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Abstract

Study background—Chronic granulomatous Disease (CGD) is a rare immunodeficiency 

caused by a defect in the leukocyte NADPH oxidase. This enzyme generates superoxide, which is 

needed for the killing of bacteria and fungi by phagocytic leukocytes. Most CGD patients have 

mutations in CYBB, the X-linked gene that encodes gp91phox, the catalytic subunit of the 

leukocyte NADPH oxidase. We report here three autosomal recessive CGD patients from two 

families with a homozygous mutation in NCF2, the gene that encodes p67phox, the activator 

subunit of the NADPH oxidase.

Methods—Leukocyte NADPH oxidase activity, expression of oxidase components and gene 

sequences were measured with standard methods. The mutation found in the patients’ NCF2 gene 

was expressed as Ala202Val-p67phox in K562 cells to measure its effect on NADPH oxidase 

activity. Translocation of the mutated p67phox from the cytosol of the patients’ neutrophils to the 

plasma membrane was measured by confocal microscopy and by Western blotting after membrane 

purification.

Results—The exceptional feature of the A67 CGD patients reported here is that the p.Ala202Val 

mutation in the activation domain of p67phox was clearly hypomorphic: substantial expression of 

p67phox protein was noted and the NADPH oxidase activity in the neutrophils of the patients was 

20–70% of normal, dependent on the stimulus used to activate the cells. The extent of Ala202Val-
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p67phox translocation to the plasma membrane during cell activation was also stimulus dependent. 

Ala202Val-p67phox in K562 cells mediated only about 3% of normal oxidase activity compared to 

cells transfected with the wild-type p67phox.

Conclusion—The mutation found in NCF2 is the cause of the decreased NADPH oxidase 

activity and the (mild) clinical problems of the patients. We propose that the p.Ala202Val 

mutation has changed the conformation of the activation domain of p67phox, resulting in reduced 

activation of gp91phox.
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Introduction

Phagocytic leukocytes protect us against bacteria, yeasts and fungi by ingesting these micro-

organisms, followed by intracellular killing, or by attachment and extracellular killing. In 

this process, release of stored bactericidal proteins as well as generation of reactive oxygen 

species (ROS) by the phagocytes is essential [1]. Superoxide (O2
−), as a precursor of other 

ROS, is produced by the leukocyte NADPH oxidase. This enzyme consists of two 

membrane-bound components, glycoprotein (gp)91phox (phox from phagocyte oxidase), also 

called Nox2, and p22phox, together forming flavocytochrome b558, and three cytosolic 

proteins called p40phox, p47phox and p67phox. The gp91phox protein is the catalytic subunit; it 

contains an NADPH binding site, one FAD and two heme prosthetic groups. The p22phox 

protein stabilizes gp91phox in membranes and also provides a docking site for the cytosolic 

p47phox subunit. The three cytosolic components form a tight complex that changes its 

conformation and translocates to the gp91phox/p22phox complex in the plasma membrane 

upon cell activation, e.g. after contact with micro-organisms [2]. Superoxide production also 

requires membrane translocation and activation of the small Rho GTPase Rac (preferentially 

Rac1 in macrophages and Rac2 in neutrophils), which subsequently binds to the 

tetratricopeptide regions (TPR) in p67phox (Supplementary Figure S1) and to the plasma 

membrane [2,3]. Following assembly and activation of the cytosolic subunits on 

flavocytochrome b558, the NADPH binding site of gp91phox becomes available for NADPH 

in the cytosol. NADPH donates two electrons to gp91phox, which are then transported within 

the protein to FAD, thereafter to the hemes, and finally to molecular oxygen at the other side 

of the membrane. Electron transfer requires Rac-activated p67phox binding to gp91phox as 

well as interactions between Rac and gp91phox [4]. In this way, superoxide is generated 

within the phagosome or on the cell surface, in close proximity to the ingested or attached 

micro-organisms.

