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Abstract When conducting recurrent event data analysis, it is common to
assume that the covariate processes are observed throughout the follow-up
period. In most applications, however, the values of time-varying covariates
are only observed periodically rather than continuously. A popular ad-hoc ap-
proach is to carry forward the last observed covariate value until it is measured
again. This simple approach, however, usually leads to biased estimation. To
tackle this problem, we propose to model the covariate effect on the risk of the
recurrent events through jointly modeling the recurrent event process and the
longitudinal measures. Despite its popularity, estimation of the joint model
with binary longitudinal measurements remains a challenge, because the stan-
dard linear mixed effects model approach is not appropriate for binary mea-
sures. In this paper, we postulate a Markov model for the binary covariate
process and a random-effect proportional intensity model for the recurrent
event process. We use a Markov chain Monte Carlo algorithm to estimate all
the unknown parameters. The performance of the proposed estimator is eval-
uated via simulations. The methodology is applied to an observational study
designed to evaluate the effect of Group A streptococcus (GAS) on pharyngitis
among school children in India.

Keywords Binary longitudinal data · Joint model · Markov chain Monte
Carlo · Survival analysis

1 Introduction

In many medical studies, both longitudinal covariate data and survival out-
comes are collected during follow-up. The Cox model is often employed to
study the effects of time-varying covariates on the survival outcome. Esti-
mation of the Cox model requires the covariate processes of a subject to be
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completely observed until the end of follow-up. In practice, however, the co-
variate values are usually observed periodically rather than continuously. A
popular ad-hoc approach is to impute the missing covariate value by using
the last observed covariate. However, this simple approach usually leads to bi-
ased estimation, especially when the last observed covariate is distant in time
(Prentice 1982). As an alternative, the joint modeling approach incorporates
information from both processes simultaneously and thus leads to unbiased
and efficient inferences.

A typical joint model assumes a linear mixed-effects model for the observed
time-varying covariates and a proportional hazards model for the survival out-
comes. Association between the longitudinal and survival processes can be
modeled in two ways. One is by incorporating the trajectory of the longitu-
dinal measurements in the hazard function of the failure event (Faucett and
Thomas 1996; Wulfsohn and Tsiatis 1997; Tsiatis and Davidian 2004), and
the other is through shared random effects (Ratcliffe et al. 2004; Elashoff et
al. 2008; Liu et al. 2008; Liu and Huang 2009). Once the full models are spec-
ified, one can estimate the model parameters using either likelihood method
or Bayesian method. Likelihood methods obtain the maximum likelihood es-
timators by using the expectation-maximization (EM) algorithm (Wulfsohn
and Tsiatis 1997; Tsiatis and Davidian 2004; Elashoff et al. 2008). Bayesian
methods assume that the model parameters follow some prior distribution
and make inference based on the posterior distribution given the observed
data (Faucett and Thomas 1996; Faucett et al. 1998; Wang and Jeremy 2001).
Though computationally intensive, Bayesian method permits full and exact
posterior inference for parameters of interest, and it can borrow additional
information from other similar studies in the form of prior distributions.

In many studies, recurrent failure events, rather than a survival outcome,
are observed for each subject over the course of follow-up. The joint mod-
eling approach has been extended to deal with recurrent event data, and a
proportional intensity model is usually assumed for the recurrent event data.
Henderson et al. (2000) postulated a joint model for the longitudinal data
and the single or recurrent event data, where the association between the
two processes is induced by correlated latent processes. Liu and Huang (2009)
considered a more complex setting where the observation of the longitudinal
measurements and the event process are subject to a dependent terminal event
process. They proposed to model the pairwise correlation between the three
processes by two shared random effects. Kim et al. (2012) extended the work
of Liu and Huang (2009) by imposing semi-parametric transformation mod-
els for both the recurrent and terminal events, which allows for violation of
the proportionality assumption. Sun et al. (2012) considered a similar setting
as Liu and Huang (2009) and proposed a more flexible approach that allows
unspecified distributions of the latent variables and unspecified dependence
structure between the two latent variables.

