain 

an empirical correlation for this data. 

The data were first compared to the solution of Sparrow and 

NuL c 1 Gregg (l) which gives the ratio — — as a function of 
L̂ f .p. 

3/2 > 2 L 
£ = r — for Prandtl numbers of 0„72 and 1.0. This solution pre-

Gr ̂  ro 
J_J 

dieted lower values than those experimentally obtained. 

The data were also compared to the solution of LeFevre and Ede 
NliL c 1 D -

(2), which gives the ratio *—;r as a function of Pr and —(Gr Pr)
u. 

(GrLPr)^
 L L 

This solution also predicted lower values than those actually obtained. 

Further investigation of these two analytical solutions provided 

an expression for the Nusselt number of the form: 

1 T 

Nu^ , = C,Grx
u + C„ — . 

L cyl 1 L 2 r 17 o 

where C and C are functions of the Prandtl number. It was found, 

however, that C was not a function of the Prandtl number only but that 

it depended in some manner, which could not be determined from the ex­

perimental data,, upon the cylinder. Therefore, it was suggested that 

further experiments be conducted to investigate this dependence. 
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Two empirical correlations were Detained which described the ex-

Lmental results with a mean deviation of five per cent,. For the range 

of 

Q 

1,6 x 10' < GrT < 3.8^ x 10 , 

NuT _ = 1.666 (GrTPr)
0'19' 

L cyl v L ' 

NJ . =1.08 
L cyl I <° LPr> 

0.2̂ -2 



CHAPTER I. 

iNTRODUCTlON 

Most of the analytical and experimental work in the field of 

free convection has been conducted for vertical flat plates and hori­

zontal cylinders„ Most of the vertical cylinders which have been ex­

perimentally studied have had large enough diameters that the results 

could he expressed by flat plate solutions (see Part D of Reference 3). 

This creates a problem for those who must make practical calculations 

for free convection from cylinders of smaller diameters. 

Analytical solutions for the problem of natural convection heat 

transfer from the outer surface of a vertical cylinder with an uniform 

surface temperature have been published by Sparrow and Gregg (l) and 

LeFevre and Ede (2)= These authors mentioned that sufficient experi­

mental data were not available to check their solutions., The purpose of 

the present research was to obtain experimental values of the heat trans­

fer coefficient for natural convection from the outer surfaces of vertical 

cylinders with uniform surface temperatures to compare with the solutions 

of Sparrow and Gregg as well as LeFevre and Ede and to obtain an empiri­

cal correlation which will describe these experimental data» 

Sparrow and Gregg have recently solved the partial differential 

equations governing the boundary layer around a vertical Isothermal 

cylinder in free convection,, They first transformed the boundary layer 

-* 
Numbers in parentheses refer to references in the Bibliography» 



equations to dimensionless form. Then by assuming series solutions for 

the dependent variables; they obtained a set of ordinary differential 

equations wnich were numerically solved on an IBM Card Programmed Calcu­

lator. There is a disadvantage here in that this computer operation 

must be performed for each value of the Prandtl number. The resulting 

solution compared the average Nusselt number for the cylinder to that 

for the flat plate; it was of the form: 

N" 

L i .p. 
:w _„ 

This is graphically presented as a function of J= for Pr == 0.72 i i 

Figure 1 in Appendix B. The authors have limited this solution to the 

k g w 
region in which 10 < Gr < 10 , and to values of t < 1.0. In his 

— J_i — r — 

discussion of the solution in Reference 1, S. I. Pai pointed out that 

the boundary layer equations, which are valid for large values of dis­

tance along the cylinder} were solved with a series, which should be 

valid for small values of distance along the cylinder. Thus there is 

some question concerning the range of cylinder lengths for which the 

sol ition is valid. 

Soon after Sparrow and Gregg published their solution, LeFevre 

and Ede presented a solution for the problem of natural convection from 

the outer surface of a vertical cylinder with a uniform surface tempera­

ture. They began with the integrated boundary layer equations. Then 

by substituting into these equations assumed velocity and temperature 

Symbols are defined in the Nomenclature in Appendix C. 
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profiles and "by assuming series solutions for the dependent variables, 

they obtained ordinary differential equations which were easily solved,, 

The solution was given Ln the form; 

JL 

(Gr Pr)* 

This solution is shown in Figure 2 in Appendix B0 It is an approximate 

solution, "but it has an advantage over that of Sparrow and Gregg in that 

it is easier to obtain rallies of Nussolt number for many different values 

of the Frandtl number 0 

The first significant experimental work on this problem was con­

ducted by Game (̂-) in 1937" He obtained his data by allowing steam 

to condense on the inside of hollow cylinders to maintain the cylinders 

at a constant temperature., However _, v<jry little of his data lay in the 

laminar region; and when those data which are in the laminar region are 

plotted together with the solution of Sparrow and Gregg or LeFeyre and 

Ede7 the points are scattered and the majority of them lie above the 

analytical solutions (see Figures 1 and 2) 0 

In the present experiment, data will be obtained from electrically 

heated aluminum cylinders0 An attempt will be made to cover the laminar 

region so that there will be sufficient data from which to draw reasonable 

conclusions a 

IT J-(GT Pr)* 



CHAPTER II„ 

INSTRUMENTATION AND EQUIPMENT 

* • 

Eive polished aluminum cylinders fitted with thermocouples to 

measure the surface temperature were vertically suspended, one at a time, 

inside a cylindrical cardboard shield and were heated from within by 

wound resistance heaters„ A wattmeter was used to measure the power 

dissipated in the heater and a potentiometer was used with the thermo­

couples to measure the temperatures of the air, the inside surface of 

the shield, and the surface of the cylinder. Schematic diagrams and 

electrical circuits may be seen In Figures 3 and h in Appendix B. 