Genetic failure of superoxide generation leads to a rare syndrome of recurrent, life-

threatening infections called Chronic Granulomatous Disease (CGD) [5]. The most common 

form of CGD (about 70% of all cases) is due to mutations in CYBB, the gene that encodes 

gp91phox [6]. Since CYBB is located on the X chromosome, this form of CGD is found 

almost exclusively in males. The autosomal forms of CGD are less common, with mutations 

in NCF1 (p47phox) in about 20% of cases and mutations in CYBA (p22phox) or NCF2 
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(p67phox) each in about 5% of cases [7]. A single patient with mutations in NCF4 (p40phox) 

has also been described [8]. Usually, these mutations lead to complete absence of the protein 

involved, but a few cases are known with diminished expression of gp91phox (resulting in 

diminished NADPH oxidase activity) or normal expression of completely inactive gp91phox 

[9]. We describe here three unusual CGD patients from two families with an identical 

mutation in NCF2, leading to diminished to near normal p67phox expression and substantial 

residual NADPH oxidase activity in their neutrophils. Expression of the mutated p67phox 

protein in a cellular test system proved this mutation to be the cause of the disease.

Materials and Methods

Cell purification

Blood samples were obtained from healthy controls, patients and their family members by 

their physician, following the procedures and appropriate consent protocols approved by the 

Human Subjects Committee of the hospitals involved. Total leukocytes were obtained by 

lysis of the erythrocytes in the pellet fraction with a non-fixing lysis solution of 155 mM 

NH4Cl, 10 mM NaHCO3 and 0.1 mM EDTA. Neutrophils were purified by centrifugation of 

the leukocyte fraction over a layer of Percoll with a specific gravity of 1.077 g/ml. The cells 

in the pellet (neutrophils) were suspended in Hepes medium [132 mM NaCl, 6 mM KCl, 1 

mM MgSO4, 1.2 mM KH2PO4, 20 mM Hepes, 5.5 mM glucose and 0.5% (wt/vol) human 

albumin (pH 7.4)], and the cells in the ring fraction (mononuclear leukocytes) were used for 

RNA purification.

NADPH oxidase tests

Oxygen consumption by neutrophils activated with serum-treated zymosan (STZ) or phorbol 

myristate acetate (PMA) was measured with an oxygen electrode [10]. The 

dihydrorhodamine-1,2,3 (DHR) test was performed with total leukocytes as described in 

Köker et al. [11]. This test measures the oxidation of DHR by hydrogen peroxide to the 

fluorescent compound rhodamine-1,2,3 on a per-cell basis in a flow cytometer by gating of 

the neutrophils on the basis of forward and side scatter. The nitro-blue tetrazolium (NBT) 

slide test was performed as described by Meerhof and Roos [12]. This test was performed 

with purified neutrophils and measures in a semi-quantitative way the reduction of NBT by 

superoxide to dark blue precipitates in each cell. The formation of superoxide by purified 

neutrophils was also measured by reduction of ferricytochrome c to ferrocytochrome c, 

followed in a spectrophotometer at 550 nm [13]. Finally, the secretion of hydrogen peroxide 

by purified neutrophils was evaluated in a 96-well plate with Amplex Red (Molecular 

Probes, Life Technologies, Carlsbad, CA, USA) and horse-radish peroxidase [14]. The 

resulting resorufin was measured over a period of 30 min in a plate reader (Genios Plus, 

Tecan, Männedorf, Switzerland) at 590 nm (excitation at 535 nm). The steepest part of the 

slope was used for calculating the maximal rate of H2O2 production.

Expression of NADPH oxidase components

The expression of gp91phox, p22phox, p47phox and p67phox was analyzed in a flow cytometer 

with permeabilized and fixed blood cells as described [11]. Western blot analysis was 

performed after SDS-10% PAGE of DFP-treated neutrophil lysates in 2-mercapto-ethanol, 
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transfer to nitrocellulose, blocking with 5% (w/v) milkpowder and incubation with mAb 

anti-p47phox (Santa Cruz Biotechnology, Santa Cruz, CA, USA; mouse-anti-human p47phox, 

clone 10, cat. no. SC-17845) and pAb anti-p67phox (Merck Millipore, Billerica, MA, USA; 

rabbit-anti-human p67phox, cat.no. 07-002). Conjugates were fluorescently labelled (LI-COR 

Biosciences, Lincoln, NE, USA), detected by scanning with the Odyssey Infrared Imagine 

System and quantified with Odyssey Application Software V3.0 (LI-COR).