Of the existing literature on joint models of longitudinal measurements
and recurrent events, most researchers considered continuous measurements
and applied mixed-effects model for the longitudinal measures. However, stud-
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ies with binary longitudinal covariates and recurrent event outcomes are also
frequently encountered in practice. Examples include the effect of life quality
(high/low) on the risk of diarrhoea (Borgan et al. 2007), the effect of steroid
use on the risk of glomerulonephritis (Clayton et al. 2011), and the effect of
Group A Streptococcus on the risk of pharyngitis which will be illustrated in
this manuscript. To our knowledge, there have been very few references on
the joint modeling of time-varying binary covariate and recurrent event pro-
cesses. Unlike continuous data, it is not appropriate to model binary data with
linear mixed effects models. Also, it is difficult to evaluate the full likelihood
of binary longitudinal data, because it usually involves a computationally in-
tractable normalization constant (Humphreys and Titterington 2003). Lastly,
it is easy to deal with measurement error in continuous data using mixed ef-
fects model, while it is difficult to formalize the measurement error in binary
data, unless assumptions such as a latent continuous process are imposed for
the observed binary covariates (Palta and Lin 1999).

Intrinsically, a binary process is a two-state process taking one of two pos-
sible values, which can be coded as 0 and 1. Various authors have proposed
models for characterizing the transition patterns from one state to the other via
logistic regression (Zeger and Qaqish 1988; Cox and Snell 1989; Albert 2000).
In the context of joint modeling, Faucett et al. (1998) proposed a discrete-
time Markov model for the binary covariate process in the survival data set-
ting, where the covariates are assumed constant in each partitioned interval
and the conditional transition probability is modeled by a logistic model. By
jointly modeling the covariate process and the event time process, the missing
covariate value can be interpolated by borrowing information from the entire
covariate process. In this paper, we follow Faucett et al. (1998) to assume a
discrete-Markov model for the binary covariate process, and investigate the
joint modeling approach in the recurrent event setting.

Our analysis plan is motivated by an observational study designed to eval-
uate the effect of group A streptococcus (GAS) on the risk of developing
pharyngitis (sore throat) among school children in India. Pharyngitis is one of
the most common conditions encountered by physicians. It is most frequently
due to viruses, but several bacteria, including Group A streptococci (GAS)
persist as a common cause of pharyngitis. GAS pharyngitis is the cause of
37% of sore throats among children (Shaikh et al. 2010) and 5-15% in adults
(Shulman et al. 2012). A study of streptococcus pharyngitis was undertaken in
India between March 2002 and March 2004. In this study, cases of pharyngitis
were identified weekly, and throat swabs were obtained on those with pharyn-
gitis to identify the presence of GAS. Additionally, monthly throat cultures
were obtained on all the children to determine the prevalence of streptococcal
infection. Statistically, GAS colonization is a binary time-varying covariate
with pharyngitis the recurrent event.

To evaluate the effects of the binary covariate process (GAS) on the re-
current event (pharyngitis), we apply the random-effect proportional intensity
model (Lawless 1987). In this study, the regular throat cultures are obtained
monthly while the event status are assessed weekly. As a result, the covariate
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values at each event time are observed for children who had pharyngitis, but
are possibly missing for other children in the corresponding risk set. Hence
the partial likelihood method proposed by Lin et al. (2000) cannot be applied
for model estimation. In this paper, we adopt the joint modeling approach to
study the effect of GAS colonization on pharyngitis. Specifically, we assume a
discrete-time Markov model for the covariate process, where the covariates are
assumed constant in each partitioned small interval and the transition prob-
ability is modeled by a logistic model. We assume a proportional intensity
model with frailty for the recurrent events, where the intensity is expressed as
a function of the covariate history, both observed and unobserved. We use the
Markov chain Monte Carlo technique of Gibbs sampling to estimate the joint
posterior distribution of the unknown parameters of the model.