Several problems were considered before constructing the cylin­

ders. These cylinders had to be made such that they would have uniform 

surface temperatures and so that the heat dissipated from them by convec­

tion could be easily measured. The use of electrical heaters would allow 

the power dissipation to be easily and accurately measured. Also, the 

use of thick-walled cylinders should cause any axial temperature variation 

of the heater to be damped out at the outer surface of the cylinder. In 

practice this worked quite well, for the difference in the cylinder-to-

air temperature differentials for the top and the bottom of the cylinder, 

which were always the maximum and minimum differentials, was always be­

low five per cent. Convection from the heater to the inner wall of the 

The term "polished" was used to designate the surface for the 
purpose of determining the emissivity as listed in Reference 5. Actually, 
the surfaces were shiny with light steel wool scratches and some tool 
marks. 
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cylinder could he a problem, hut according to Article 24-k of Reference 3 

this problem could he avoided by making the inside diameter of the cylin­

der no more than one quarter inch greater than the heater diameter, 

Two problems could occur in measuring the surface temperature of the 

cylinders; heat could he conducted away from the cylinder along the ther­

mocouple wires, and a thermocouple wire projecting from the surface would 

disrupt the boundary layer flow around the cylinder. According to 

Article 33-3 of Reference 3, the first problem can be avoided hy leading 

the wires along the surface before applying the junction to the surface„ 

By imbedding the wires underneath the surface both of these problems 

were eliminated„ The final problem was that of insulating the ends 

of the cylinder so that almost all of the heat would leave through the 

cylindrical surface. This was done with balsa wood, which has a low 

thermal conductivity of 0,03 Btu/hr ft F and yet is strong enough to 

he used structurally„ 

The ahove features were incorporated into a cylinder in the 

following manner: The cylinder was machined from a soft aluminum alloy 

and an axial hole approximately one quarter inch in diameter was drilled 

through the center to accommodate a wound resistance heater. An axial 

slot was milled the full length of the outside of the cylinder and holes 

drilled normal to the slot from the outer surface of the cylinder, 

The axial slot acted as a channel down which the thermoucouple wires were 

laid, and it worked best when the width of the slot was the same as the 

diameter of the thermocouple wires• The holes which were drilled into 

the slot were Number k-2 drill (0.093? inch), and they allowed the ther­

mocouple junction to he led from the slot to the surface of the cylinder, 
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Each thermocouple was then placed in the cylinder with its junction at 

the surface and. the wires were run through the hole and up the slot to 

the top of the cylinder. The holes and the slot were then filled with 

plastic aluminum„ The heater was then inserted Into the cylinder and 

the "balsa wood insulation was joined to the ends with the heater leads 

and thermocouple wires passing through the insulation. On the three 

smaller cylinders the balsa wood insulation was glued to both ends; 

and on the two larger cylinders it was glued to the bottom end and bolted 

to the upper end with two l/k - 20 x 2.\ stove bolts, which were capped 

with insulation-, The bottom piece of balsa wood insulation was sanded 

to a conical shape so that the boundary layer would be more likely to 

start from the bottom edge of the cylinder than from some point on the 

insulation,. Two screw eyes were then screwed into the balsa wood insu­

lation at the top of the cylinder, and the cylinder was suspended by a 

wire which was tied to the two screw eyes and passed over a rod, A 

drawing of an assembled cylinder may be seen in Figure 5 -

The presence of the stove bolts necessitated an end correction 

for the two larger cylinders„ This was made by assuming heat was con­

ducted away from the cylinder by the bolts according to the equation 

q. = 2K Mti/Ax . Here K is the thermal conductivity of steel, A is s s 

the cross sectional area of one bolt, At. is the difference in tempera­

ture between the cylinder and the top of the insulation, and Ax is the 

length of the bolt in the insulation, i.e. two inches„ 

It should be mentioned that the balsa wood insulation had a 

tendency to char when the cylinder was left at a temperature of 300 F 

or more for several hours, 



The wound resistance heater was made "by winding Number 28 E & S 

Gage Nichrome Wire around a 0*15 inch diameter trass rod. The coil was 

slid off the rod and onto a glass tube with the same outer diameter as 

rod. Two p:': eces of plastic- i ns 11 at•" i Numb ei 16 A«W•G. copper v t 

were insi rted into the end;; of the glass tube, and their insulations 

broken at the point where they entered the tube-, The ends of the 

Nichrome wire were then wrapped around the copper wire at these breaks0 

The coil was then coated with Sauereis'n Heater Cement for insulation 

and allowed to dry0 This made a sturdy, compact heater which worked veil 

at temperatures below 300 F, Above 3°0 F, the insulation burned off 

the copper wires and the glass tube cracked from the heat,, A more care­

ful selection of heat resistant materials could easily overcome these 

problems „ 

The cylindrical cardboard shield was sixteen inches in diameter 

and five feet high. Holes were cut in the bottom to allow air to pass 

freely up into the shield. The cylinders were suspended from a stiff 

rod placed across the top of the shield. The temperature or the air 

Inside the shield was measured by a thermocouple suspended from the 

rod which supported the cylinders. This thermocouple was protected by 

a radiation sh"eld so that it would read the true air temperature. The 

inside surface of the shield was painted with aluminum paint to reduce 

the amount of radiation from the cylinder, and the temperature of this 

surface was measured by a thermocouple whose leads passed through the 

shield to the outside0 

All the thermocouples used to test the three-quarter inch dia­

meter cylinder Number 30 B 8s S Gage chromê i- alumel thermocouples 
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with fiberglass insulation. On the other four cylinders iron-constantan 