Translocation of p67phox to the membrane in intact neutrophils

Neutrophils (5×106/ml, 1 ml) were stimulated with PMA (100 ng/ml) or STZ (1 mg/ml), 

washed once, and resuspended in 0.5 ml PBS with 0.1 mM diisopropyl fluorophosphate 

(DFP) for 10 min at 4°C. The cells were centrifuged and the pellet was resuspended in 100 

μl of digitonin for 10 min at 4°C; for PMA-stimulated neutrophils a concentration of 150 

μM digitonin in PBS was used, and for STZ stimulation a concentration of 300 μM digitonin 

in PBS. Thereafter, the cells were centrifuged (20 sec 20,000×g), the pellets were 

resuspended in Laemmli sample buffer and a Western blot was performed as described 

above. At these concentrations of digitonin, >90% of LDH was released from the cells and 

less than 5% of the protease content (data not shown), indicating proper separation of the 

cytosol and the rest of the cell.

For immunofluorescence, neutrophils were incubated with PMA (100 ng/ml) or left 

untreated for 10 minutes at 37°C in suspension. Next, the cells were allowed to adhere for 

10 minutes on fibronectin (10 ng/ml)-coated glass covers, followed by a 10-minute 

incubation with STZ (1 mg/ml) or PMA (100 ng/ml), or left untreated. Thereafter, the cells 

were fixed with 3.7% (w/v) formaldehyde for 10 minutes and permeabilized with 0.5% 

(w/v) Triton X-100 for 10 minutes. To visualize p67phox protein, the cells were incubated 

with the corresponding rabbit-anti-human antibody (Merck) for 30 minutes at room 

temperature, followed by a 30-minute incubation with a secondary goat-anti-rabbit-Ig 

ALEXA-568 antibody (Invitrogen). Coverslips were mounted with Vectashield (Vector 

Laboratories Inc., Peterborough, UK) on microscope slides and imaged with a confocal 

microscope through a 63× oil-objective (LSM510 META; Carl Zeiss MicroImaging, Inc.).

Expression and functional testing of recombinant p67phox in K562 cells

K562 cells, immature myeloid cell line cells that constitutively express p22phox, were first 

stably transfected with gp91phox cDNA in pEF-PGKpac [15] and then with p47phox cDNA 

in pEF-PGKhygro [16]. Cells were selected as individual clones in 2 μg/ml puromycin and 

250 μg/ml hygromycin for 3 weeks. A clone with high recombinant gp91phox and p47phox 

expression (K562-91-47) was used for further studies, and immunoblots were made as 

described [8]. K562-91-47 cells were transiently transfected with Amaxa by means of 

Nucleofector Kit V and protocol T-16kit V (Walkersville, MD, USA). Superoxide 

production by these cells was determined with isoluminol chemiluminescence in the 

presence of HRP as described [17].

Mutation analysis

Genomic DNA was isolated from total leukocytes by standard procedures and analyzed for 

mutations in NCF2 exons and exon-intron boundaries by PCR amplification of each exon 

Roos et al. Page 4

J Clin Cell Immunol. Author manuscript; available in PMC 2015 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with its intronic boundaries, followed by bi-directional sequencing. The PCR conditions 

were as follows: 50 cycles of 5 s at 95°C, 30 s at 60°C and 15 s at 72°C, and for exon 16 50 

cycles of 5 s at 95°C, 30 s at 52°C and 15 s at 72°C. The PCR products were sequenced with 

the Big dye terminator sequencing kit v1.1 (Applied Biosystems, Foster City, CA, USA).

Total mRNA was purified from the mononuclear leukocyte fraction and converted into 

cDNA by means of Superscript III first-strand synthesis system for RT-PCR (Invitrogen, 

Carlsbad, CA, USA).