We compare the joint modeling approach with the last covariate carried for-
ward approach, hereafter abbreviated as LCCF. In studies of recurrent events,
it is common that covariate values are collected when an event occurs in ad-
dition to regular follow-up visits. Thus there are two possible ways to carry
forward the last observation. One is to carry forward all covariates regardless
of whether it is measured at event time or it is collected at regular follow-up
visits. We call it all covariates carried forward (ACCF) method. The other
approach is to only carry forward covariates from regular visits, and we call it
carriage covariate carried forward (CCCF) method. Using the Indian pharyn-
gitis study as an example, ACCF carries forward the GAS status from both
weekly event visits and monthly carriage visits, while CCCF carries forward
the GAS status from monthly carriage visits only. Research has shown that
the ACCF approach or CCCF approach leads to biased inferential results of
the covariate effects in the survival setting (Prentice 1982; Faucett et al. 1998).
In this manuscript, we investigate the bias induced by the ACCF method or
the CCCF method in recurrent event data analysis, and compare it to the
proposed joint modeling approach.

The rest of the manuscript is organized as follows. Section 2 describes the
formulation of the joint model. Section 3 gives the details of the Markov chain
Monte Carlo estimation procedure. In Section 4, simulations are conducted
to compare the bias and efficiency of the proposed joint modeling approach
with that of the ACCF and CCCF approach. We apply the methods to the
Indian study of GAS and pharyngitis in Section 5. Some concluding remarks
are made in Section 6.

2 MODELS

Let subscript i be the index for a subject, i = 1, 2, . . . , n. For subject i, let
Zi(t) denote the covariate process. For the rest of the paper, we shall assume
that Zi(t) is a univariate binary covariate process evolving in the time interval
[0, τ ]. Extensions to multivariate covariate processes will be discussed towards
the end of the manuscript. Following Faucett et al. (1998), we partition the
study period into equally spaced small intervals, I1, I2, ..., IJ , and the binary
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covariate process Zi(t) is assumed to be constant within each interval. Denote
by Zij the value of the binary covariate in Ij . A discrete-time Markov model is
assumed for the covariate process: the covariate distribution in the first time
interval satisfies

pr(Zi1 = 1) = π

and the transitional probability is modeled by

logit{pr(Zij = 1 | Zi,j−1)} = α0 + α1Zi,j−1,

where π, α0, and α1 are unknown parameters.
We now formulate the model for the recurrent event process. For subject

i, let N∗i (t) be the number of recurrent events occurring at or before time
t ∈ [0, τ ], where the recurrent events could potentially be observed beyond
a prespecified time point τ . Thus the counting process N∗i (t) has a jump of
size one when an event (such as the sore throat in the Indian pharyngitis
study) occurs. Let Ci denote the time to loss to follow-up or end of the study
for subject i, i = 1, . . . , n. Define the counting process Ni(t) = N∗i (t ∧ Ci),
where a ∧ b = min(a, b). Let Yi(t) = I(Ci ≥ t) be the indicator for a sub-
ject being under observation at time t. Let F(t) be the σ-field generated by
{Yi(u), Ni(u), Zi(u), 0 ≤ u ≤ t}, and λZ(t) be the intensity function of N∗i (t),
that is, E[dN∗(t) | Ft−] = λZ(t)dt.

We assume random-effect intensity model for the recurrent events

λZi
(t) = λ0(t) exp{βZi(t) + Ui}, (1)

where β is the regression parameter, λ0(t) is an unspecified baseline intensity
function, and Ui is an unobserved subject-specific frailty that characterizes
population heterogeneity. Given Zi(·), a larger value of Ui indicates more fre-
quent occurrences of recurrent events. We assume Ui is a mean zero normal
random variable with variance σ2

U . When σ2
U = 0, the model reduces to the

Anderson-Gill proportional intensity model (Anderson and Gill 1982). The
baseline intensity function λ0(t) is assumed to be a step function on a prede-
fined set of time intervals. For simplicity, we assume the time intervals of the
baseline rate function overlap with the time intervals of the covariate process,
that is, λ∗0(t) = λj for t ∈ Ij , j = 1, ..., J.