wire with the same specifications was used. All the thermocouples were 

run through a selector switch to a Leeds and Eforthrup Portable Precision 

Potentiometer, 

Power for the heater was obtained from the building's 115 volt 

Ac C „ supply through a Sola Constant Voltage Transformer and a Superior 

Powerstat, The power to the heater was measured by a Weston A. C, D. C.j 

Model 310 Wattmeter„ To obtain accurate power readings below five watts} 

a General Electric Instrument Potential Transformer was used in the 

voltage circuit of the wattmeter. 



CHAF1ER III, 

DUKE 

To "begin a sei .es of runs; a cylinder was suspend-.; Id, 

and the power leads were connected tc the heater. The voltage setting 

on the Powerstat was then varied until the desired value of net power 

through the heater had been obtained. The net power is the difference 

between the gross power, which is read when the heater is connected, and 

the meter losses, which are read when the heater is disconnected., When 

the desired value of net power had been obtained, the apparatus was left 

for three to six hours, or until it was operating at steady state,, 

Readings were then taken every ten minutes for forty minutes. The readings 

that were recorded were: gross power, surface temperatures, air temperature, 

and shield temperature* At the end of forty minutes the meter losses were 

ag a i n re ad„ Th•s pr oc edur i c ons t i tu t ed one run• 

Each cylinder was used for sevan to ten runs, each run being at 

a d i ff ower level. An attempt was made to vary the power levels 

ly b fcw n the lowest, which corresponded to a temperature difference 

between the cylinder and the air of about 30 degrees Fahrenheit, and the 

highest, which corresponded to a temperature difference of about 200 

degrees Fahrenheit0 



CHAPTER IV. 

DISCUSSION OF RESULTS 

The experimental data were plotted on a graph with the solution 

of Sparrow and Gregg. It can be seen in Figure 8 that all but four of 

forty points fell above Sparrow's and Gregg's solution, the mean 

deviation being 3A.0 per cent. The data for the large cylinder, which 

corresponds to small values of the independent variable £ , had a much 

smaller deviation from the solution than the data for the smaller cy­

linders . 

The experimental data were also plotted on a graph with the 

solution of LeFevre and Ede. It can be seen in Figure 9 that all but 

seven of the forty points fall above LeFevre1s and Ede's solution, the 

mean deviation being Ik,6 per cent. Again the data for the large cy­

linder, which correspondes to larger values of the independent variable 

(Gr Pr)4 =- j had a much smaller deviation from the solution than the 
Li 

data for th*- smaller cylinders. 

The closer agreement between the expe ntal data and the solu­

tions of Sparrow and Gregg and L P 'e and Ede for the large cylinder 

.1 s supported by the statement that both solutions are based on the 

boundary layer equations which are valid for large values of the dis­

tance along the cyllnd- r. Another possible explanation is that the 

p rim.-, ntal error for the large cylinder Is considerably less than I 

for the small cylinder (see Error Analysis Appendix A). 
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Further investigation was made of the solutions of Sparrow and 

Gregg as well as LeFevre and Ede to see if a hetter method could he-

found to correlate the experimental data. The following analysis gave 

the "best results. 

The graph of Sparrow's and Gregg's solution for a particular 

Prandtl number closely approximates a straight line which can he written 

as 

L cyl , -si— = a + h £ 
N U T * ^ 

L, f .p. 

. 

M U L cyl _ a + b 2
3 / 2 L_ 

0.UT6 Gri ' " + i ro 
l i 

When both sides are multiplied by 0.^76 Gr h , 

1 L 
Nu . = A Gr* + B — . (l) 
X cyl L r x ' 

The solution of Levre and Ede is written as: 

N ULc yl f(Pr) + g(Pr) 
A 1 

(Gr Pr)u D(GrPr)* 
hi L 

When hoth sides are multiplied by (Gr Pr)1* , 

N1"L cyl = [f(Pr)] (^Pr)1* + g(Pr) £ 

This can also he written as: 
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WuL cyl " [fl(Pr)J ( G rL i } + g l ( P r ) I" • (2) 

Since both solutions yielded the Nusselt number as a straight 

line function of the fourth root of the Grashof number for a constant 

Prandtl number and — ratio, and since the Prandtl number was essentially 
o 

constant throughout the experiment, the Nusselt number was plotted in 

Figure 10 against the fourth root of the Grashof number for each cylin­

der. After the data were plotted in this manner, a line was drawn 

through the data for each cylinder. These lines were drawn parallel 

even though better agreement would have been obtained if they had not 

been drawn parallel; however, the greatest mean deviation was still only 

6.9 per cent. The following equations and mean deviations were obtained 

from these lines for the indicated range of Grashof numbers: 