Case Presentations

Family A, a presumably non-consanguineous Turkish immigrant family with three 
daughters and one son, originally from the province of Tokat, Turkey, and now living in 
London, UK

Patient A1 (eldest female sibling), born 1970: This lady presented at age 17 with a 4-year 

history of recurrent cutaneous abscesses. These were controlled with antibiotics alone, and 

she managed minor flares of these on her own without the need to seek medical advice. She 

also has a chronic inflammatory, discoid lupus-like rash on her face. At age 30, she had an 

episode of peripheral ulcerative keratitis with adjacent conjunctival granulomata. The 

keratitis itself was non-granulomatous on biopsy. There was a recurrent episode of keratitis 

at age 35 (during the second trimester of pregnancy). Both episodes responded well to 

topical steroids and chloramphenicol drops. Since the diagnosis of CGD was made, the 

patient has been on trimethoprim-sulfamethoxazole and itraconazole prophylaxis. 

Neutrophil testing (ferricytochrome c reduction assay) revealed about 10% of normal 

NADPH oxidase activity with PMA.

Patient A2 (male sibling), born 1987: The male sibling was diagnosed with CGD at birth by 

NBT slide testing. He completed all childhood vaccinations without complications, but 

suffered from recurrent oral ulceration, leg ulcers, folliculitis and skin abscesses throughout 

childhood, controlled with repeated courses of topical and systemic antibiotics. Levels of all 

immunoglobulin sub-classes were normal. The patient has been taking trimethoprim-

sulfamethoxazole and itraconazole prophylaxis during the last twelve years. At age 19, he 

had a short episode of what was thought to be inflammatory bowel disease, with diarrhoea 

and rectal bleeding, although an MR-imaging of the abdomen at age 21 demonstrated no 

small or large bowel inflammation. He is currently in symptomatic remission with no history 

of other bacterial infections. Other members of this family did not present with medical 

problems.

Family B, Turkish family living in the province of Adana, Turkey, with no obvious relation 
to family A

The patient in this family is the only sibling, a girl born in 1990, whose parents are first 

cousins, with no history of early death in the family. She was referred to hospital at 8 years 

of age with diffuse pustular and eczematous lesions of the scalp skin, which were treated 

with systemic antibiotics, but without complete cure. CGD was diagnosed by impaired NBT 

test (all cells weakly positive). T cell function and lymphocyte subsets as well as CH50 were 

also normal. Her serum immunoglobulin levels were IgG 2380 mg/l, IgA 273 mg/l, IgM 73 
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mg/l, and IgE 71 mg/l, which is within normal limits. When she was 8 months of age, 

strabismus in the left eye was noticed after convulsions. During ophthalmological 

inspection, chorioretinitis and decreased vision in the left eye was diagnosed. She suffered 

repeatedly from chorioretinitis attacks in both eyes and has severe bilateral uveitis. At 

present, that has resulted in an almost 75% loss of vision in her left eye. She has been doing 

well for 10 years on prophylactic trimethoprim-sulfamethoxazole and itraconazole, at half 

dose during the last five years. Eczematous lesions of the scalp skin disappeared with Fe++ 

supplements. DHR analysis showed 5–10% of normal NADPH oxidase activity after 

stimulation of her neutrophils with PMA [11].

Results

All three patients had considerable NADPH oxidase activity, measured as oxygen 

consumption and as hydrogen peroxide release, in neutrophils activated by various stimuli 

(Figure 1A). This activity was about 50% of control values with unopsonized zymosan, 60–

70% with serum-treated zymosan (STZ), 15–25% with phorbol-myristate acetate (PMA) and 

20% with formyl-methionyl-leucyl-phenylalanine (fMLP) in platelet-activating factor 

(PAF)-primed neutrophils. The difference in residual NADPH oxidase activity in the 

patients’ cells activated with STZ as compared with PMA was highly significant, both in the 

oxygen consumption assay (p=0.009) and in the H2O2 release assay (p<0.0001). For 

comparison, neutrophils from two “classical” CGD patients (one with a one-nucleotide 

insertion in CYBA and another with a p.Arg102X nonsense mutation in NCF2) were also 

tested, in the same assay run. These neutrophils showed only 6% residual oxidase activity 

with unopsonized zymosan and 3% or less of control values with the other stimuli 

(Supplementary Table 1). The parents and sisters of patients A1 and A2 showed normal 

hydrogen peroxide release from their neutrophils (not shown). The mother of patient B 

showed normal hydrogen peroxide generation by her neutrophils in the DHR test (not 

shown). Western blots of neutrophil lysates from all three patients showed substantial 

expression of p47phox and p67phox (Figure 1B), as well as of gp91phox and p22phox (not 

shown).