Let dµZ(t) be the marginal rate function of the recurrent events, that is,
dµZ(t) = E[dN∗(t) | Z(t)]. Lin et al. (2000) provided a rigorous estimation
procedure for the proportional rate model dµZ(t) = exp{βZi(t)}dµ0(t), which
includes model (1) as a special case. Specifically, they proposed to estimate
the regression parameter β by maximizing the log pseudo-partial likelihood:

l(β) =

n∑
i=1

∫ τ

0

(
{βZi(t)} − log

[
n∑
k=1

Yk(t) exp {βZk(t)}

])
dNi(t),

which is equivalent to solving the (normalized) pseudo-partial score function

U(β) =
1

n

n∑
i=1

∫ τ

0

[
Zi(t)−

∑n
k=1 Zk(t) exp{βZk(t)}Yk(t)∑n

k=1 exp{βZk(t)}Yk(t)

]
dNi(t). (2)
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The construction of the partial score function requires that Zi(t) is completely
observed on [0, Ci], or, minimally, at each event time for all subjects in the
corresponding risk set.

In practice, however, covariates are typically measured periodically. An ad-
hoc approach is to simply fill in the missing values in function (2) with the
last observed covariate values before each event time. However, the last covari-
ate carried forward approach may lead to biased inferential results, especially
when the last observation is distant in time. On the contrary, by jointly mod-
eling the covariate process and the recurrent event process, we can essentially
“interpolate” the covariate at each event time by borrowing strength of the
entire history of the covariate process, thus we can obtain more accurate esti-
mates. For estimation, we adopt a Bayesian approach with weakly informative
priors. Markov Chain Monte Carlo (MCMC) method with Gibbs sampling is
used to estimate the parameters {β, π, α0, α1, (λ1, . . . , λJ), σ2

U}. Details of the
Bayesian estimation procedure are given in the next section.

3 Markov Chain Monte Carlo

To introduce more notations, we let mi denote the number of time intervals
up to the end of follow-up for subject i, and let dij , j = 1, . . . ,mi, denote
the indicator of the covariate value being observed in the jth time interval.
Finally, let ni denote the number of recurrent events that occur before the
censoring time Ci and tik, k = 1, . . . , ni denote the observed event times for
subject i. The development of the MCMC procedure follows similar techniques
as in Faucett et al. (1998).

The parameters to be estimated are Θ = {β, π, α0, α1, (λ1, ..., λJ), σ2
U}.

We specify the prior distribution for each λj to be Gamma with mean a/b
and variance a/b2. We choose the hyperparameter values a = 0.1 and b = 0.1,
which gives a very non-informative prior. The prior distributions for all λj ’s
are identically distributed, which corresponds to having no prior belief that
the intensity function changes over time. Such assumptions have been com-
monly used in Bayesian analysis of time-to-event data, due to their simplicity
and flexibility. Examples include Faucett et al. (1998), Sinha et al. (1999),
Brown and Ibrahim (2003), Berry et al. (2004) and Ibrahim et al. (2013).
As pointed out by Sinha et al. (1999), the length of each interval may be
taken to be sufficiently small to approximate any hazard (or intensity) func-
tion for all practical purposes. We also specify weak priors for the other pa-
rameters. Specifically, the priors for α0, α1, β are normal with mean 0 and
standard deviation 100, the prior for π is uniform over the interval [0, 1],
and the prior for σ2

U is p(σ2
U ) ∝ σ−2U (Box and Tiao 1973). We aim to make

inference about Θ based on the posterior distribution p(Θ | OBS), where
OBS = {(Zij ; dij = 1, j = 1, ...,mi), (tik; k = 1, ..., ni), Ci; i = 1, ...n} are
the observed data. For convenience, we use p(· | ·) to denote a general con-
ditional probability density function. Due in part to the incompleteness of
the whole covariate process, it is difficult to obtain p(Θ | OBS). So we use
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Gibbs sampling to draw samples from p(Θ,MIS | OBS), where MIS =
{(Zij ; dij = 0, j = 1, ...,mi), Ui; i = 1, ..., n} are the unobserved data, and sum-
marize the empirical marginal distributions of Θ to approximate p(Θ | OBS).