1.6 K 105 < GrT < 3-6^ x 10 
L -

Cylinder a, NIL , = 0.68 GrT
h + 0 .08 l — 

^ ' L, cyl L r 
o 

1.8% 

L 
Cylinder b , Nt^ = 0.68 Gr * - 0.088 — 

I, Cylinder c , Nu * 0.72 Gr h - 0 .72 — k, 

i T 
C y l i n d e r d, NIL _ =0.68 Gr r

u - 1 .06 — l.< 
L c y l L r 

1 T 

Cylinder e, Nu a O.73 GrT
h - 2.25 — 6.1 

L cyl L r 

Since the slope for each equation is very nearly the same, and 

since the Prandtl number for the experiment was essentially constant, 

it seems that the slopes of equations (l) and (2) are a function of the 
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Prandtl number only. Since the coefficient of — is different Ln each 
o 

of these equations it is concluded that equation (2) will not correlate 

the data for all of the cylinders. This fact displays a dependence of 

the Nusselt number upon the particular cylinder used- The form of this 

dependence could not he determined from the data; however} it should he 

studied further. The coefficient of — is plotted as a function of — 
r r 
o o 

in Figure 11 in Appendix B, 

The data were also correlated in the classical coordinates of 

free convection, In NLL VS ln Gr_Pr. This resulted in the following 
' L cy.L L 

equation which descrihed the results vith a mean deviation of <4.7 per 

cent, 

c. p. 
1.6 x l O ; < Gr < l.Qk x 10 

J_i ~— 

NLL , = 1.666 ( G r P r ) 0 , 1 9 5 . 
L cy i L 

This correlation is shown in Figure 12. 

It ¥as thought that even "bettor results might he obtained if 

ln Nu were plotted against ln r(Gr Pr), hut there was no improve-
J-J cyj_ L h 

ment. The following equation was obtained, and it descrihed the data 

with a mean deviation of 5.5 per cent* 

s 8 
l , b x l O ; < G r < 3.84 x 10 

— l_j — 

w.?42 
Nv •"L^l- 1 ' 0 8 ^*'] 0 " 1 

This correlation is plotted in Figure 13 
. :• 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

The solution of Sparrow and Gregg did not accurately predict 

the results of this experiment, for as £ increased from 0.250 to 0.725 

the value of the Nusselt number predicted by the solution became in­

creasingly smaller than that obtained in the experiment. 

The solution of LeFevre and Ede also failed to predict the 

results of this experiment accurately} for as —(Gr Pr)^ decreased 
NuL c 1 

from 20 to 7»0 the value of — predicted by the solution became 

(Gr Prf 
-Li 

increasingly smaller than that obtained in the experiment. 

Two empirical equation were determined which describe the experi­

mental data within a mean deviation of 5-0 per cent. In the range of 

[- Q 

1.6 x KT < Gr • 3.8^ x 10 ; they are: 
— Li — 

NuT . * 1.666 (GrTPr)°*
195 

L cyl v L ' 

- .2hp 
Ni ^eyl- 1^*^] 0" 

It was found that the data for this experiment could be expressed 

by equations of the form: 

* ~ L 1 
NuT _ = C.Gr* + C_ — 
L cyl 1 L 2 r 

o 

where C is a function of the Prandtl number and C is dependent in some 



manner upon the particular cylinder„ It is recommended that further 

experiments he conducted to investigate the dependence of C upon the 

Prandtl number and of CL upon the particular cylinder, Thes-: experiments 

should -employ a variety of fluids so that a vide range of Prandtl num­

bers could be coveredo It is also recommended that before undertaking 

future experiments of this type the value of the emissivity of the test 

cylinders be experimentally determined so that the estimated error due 

to uncertainty in the emissivity can be reduced„ 
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APPENDIX A 



ERROR ANALYSIS 

An attempt is made here to estimate the maximum error in the 

average Nusselt number for the cylinder due to the various errors wh' ch 

•ould be made in taking measurements and assuming constants. The analysis 

is conducted for the two extremes of operation, i.e. a small cylinder 

operating at low power and a large cylinder operating at high power. 

The errors which could he expected from measurements are as 

follows: 

The error in measuring the diameter of the cylinder is 

+ 0.001 inch. 

The error in measuring the length of the cylinder is 

+ l/6h inch. 

The error in measuring the power is + 0.2^ per cent of 

the full -scale reading,, This amounts to + 0.3 watts 

multiplied by the scale factor of the wattmeter. 

The error in measuring an absolute temperature, as given 

by the thermocouple manufacturer, is +• 5 F. 

The error in measuring a temperature difference was assumed 

to be + 1 F. The assumption was made after observing 

that all the thermocouples read within 1 F of each 

other prior to heating the cylinder. 

The only error involved in assuming a constant was that incurred 

in assuming the omissivity of the cylinders. This error was assumed to 

be *• 20 per cent, 
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No error was assumed in determining the properties of air at the 

mean air temperature. An end correction was made only for the two cylin­

ders whose insulations were attached "by stove "bolts., 

For the purpose of this analysis, the Nusselt number is written 

as the sum of three terms, The first term is dependent on the not power 

dissipated by the heater; the second term is a correction for heat trans­

ferred by radiation, and the third term is a correct:!.on for axial heat 

transfer from the ends of the cylinders,, The magnitude, per cent error, 

and absolute error are determined for each term. Then the magnitudes 

and absolute errors are summed and the maximum per cent error is deter­

mined from these two sums„ 

hL ^c L _ P - qr - End Effect L 
L cyl ~ K " A At K ~ 7TDIAt K 

17 c 
o ^ ,-i-/r (T - T )L 0.1O73(t - t.) 
3° jo p 0^6cv c s c iy 

L cyl 77DKAt KAt TTDKAt 

Low Power Small Cylinder Run No. 1 

First Term 

« * A (3°36)(0,3)(12] ,r n 

Magnitude = ( 3,1!+) (o,^2) ( ,0153) (£1 ̂ ) = 15'3 

Ap = 0,03 watts = 10 o/o of 0.3 

AD = 0„001 inch =1=33 o/o of 0.75 

AAt= I F = 5 o/o of 20 | absolute error ---- 2.5 

o/o error - l6»3 

Second Term 

M n„ r i i t r, r (0.17l\x 10"8)(0.1)(132)(108)(2) 
Magnitude - (Oo0153)(21«8)(l2]