We started DNA analysis by sequencing the exons and intron-exon boundaries of CYBB, as 

well as the first 600 nucleotides of its promoter region, because mutations are known in this 

gene to cause diminished expression of gp91phox and diminished NADPH oxidase activity 

[9]. However, no mutations were found in CYBB in these patients. We then investigated 

whether a common dinucleotide deletion in NCF1 was present, because deficiency of 

p47phox is known to leave some residual NADPH oxidase activity [18]. However, a gene 

scan [19] failed to detect this GT deletion in NCF1. We then sequenced the relevant parts of 

CYBA (from gDNA) and NCF1 (from cDNA) but found no mutations or indications for 

mRNA missplicing. Finally, in NCF2 we did find a homozygous c.605C>T mutation in all 

three patients, predicting p.Ala202Val in p67phox (Figure 2A). The parents and sisters of 

patients A1 and A2 were heterozygotes for the c. 605C>T mutation, as were the parents of 

patient B. In more than 100 healthy controls we did not observe this mutation. To investigate 

whether the mutant p67phox mRNA was as stable as the wild-type p67phox mRNA, we 

amplified the relevant part of p67phox cDNA in the mother of patient B and found both 

cDNA species to be present in similar amounts (Figure 2B). Moreover, the wild-type and the 
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mutated cDNA amplicon had a similar size, which rules out activation of a cryptic splice site 

by the mutation.

The question remained whether this mutation in p67phox was really the cause of the 

diminished NADPH oxidase activity in the neutrophils of the patients. To investigate this, 

we expressed the mutant p67phox Ala202Val and the wild-type p67phox in K562 cells stably 

transfected with p47phox and gp91phox and expressing endogenous Rac and p22phox. As 

shown in Figure 3A, both mutant and wild-type p67phox proteins were expressed in similar 

amounts in these cells. For comparison, we also expressed p67phoxVal204Ala in the K562 

cells, because this mutation, which – like Ala202Val – resides in the p67phox “activation 

domain” that is critical for activation of electron transport in gp91phox, has been shown in an 

in vitro system to lack all oxidase-activating potency [20,21]. Moreover, an Ala202Asn 

mutation in p67phox markedly reduces NADPH oxidase activity in a gp91phox-dependent 

whole cell system stimulated with PMA [21]. The p67phoxVal204Ala protein we used also 

contained a C-terminal myc tag, which does not have any effect on the superoxide 

production supported by p67phox wt-tagged protein [16]. Figure 3B shows that both the 

p67phox Ala202Val and the p67phox Val204Ala variant were far less effective than the wild-

type p67phox in inducing NADPH oxidase activity in PMA-activated K562 cells. In three 

separate experiments, the Ala202Val variant induced 2.7 ± 1% (S.D.) of wild-type p67phox-

induced oxidase activity, whereas the Val204Ala variant induced 1.0 ± 0.8% of wild-type 

p67phox-induced oxidase activity.

Finally, we studied the translocation of p67phox to the cell membrane after NADPH oxidase 

activation of neutrophils with two different assays, as described under Methods. The results 

are shown in Figure 4 and indicate that with PMA as the stimulus, the translocation of the 

p67phox protein from the cytosol to the membrane was clearly diminished, whereas with 

STZ, the translocation was close to normal. In control experiments with classical X-CGD 

neutrophils (without expression of gp91phox) the translocation of p67phox was completely 

absent with either PMA or STZ (Supplementary Figure S2).

Discussion

CGD patients with residual expression of NADPH oxidase components as well as residual 

NADPH oxidase activity are rare. Only four patients in three families have been described 

with low expression of p67phox and/or low NADPH oxidase activity [22–24]. The first of 

these had a deletion of one amino acid (Lys58) on one allele of NCF2 and an undefined 

large deletion on the other allele [22]. The Lys58-deleted protein was expressed to a certain 

extent (tested on Western blot with a polyclonal antibody against p67phox), but whether this 

was a normal expression (from one allele) or diminished expression could not be decided. 