The validity of drawing samples from p(Θ,MIS | OBS) and marginalizing
to approximate p(Θ | OBS) requires some assumptions on the missing-data
and censoring mechanisms. Let Zi = {Zij ; j = 1, ...,mi} denote the covariate
history for subject i, and let η denote the parameter for the distribution of
Ci. When Zi is fully observed (up to censoring), under the assumptions that
censoring time Ci is non-informative about the recurrent event process given
the covariate information and that the subject-specific frailty Ui is independent
of Zi and Ci, the likelihood can be expressed as

Li(Θ,η | ti1, ..., ti,ni ,Zi, Ci) ∝
∫ ([ ni∏

k=1

λi{tik | Zi, Ui,Θ}

]

× exp

[
−
∫ Ci

0

λi{t | Zi, Ui,Θ}dt

])
dpU (Ui)× pC(Ci | Zi,η)× pZ(Zi |Θ)

where pU , pC , and pZ are the density functions of Ui, Ci, and Zi.
When some values of the covariate Zi are missing, Zi can be partitioned

into observed and missing values {Zi,obs,Zi,mis}. Let di = {di1, . . . , dimi
} be

the missingness indicator and ζ be the parameter for the missingness mecha-
nism, then

Li(Θ,η, ζ | ti1, ..., tini
,Zi,obs, Ci,di)

∝
∫
pd(di | ti1, ..., tini

,Zi, Ci, ζ)× Li(Θ,η | ti1, ..., tini
,Zi, Ci)dZi,mis (3)

where pd is the conditional density function of di. Under the assumptions that
pd does not depend on Zi,mis, that is, Zi,mis are missing at random, and that
Ci does not depend on Zi,mis, the likelihood (3) is proportional to the product
of the following two terms:

pC(Ci | Zi,obs,η)× pd(di | ti1, ..., tini
,Zi,obs, Ci, ζ)

and∫ {∫ ( ni∏
j=1

λi{tij | Zi, Ui,Θ}

× exp

[
−
∫ Ci

0

λi{t | Zi, Ui,Θ}dt

])
dpU (Ui)

}
×pZ(Zi |Θ)dZi,mis.

(4)

Assume Θ is distinct from (η, ζ) (Rubin 1976) in the sense that they lie in
disjoint parameter spaces and any prior distributions for the joint parameters
can be factorized into independent factors. By theorem 8.1 in Rubin (1976),
the posterior distributions of Θ are independent of the posterior distributions
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of (η, ζ). Therefore, the posterior distribution of Θ used in the estimation
procedure is proportional to the prior of Θ times (4).

Under the above assumptions, we draw samples from p(Θ,MIS | OBS)
using Gibbs sampling.Details of the full conditional distributions of each pa-
rameter and the methods for sampling from those conditional distributions
are given in the Appendix. To monitor convergence of the Markov chain, we
use the autocorrelation plots and the Geweke’s approach (Geweke 1992). The
lag k autocorrelation is the correlation between every draw and its kth lag. If
autocorrelation is still high with large values of k, this indicates slow mixing
and non-convergence. The Geweke’s method compares the means of the early
part and the late part of the Markov chain (usually the first 10% and the last
50%), using a difference of means test. If the value of the test statistics falls in
the extreme tails of a standard normal distribution, it suggests the early part
of the chain has not converged.

A sensitivity analysis is performed to determine if posterior inferences de-
pend on how prior distributions are specified. Because the regression param-
eter β is the main parameter of interest, we focus on the posterior inferences
of β. Let N(µ, σ) denote a normal distribution with mean µ and standard
deviation σ. We consider different types of priors for β: one is a diffuse and
non-informative prior N(0, 100), and the other two are tight priors. One tight

prior is chosen as N(β̂LCCF, 0.5), where β̂LCCF is obtained by using the last co-
variate carried forward approach. This prior indicates a strong belief that the
true parameter β does not deviate much from β̂LCCF. The other tight prior is
specified as N(0, 0.5), which indicates a strong belief that there is no covariate
effect of Z on the recurrent event process. If the true parameter value for β
is deviated from zero, the prior N(0, 0.5) could be a mis-specified prior. The
prior distributions for the other parameters are all non-informative priors, as
specified at the beginning of this section.

4 SIMULATIONS

We conduct simulation studies to evaluate the finite-sample performances of
different estimators with moderate sample size. For each simulation setting,
we generate 500 simulated datasets, each with 200 subjects. We compare the
proposed estimator with the two last covariate carried forward estimators.