 = l o 1 3 



At = 0,02 = 20 o/o of 0.1 

A L = l/6h inch = 0„76 0/0 of 2 

AAt = 1 °F = 5 0/0 of 20 

A(T - T 4) = 7̂ .72 x 10 °R = ;"7v;. 0/0 of I32 x 10 

0/0 error = 83.3 0/0 

absolute error = O.9J+ 

Third Term Net Applicable 

Total Magnitude of 1 s t and 2 n d Terms = 15.30-1.13 

Total of Absolute Errors = 2.50 + 0.94 = 3,H 

Per Cent Error = jV (lOO) = 24 ..:', 

= 14.17 

High Power Large Cylinder 

First Term 

Run No. 36 

« — = llMX-ownm) -96 

A p = 0,6 wat t s = 1 . 2 0/0 of 50 

A D = 0.001 inch = 0.04 0/0 of 2.5 ^ 0/0 error =1.8 

M t = 1 F = 0.6l 0/0 of I63 absolute error = 1 

Second Term 

Magnitude • l 
0.171^ x 10"°)(0.l)(l665 x 10Q)(l6) 
0.0171)(163)(12) = 13.7 

A £ = 0.02 = 20 0/0 of 0.10 
c l 

A(T - T k) = 137=8 x 108 = 8.3 0/0 of 1665 x 10 

AAt = 1 °F = 0.6l 0/0 of 163 

A L = 1/64 inch = 0.10 0/0 of l6 

a 
0/0 error = 29 

absolute error = 3°98 



Third Term 

.+ A (0.10T3)(113.6)(12) 
Magnitude = (3^)(^)(.0iTl)(l-:; 

A(t - t.) = 1 °F= 0.74 o/o of 113-
c 1 

A D = 0.001 in = 0Jjh 0/0 of 2.S 

AAt = 1 °F = 0.6l 0/0 of lfc3 

:= 0.97 

"^ 

[^ 0/0 error = 1 = 39 

absolute error = 0.10 

Total of Magnitudes = 96 - 13.7 - 6.97 = 75-33 

Total of Absolute Errors = 5.86 

Per Cent Error = ^'°^ (lOO) = 7°8 
75-33 
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Table 1 

Sample Calculation Sheet 

p 
Cylinder e -face Area. A = 77" DL = 0.839 ft" 

' c 
D = _..,' in. = 0-200 ft. Radiation Constant =G~C A 

c c 

L = 16.00 in. = 1.333 ft. = (0.17m x 10"°)(0.l)(0.839) = 

« «. i . -8 Btu 
0.0144 x 10 "-o LJ 

hr ft-- R • 

1/ = 2.369 ft3 

L/r = 13.32 
' 0 

D/L = 0,150 

Run Number 

Item No„ 31 

1 Top Temperature, t , F 
t ' 

114 

2 Bottom Temperature} t , F 113 

3 Air Temperature, t , F 
a 

86 

k At, • t - t . F top t aJ 28 

5 At, , . m t - t , F bottom b a/ 27 

6 R (At, - A t . . )/At , If 
top bottom'' top' 

R < 0..0-5, the run is considered to be one 

of constant surface temperature and vill 

— 
be used. O.038 

7 Average surface temperature, t , F 
c 

114 

8 Average surface temperature, T = t + h60} R 57^ 



Table 1 (Continued) 

Sample Calculation She-t 

(T ) \ Rk x lO"6 1085 

10 Inner Surface Temperatur Ld̂  tp) F 

11 Shield Temperature; T =* t + k6i , P 
S S 

5̂ 6 

12 (T ) , R x 10 

13 
U-x Radiation Potential = (T '" - T ). R 196 

14 Insulation Temperature, t,} F 93 

15 At. = t - t., F 
1 c 1' 

21 

16 At = t - t , F 
c a7 

28 

17 t + to 
Mean Air Temperature, t = c ,., a , F 

' m ' 18 

19 

20 

21 

22 

23 

2k 

H 

^Thermal Conductivity of air, 
Btu 

' hrftF 

*Frandtl No. of air} Pr, dimensionless 

-6 
**Y for air, — - — x 10 

ftJ F 

^ 

Grashof No., Gr = YL^At x 10 , 
J_i 

fli Tnenaionl.es B 

Gr , d imensionless 
L ' 

Gr Pr x 10 , d imensionless 

! 
(Gr Pr)u , dimensionless 

0.0155 

0.711 

1.775 

117 

102 

90, 

97.2 

25 Net Power, p, watts 6.50 

Values of K and Prandtl number for air obtained from Table II - 2, 
Reference 6. 

* • - * -

Values of Y for a i r ob ta ined from Table A - 2 , Reference 7 . 