The Lys58 deletion is in the fourth TPR domain and destroyed the interaction with Rac and 

the translocation of p67phox to the membrane in PMA- or STZ-activated neutrophils [22]. 

The NADPH oxidase activity in the neutrophils of this patient was completely absent with 

all stimuli tested. However, in the so-called cell-free system with recombinant proteins and 

neutrophil membranes, SDS and GTPγS did induce the translocation of these cytosolic 

proteins, although the NADPH oxidase activity was still absent.
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The second patient had a missense mutation in NCF2 that caused replacement of aspartic 

acid by valine at position 108 in p67phox [23]. This Asp108Val replacement is between the 

third and fourth TPR region in p67phox and left substantial residual NADPH oxidase activity 

(15–20% of normal) in the patient’s PMA-activated neutrophils (tested in the DHR assay). 

In a flow cytometric assay with permeabilized neutrophils, p67phox was undetectable with a 

monoclonal antibody. The authors speculate that the mutation may have changed the 

conformation of p67phox, rendering it undetectable with the monoclonal antibody used, but 

still able to interact to some extent with gp91phox for inducing some NADPH oxidase 

activity.

In the last family, two brothers were recognized as CGD patients when they were already in 

their fifties [24]. They had a splice site mutation in NCF2 that gave rise to an in-frame 

deletion of exons 11 and 12 (amino acids 309–342, PB1 domain). The neutrophils from 

these patients showed 10–15% of normal NADPH oxidase activity after stimulation with 

PMA in the DHR assay and in the lucigenin-enhanced chemiluminescence assay. This result 

was reproduced in K562 cells that contained all NADPH oxidase components except 

p67phox transduced with the Δexon11_12p67phox cDNA. The authors speculate that the 

p67phox protein with the exon11_12 deletion was to some extent expressed and functional in 

the patients’ phagocytes.

The hypomorphic mutation in the three patients described in this article is in the so-called 

Activation Domain of p67phox (Supplementary Figure S1). This stretch of twelve amino 

acids (199–210) is essential for the oxidase-inducing capacity of p67phox[20]. In a cell-free 

oxidase system, it was found that mutations in this domain do not affect binding of p67phox 

to p47phox or to Rac but do inhibit the oxidase activity [20]. Alanine-202 is highly conserved 

in p67phox from humans, mouse, chicken, frog, fish and lancelet, as well as in Noxa1 of 

humans, mouse and fish and in fungal NoxR [21]. Mutation of alanine-202 in p67phox into 

leucine inhibits the cell-free oxidase activity induced by arachidonic acid by about 50%, and 

a Val204Ala mutant totally blocks this activity. This last mutant associates with the 

membrane (presumably with gp91phox) as well as does the wild-type p67phox [20]. Direct 

interaction of p67phox with gp91phox was shown by Dang et al. [25,26] by overlay 

techniques and GST pull-down assays, but the Activation Domain of p67phox was not 

necessary for this reaction. Thus, the binding of p67phox to gp91phox is probably mediated by 

a site in p67phox different from the Activation Domain, but the induction of oxidase activity 

in gp91phox is strictly dependent on this domain. The site in gp91phox interacting with the 

Activation Domain of p67phox is not known.

The findings in our patients corroborate these notions and extend the findings to intact, 

primary phagocytes. We found partial inhibition of oxidase activity in the patients’ intact 

neutrophils with Ala202Val p67phox, as was found with the recombinant Ala202Leu variant 

of p67phox in the cell-free system [20]. Remarkably, much more oxidase activity was 

induced in the patients’ neutrophils with zymosan or STZ than with the soluble activators 

PMA or PAF/fMLP. This correlates with the normal translocation of p67phox to the 

membrane after neutrophil activation with STZ and clearly diminished translocation after 

activation with PMA. It suggests that the Ala202Val mutation in p67phox affects the 

translocation and – perhaps as a result – also the proper assembly or activation of the 
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NADPH oxidase complex following translocation of the cytosolic components to 

flavocytochrome b558 in the plasma membrane. This reduced translocation of Ala202Val-

p67phox might be due to reduced binding of p67phox to gp91phox, which would be in contrast 

to the conclusion drawn by Dang et al. from studies with purified neutrophil and 

recombinant proteins that the Activation Domain of p67phox does not interact with gp91phox 