Tnenaionl.es


2k 

Table I (Continued) 

Sample Calculation Sheet 

26 Net Power, P = 3.36 p, Btu/hr 21.8 

27 Radiation, a = G~£ A (T^4- T ) , Btu/hr 2.82 

28 End effects = 2K A A ti = 0,1003 At,, 2*H 
S Xx 1 ^ 

2.2> 

29 Heat transferred by convection, 

<1 = P - <L, - End- effects, — — lb. 8 

30 ĉ 
0»7i4 30 3 A t - t J 

c c a 
0»7i4 

31 Average Nusselt number for cylinder, 

NIL ^ = hL/Kj dimensionless 61. i* 

32 *Average Nusselt number for flat plate 

i. 
Nu = 0.^757 Or h , dimensionless ^8,5 

33 Ratio of Nusselt numbers, 

NUL /NIJL „ , dimensionless 1.27 

3^ Nux ../(OrTPr)
u', dimensionless 

T. cyl'v L ' ' 0.632 

35 J£ S5 (2 ' /Gr u ) — , dimensionless 
n 

0.370 

36 
x 

D/L (Gr Pr)1* , dimensionless 
1A.6 

37 D/L (Gr Pr) x 10 13.6 

According to Ostrach (8), NIL. = OA757 Gr u when Pr = 0,72. 



T a b l e I I 

Summary of T a b u l a t e d Da ta 

C y l i n d e r a_, D = 0 . 7 5 2 i n c h e s , [ , * 2 . 0 0 i n c h e s 

Run No. 1 . 3 k :. 7 

V * 102 139 l 6 l 168 2'.)'! 286 238 

V F ; - ; • > . . 83 85 83 84 87 85 

V F 84 85 8$ - 87 86 

\ , F — — — — — 

P , B t u / h r 1.01 3 .36 4 . 8 7 5 . 7 1 8 .4o 1 5 . 6 1 1 . 3 

.."' 0 . 7 1 2 0 . 7 1 0 0 . 7 1 0 0 . 7 1 0 0 . 7 0 9 0 . 7 0 7 O.708 

Gr x 1 0 " ' 0 . 1 9 2 0 . 4 2 1 0 . 5 2 4 0 .584 0 , 7 0 8 0 . 8 7 8 0 . 7 9 7 

G r L * 2 0 . 9 2 5 . 5 2 6 . 9 2 7 . 6 2 9 . 0 3 0 . 6 2 9 . 9 

G r T P r x 10"* ' • • . 1 ' f 0 . 2 9 9 0 .372 0 J1-15 0 . 5 0 2 0 . 6 2 0 0 . 5 6 4 

1 

D / L ( G r T P r ) ^ 
l i 

7 .22 8 . 8 0 9 . 2 9 9 .55 1 0 . 0 1 0 . 6 1 0 . 3 

NuT 

L c y l 
14 . 2 1 8 . 0 1 9 . 1 1 9 . 6 2 0 . 0 2 0 . 8 2 0 . 4 

H u L f . p . 9 .94 1 2 . 1 1 2 . 8 1 3 . 1 1 3 . 8 1 4 . 6 1 4 . 2 

HUL s a 
Nil 

1.4 3 1 .48 1 .49 1.50 1 .45 1 .43 1 .43 
iMUL f . p , 

N u L c y l 0 . 7^11 0 . 7 6 9 0 .774 0 . 7 7 3 0 . 7 5 3 0 . 7 4 1 0 . 7 4 3 

( G r _ P r ) ¥ 

-Lr 

£ 0,720 0.590 O.56O 0.545 O.519 0,492 0.503 

-(Gr Pr) x 10" 0.052 0.113 0ol40 O.I56 O.I89 0.234 0.212 
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Table II (Continued) 

Summary of Tabulated Data 

Cylinder b , D = ; L.0Q3 inches , :. > = 4.00 inches 

Run No. 
: • : 11 12 14 

t } F 
c 

114 157 213 180 223 139 286 

t , F aJ 83 88 85 84 

V F 

V F 

P, Btu /hr 

83 86 83 88 85 V F 

V F 

P, Btu /hr 3-36 9.25 23.5 14.. 5 22.6 6.22 35.3 

Pr 0.711 0.710 0.709 0.709 0.708 0.714 0.707 

-6 GrT x 10 ' 
-Li 

2.24 3.98 5.78 4.74 6.14 3.24 7.23 

G r L * 38.7 44.6 4-9.0 4 6 . 7 . 49 .8 42 .5 51.9 

Gr Pr x 10"* 
J_i 

1.59 2.83 4.10 3.36 4.35 2.32 5.11 

^(Gr P r ) u 

! i J_i 
8.90 10.3 11 .3 10.7 11.4 9.80 11.9 

N ^ c y l 26.2 28 .1 39.5 33.3 33.8 25 .1 34.7 

NUL f . p . 18.4 21.2 23 .3 22.2 23 .7 20.2 24.7 

NuT T. c y l 

% f . p . 
1.4-2 1.32 1.69 1.50 1 A 3 1.24 1 .4 l 

Nu 
L cy l 

i 
0.738 O.683 O.878 0.773 0,741 0.641 0.731 

(Gr P r ) 4 

-Li 

X 0.^84 O.506 0.461 0.484 0.453 0.531 0.435 

^?(Gr Pr) x 10" 0.4-00 0.734 1.03 0.84:2 1.09 O.582 1.28 
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NuT . 
1 cyl 

L I.p 

(Gr Pr)* 
J_i 

I) = l . - ' i •:• inches _j L = 8, = 00 Inches 

15 16 17 18 19 20 21 

119 171 218 252 293 192 148 

85 % 86 86 90 88 85 

C 88 87 86 90 88 86 

Table II (Continued) 