[25,26]. Unfortunately, the 3D structure of the Activation Domain of p67phox is unknown 

[27–30]. However, it is known that different stimuli induce different activation pathways in 

neutrophils, especially with respect to the synthesis of various lipid products needed for 

assembly of an active oxidase complex [31–34]. The type or amount of lipid mediators 

generated in STZ-activated neutrophils may have been sufficient for almost normal oxidase 

activation by Ala202Val-p67phox, in contrast to the situation in PMA-activated neutrophils. 

Since lipid mediator generation in K562 cells may be different from neutrophils, this may 

also explain the low oxidase activation by Ala202Val-p67phox in transfected K562 cells as 

compared to the patients’ neutrophils. Alternatively, since the signal transduction pathway 

induced by PMA (protein kinase C activation leading to p47phox phosphorylation) is 

different from that induced by STZ (tyrosine phosphorylation of PI3 kinase leading to GEF 

and Rac activation), the translocation of p67phox to gp91phox and subsequent activation of 

gp91phox may be differently affected by mutations in p67phox. Thus, the p47phox-dependent 

pathway induced by PMA may be more sensitive to mutations leading to conformational 

changes in p67phox than the Rac-dependent pathway induced by STZ.

Our patients raise the question how much NADPH oxidase activity is required to be able to 

lead a normal life. The high residual oxidase activity in the patients’ neutrophils may have 

protected the patients to a certain extent from the full-blown CGD symptomatology. Indeed, 

their clinical problems were mild in comparison to those of oxidase-null CGD patients. On 

the other hand, it should be taken into account that we tested the neutrophil NADPH oxidase 

activity in in vitro assay systems, with strong stimuli. In vivo, more subtle stimuli may be 

encountered, with which the mutant p67phox may be unable to properly activate the NADPH 

oxidase. Thus, high residual NADPH oxidase activity in vitro is no guarantee for protection 

against pathogenic infections in vivo, but it may help in ameliorating the symptoms [35] and 

increase the chance of survival [36].
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Ala Alanine

Arg Arginine
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Asp Aspartic acid

CGD Chronic Granulomatous Disease

CH50 Complement Hemolysis 50%

CYBA Cytochrome b alpha

CYBB Cytochrome b beta

DHR Dihydrorhodamine-1,2,3

DFP Diisopropyl fluorophosphate

FAD Flavine Adenine Dinucleotide

fMLP formyl-methionyl-leucyl-phenylalanine

GEF Guanine nucleotide Exchange Factor

GTP Guanosine 5′-triphosphate

Lys Lysine

mAb Monoclonal antibody

MR Magnetic Resonance

NADPH Nicotinamide Adenine Dinucleotide Phosphate (reduced)

NBT Nitro-Blue Tetrazolium

NCF Neutrophil Cytosolic Factor

Nox NADPH oxidase

O2
− Superoxide

pAb Polyclonal Antibody

PAF Platelet-Activating Factor

PAGE Polyacrylamide Gel Electrophoresis

PB1 Phox and Bem-1

PBS Phosphate-Buffered Salt

phox Phagocyte oxidase

PI3 Phospho-inositol-3

PMA Phorbol Myristate Acetate

ROS Reactive Oxygen Species

S.D. Standard Deviation

SDS Sodium dodecylsulphate

STZ Serum-Treated Zymosan

TPR Tetratricopeptide
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Val Valine

X-CGD X chromosome-linked CGD
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Figure 1. Characteristics of patients’ neutrophils
(A) NADPH-oxidase activity. Neutrophils were incubated with serum-treated zymosan 

(STZ, 1 mg/ml, 70 particles per neutrophil) or PMA (100 ng/ml), and the oxygen 

consumption was measured with an oxygen electrode (10). The maximal rate of oxygen 

consumption of patient cells is displayed in nmoles/min/106 cells. Alternatively, the release 

of hydrogen peroxide from the cells was measured with the Amplex Red assay (14) after 

stimulation with zymosan (1 mg/ml), STZ (1 mg/ml), PMA (100 ng/ml or PAF (1 μM) 

followed by fMLP (1 μM). The maximal rate of H2O2 release is displayed as 

nmoles/min/106 cells. Open bars, control neutrophils; closed bars, patient neutrophils 

(patients A1, A2, and B). Mean ± SEM of 3 (oxygen consumption) or 4 (H2O2 release) 

independent experiments (in the H2O2 release assay, one patient was tested twice). 