Summary of Tabulated Data 

Cylinder c} 

Run No,, 

V F 

V r 

t , F 

iJ 

P, ̂  8.40 2̂ .6 51 = 2 67.5 86.5 37 = 8 18.1 

Pr 0,711 0.710 0.708 0,708 0.706 0.709 0,710 

GrT X 10" 17.8 35-2 k6.5 52.9 
J-i 

l. 
Gr u 65.0 76=9 82.3 85.2 

-6 Gr Pr x 10 12,7 25.0 32,9 37.k 
J_i 

D 1 

- (Gr Pr)11 11 .1 13.2 1J+.1 Ik,3 lk*f 13.6 12.5 

Ni^ 35 -3 ^608 5^-1 5^.2 5 ^ 9 52.3 41-7 

NuL f o p o 30,9 36.6 39»2 40,5 ^1-3 38,0 3^.8 

55.7 4-1,0 29,1 

86.8 79*9 73.1 

39.4 29-0 20.7 

1,14 1,28 1,38 1,34 1,33 1,38 1.20 

N I L 

— 0,592 0 ,66 l 0,714 0,694 0,695 O.715 0„6l9 

0,469 0.397 0.371 0,358 0.352 0,382 0.417 

f ( G r P r ) x 10~6 2,35 4.65 6,12 6.96 7„33 5-40 3*84 
Lv L 
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Table II (Continued) 

Summary of Tabulated Data 

Cyl: inder d, 

Run No, 

cr 
P 

a ' 
F 

.' 
F 

V F 

B t u 
P j ] ar 

P r 

G r L 
x 10" 6 

GrL* 

Gr Pr x 10" 
-Li 

2(GrLPr)* 

J_J c y l 

% f . p . 

N''L c y l 
Nu 

Ll f . p . 

N X c y l 
1. 

(Gr P r ) " 
Li 

D = : , • ) inches , L = 12.00 inches 

22 26 

108 140 161 185 205 

85 83 84 83 

^9 84 , - i 84 

37 102 107 114 L22 

15-1 33=6 50.4 67.2 83.2 

0.711 0.710 0.710 0.709 0.709 

57.1 90.5 119 1̂ 2 L55 

36=9 97.3 104 109 L12 

64.3 84.2 101 110 

13-0 14.5 15.6 16.3 16.6 

46.1 57-3 61.4 61.4 63.4 

41.3 46.3 49.5 51.9 53.3 

1.12 1.24 1.24 1.18 1.19 

0.577 0.642 0.641 0.6lk 0.622 

0.398 0.356 0.333 O.318 O.309 

D 6 
•jr(Gr Pr) x 10" 6„62 10.5 13.7 l 6 . 4 17 .9 



Table II (Continued) 

Summary of Tabulated Data 

C y l i n d e r 6., 

Run Ho. 

V F 

V r 

V F 

Btu 
' hr 

Pr 

G r L x 1 0 " 

GrJ 
f 

Gr T Pr x 1 0 " 
JLl 

£(GrLPr)* 

NUL f . p . 

K UL c y l 
N U T f rs L I , p . 

D = Inches, 

27 28 29 30 

230 246 266 300 

36 86 89 

37 81] 86 89 

129 13 [ 142 143 

101 118 138 168 

1 = 12.00 inches 

0.708 0.708 O.707 O.706 

168 179 185 190 

114 116 117 119 

119 126 131 134 

17.0 17.3 17.4 17.6 

63.1 64.7 67.4 68.2 

54.2 S5.2 55.4 ,-v,.... 

1.16 1.17 1.22 

Nu 
^— 0.607 0.610 0.630 0.631 

( G r P r ) ^ 

£ 0.304 0.299 0.297 0.291 

5(Gr L Pr) x 10" 6 19.4 20.6 21.4 21 .8 
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Table II (Continued) 

Summary of Tabulated Data 

Cyl: 

Run No, 

c 
b 

a 
• 

V ¥ 

V F 

Btu 
*> h r 

i: 

G r L 
x 1 Q - 6 

1 

Gr T
u 

G i ' P r x 10" 
Li 

I ( G r L P r ) " 

NIL 
LI e y l 

mL f . p . 

Nu 
J_l c y l 

-Li f . p . 

j j c y l 
l 

(Gr P r ) u 

i_i 

D = 2*402 i n c h e s L = 16.0C i LChes 

31 

llU 162 197 227 

89 37 86 89 

89 86 88 

93 101 111 120 . 

21.8 ' '" 66.4 102 13^ 

0.711 0.710 0.710 0.709 0.708 

117 181 267 341 378 

.02 116 128 136 139 

90.3 129 I89 241 268 

14.6 15.9 17.6 18.6 19.2 

61.4 63.5 68.9 69.9 71.3 

48.5 55-2 60.9 64.7 66.1 

1.27 1.15 1.13 1.0.8 1.08 

0.632 0.599 0.589 0.56k 0.557 

£ 0.370 0.325 0.295 0,277 O.271 

&Gr Pr) x 10 - t 13.6 19-4 28.3 36.2 40.2 
J-i J_I 



Table II . 

Summary of Tabulat ed Data 

Cylinder Cj D = 2 .402 inc hes L = l6.i 1 inche 

Run No. 38 4o 

V F 251 J04 327 350 

V F 90 88 87 

V F 37 89 88 87 88 

V F 
137 147 154 170 

Btu 
' hr 

168 202 237 267 302 

Pr 0.708 0.707 0.706 0.706 O.705 

GrT x 10"'
: 

J_i 
4i4 44o 14-61 468 482 

1 

Gr* 
J_i 

l > ^ 2 ikk 14-6 147 148 

Gr Pr x 10"( 

Li 
293 311 326 330 34o 

^ P r ) * 19.5 19.8 20.1 20.3 20.4 

NUL cyl 75*4 74.8 76.7 77.o 77.9 

NuL f.p. 67.6 68.5 69.5 69-9 70.4 

Nl^ cyl 

L f.p. 
1.12 1.09 1.10 1.10 1.11 

JL cyl 
i 

O.58O 0.567 0.572 0.570 0.573 

(GrTPr)
u 

£ 0.266 . 0.258 0.256 0.255 

^(GrLPr) x 10"- 43-9 46.7 48.9 •• 51.0 



^1 cyl 
NUL f.p. 

1.8 

1.7 

1.6 

1-5 

l.l* 

1.3 

1.2 

1.0 

T?1 
\ 7 

V 

V 

\ 7 

V 

o.o o.i 0.2 0.3 oA 0.5 0.6 0.7 o.8 0.9 1.0 

^ From Carne (k) 

Figure 1. The Solution of Sparrow and Gregg for Pr = 0=72 < 
ro 



1.0 

0.9 

n 7 

r 
^Lcyi 

x 
(Gr Pr)u 0.6 

J-i 

0.5 

0.4 

\ \ \ i \ 

^ 

A 

r 

.: 4 5 6 

A From Carne (k) 

Figure 2. The Solution of LeFevre and Ede for Gases 

10 11 12 13 Ik 1^ ID 17 18 19 20 

-(GrTPrr 
L L 



115 Vol t 
A. C. Supply 

Constant 
Voltage 

Transformer 

Powerstat 

Support Rod 

Ir==3 

Heater 

:ld 

Switch y 

Voltmeter 

&\ 

Potential 
Transformer 

Ammeter 

Fuse 

Wattmeter 

Wiring 

Figure 3» Schematic Diagram of Pover Equipment. 



/ 

/ 

-

V 

! I 

Cold 
Junction ~~\ 

_ Measures Ambient 
Air Temperature 

-,- Radiation Shield 

Measures Inside Surface 
Temperature of Shield 

Measures Surface Temperature 
of Cylinder 

Selector 
Svitch 

\Lr 
Potentiometer 

Thermocouple wires 
Copper wires 
Concealed -wires 

Figure k. Schematic Diagram of Thermocouple Circuit 
• - -



Screw Eye 

Heater 

Thermocouple Cable 

i |l II ' L / 

n Thermocouples 

Balsa Wood 
Insulation 

Heater Lead 

Figure 5, Cylinder Construction 



re 

Thermocouple Wire 

Plastic 
Aluminum 

0.0932 DIA. 

Sec t ion A - A 

Schedule of Dimensions (inches) 

cv:_ .1 1: W 

2.00 0.752 0.250 0.250 0.250 0.200 

4.00 1.003 0.250 0.500 0.250 0.250 

8.00 l.kQk 0.375 0.500 1.75 0.250 

12.00 I.96O 0.375 0.500 2.75 0.250 

0.300 

0.300 

16.00 2,402 0.375 0.500 3.75 0.163 0.500 

Figure 5. Cylinder Construction (Continued). 



3*3 

Figure 6. Photograph of Equipment 

/ r 

• 

Figure 7. Photograph of Cylinders. 
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L c y l 
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1.3 

Cylinder a - ^ 

Cylinder "b - ^j. 1.2 

Cylinder c - Q 

Cylinder d - Q 

Cylinder e - ^ 

1.0 

-•-

• & • - ^ ' 

• x<* X 
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CD 
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^ e 
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« • • 

tl 

- ^ 

t b 

1^ 
L-̂ *1 

1 0.0 0.1 0.2 0.3 O.h 0.5 0.6 0.7 0.8 0.9 1.0 

X 
Figure 8a Experimental Data Compared to Solution of Sparrow 

and Gregg. 
uo 
ô 
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^L cyl 
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GP 
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Cyl inder c - O 
Cylinder d - Q 
Cyl inder e. - V 
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4 points 

5 6 T 8 9 10 n 12 13 l̂  15 16 IT 18 19 20 

iK*^ 
Figure 9. Experimental Data Compared -with Solution of LeFevre and Ede. 
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Figure 10. Experimental Data Nu vs Gr u 
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APPENDIX C 



NOMENUL> 

D 

Gr 

b 

NUL cyl 

Hu. 
L f.p, 

P 

Pr 

m 

Area of cyl 

Diameter of cylinder 

•3 ^ 

YL~ (t - t J. G .-ashof based on 
c 

cylinder length. 

Heat transfer coeffic: 

K Thermal conductivity 

mean air temperature 

L Length of cylinder 

ViT 

— , Average Nusselt number for cylinder 
K 

Average Nusselt number for flat plate 

Power dissipated in 

Prandtl number of air 1 be mined 

at mean air temperature 

Heat transferred by convection 

Temperature 

Temperature of Ambient air 

Temperature of cylinder surface 

Temperature at top of insulation 

t_ + t_ 
, Mean air temperature 

. 

ft. 

ft. 

dimensionless 

Btu 
2 o 

hr ft" F 

Btu 

hr ft F 

ft. 

dimensionless 

dimensionless 

watts 

dimensionless 

Btu/hr 

F 

Temperature at inside surface of shield 



k 

NOMENCLATURE 

• led) 

aQ 
^— , property of ai: ;en ned at mean a 
))2 . 

"' O 

temperature 
Em;i; y of cylind rface nensionless 

< — independent variable 
i r ^ 

occurring in -oiution 

of Sparrow and Oregg dimension] 

Btu 
Stefan-Boitzraan constant 

2 o L 

hr ft R 
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