Significance of differences was calculated with the paired, two-tailed t-test. (B) Western blot 

of p47phox and p67phox. Neutrophils from a control donor (lane 1), patient B (lane 2), patient 

A1 (lane 3), patient A2 (lane 4) and a CGD patient with a p.Trp137Arg mutation in p67phox 

(lane 5) were lysed and subjected to SDS-PAGE as described under Methods. The proteins 

were blotted onto nitrocellulose, treated with antibodies to p47phox and to p67phox and 

visualized by fluorescence. The lower (green) band indicates the presence of p47phox, the 

upper (red) band the presence of p67phox.
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Figure 2. DNA and RNA sequencing of NCF2 (end exon 6)
Figure 2A shows the sequence obtained from genomic DNA of family A, with patients A1 

and A2 being homozygous for the c.605C>T mutation and all other family members 

heterozygous for this mutation. Figure 2B shows the sequence obtained with cDNA of 

patient B and her mother. The c.605C peak and the c.605T peak in the mother have a similar 

height, indicating that the mutated c.605T mRNA is as stable as the wild-type c.605C 

mRNA.
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Figure 3. Expression and function of p67phox in K562 cells
K562 cells containing all NADPH oxidase components except p67phox were transfected with 

cDNA encoding p67phoxAla202Val (p67A202), p67phoxVal204Ala with a myc-tag 

(p67V204myc) or p67phoxAla202 (p67wt). A representative Western blot in Figure 3A 

shows that all proteins were expressed in similar amounts in the cells. Figure 3B shows that 

upon activation with PMA, the mutated proteins did not support the oxidase activity in K562 

cells, in contrast to the wild-type protein.
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Figure 4. Translocation of p67phox to the cell membrane in intact neutrophils
(A) Quantification of p67phox translocation in stimulated human neutrophils. Human 

neutrophils (5×106/ml) were stimulated with PMA (100 ng/ml) for 10 min or with STZ (1 

mg/ml) for 20 min. Separation of cytosol and the rest of the cells, followed by Western blot 

analysis of p67phox was performed as described under Materials and Methods. The amount 

of p67phox was quantified by means of fluorescently labeled conjugates, and detected by 

scanning with the Odyssey Infrared Imagine System and Odyssey Application Software 

V3.0. Black bars, control neutrophils; Red bars, patient neutrophils (patient A1, A2, and B). 

Mean ± SEM of 3 independent experiments for PMA. With STZ only the cells of patient B 

were tested. Significance of differences was calculated with the paired, two-tailed t-test. (B) 
Visualization of p67phox translocation in stimulated human neutrophils. Neutrophils 

from a control donor and from patient B were incubated with PMA (100 ng/ml) or left 

untreated for 10 minutes at 37°C in suspension. The cells were then allowed to adhere on 

fibronectin-coated glass covers, followed by a 10-minute incubation with STZ (1 mg/ml) or 

left untreated. Thereafter, the cells were fixed with formaldehyde and permeabilized with 

Triton X-100. To visualize p67phox protein, the cells were incubated with rabbit-anti-human-

p67phox, followed by incubation with a secondary goat-anti-rabbit-Ig ALEXA-568-labeled. 

Coverslips were mounted with Vectashield on microscope slides and imaged with a confocal 

microscope through a 63× oil-objective. Note that with PMA, p67phox translocates to the 

plasma membrane of control neutrophils (arrows), but much less so to the plasma membrane 

of patient neutrophils. In contrast, translocation of p67phox to the phagosomal membrane 

surrounding internalized STZ (arrowheads) is similar in control and patient neutrophils.

Roos et al. Page 17

J Clin Cell Immunol. Author manuscript; available in PMC 2015 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