The baseline covariate values are generated from Bernoulli random vari-
ables with pr(Zi1 = 1) = 1/3 and are observed for all subjects. For subsequent
time intervals, the covariate values are generated from the logistic transition
model logit{pr(Zij = 1 | Zi,j−1)} = α0 + α1Zi,j−1 with α0 = −1.5 and
α1 = 2. The subject-specific random effect Ui which characterizes the popu-
lation heterogeneity is simulated from a normal random variable with mean 0
and variance σ2

U = 1/4. Next, the recurrent events of a subject are generated
from a Poisson process with intensity function λ∗0(t) exp{βZi(t) + Ui}, where
β = 0.5 and λ∗0(t) = 0.1I(t ≤ 10) + 0.5I(10 < t ≤ 20). The covariate values at
event times are always observed. In addition, each subject has 20 scheduled
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visits on [0, 20], with one visit per unit time interval. The time of visit in each
interval is uniformly distributed, and the covariate values at regular visits are
subject to missingness. To create missing Zi(t) at regular visits, we generate
independent Bernoulli random variables for all the intervals for each person. If
the Bernoulli random variable is 1, we set the associated Zi(t) value to missing.
The follow-up time Ci is generated from a mixture of a degenerate random
variable at 20 and an uniform random variable on [10, 20] so that 50% of the
subjects are expected to be lost to follow-up before the end of the study.

We compare the performances of three estimators of β: (a) JM, the joint
modeling approach, (b) ACCF, the rate ratio estimator where all carriage and
event covariates are carried forward, (c) CCCF, the rate ratio estimator where
carriage covariates are carried forward. We compare the performances of these
estimators under different levels of missingness of regular carriage visits, where
the probability of missing a pre-scheduled visit is set to be 0%, 20%, 40%, and
60% at any visit.

For the JM approach, initial parameters for the Gibbs sampler are π = 0.5,
α0 = 0, α1 = 0, β = 1, σ2

U = 0.5, λj = 0.2, j = 1, ..., 20. The initial values for
the missing covariates {Zij ; dij = 0, j = 1, ...,mi, i = 1, ..., n} are generated
from a Bernoulli distribution with mean 0.5. The initial values for the frailty
Ui, i = 1, ..., n are generated from N(0, 0.5) distribution. The sampling pro-
cedures are repeated until 5000 samples are generated. The first 500 samples
are discarded as “burn-in”. To decrease autocorrelation, the samples are taken
at every 5th value of the remaining chain. The posterior means are used as
the parameter estimates. Both autocorrelations within chains of β and the
Geweke’s test are used to assess convergence of the Markov chains. Around
2% of the simulated datasets show significant p-values for the Geweke’s di-
agnostics test, and they are excluded from analyses. The range of the lag-5
autocorrelations across the remaining datasets is -0.09 to 0.09, which confirms
convergence of the chains. To examine the sensitivity of the posterior distri-
butions to the choices of priors, we draw samples of β under three different
priors: N(0, 100), N(β̂CCCF, 0.5) and N(0, 0.5), where β̂CCCF is obtained by
using the CCCF approach. When the missingness probability is 40%, under
three different priors, the empirical mean and empirical standard deviation of
the estimates of β are 0.500 (0.073), 0.498 (0.070) and 0.487 (0.072) respec-
tively, which shows that the posterior inferences of β are only slightly affected
by the choice of priors. In the following, we report the performance of the JM
estimator under the diffuse prior.

Table 1 summarizes the percent bias and the relative efficiency that com-
pares the mean square error of an estimator to that of the rate ratio esti-
mator under the perfect scenario where the covariate process is monitored
continuously until loss to follow-up. Note that Monte-Carlo bias is the aver-
age difference between a parameter and its estimate, while the standard error
is estimated by the empirical standard deviation of the estimates. Under the
discrete-time Markov covariate process model, the JM approach shows small
empirical bias and possesses high relative efficiency when the probability of
missing a scheduled visit is low. Interestingly, because the mean covariate
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Table 1 Simulation results for estimates of β by different methods with n = 200. Percent
bias is the empirical bias as a percentage of the true value; relative efficiency is the ratio
of the mean squared error of an estimator to that of the rate ratio estimator under the
perfect scenario where the covariate process is monitored continuously until loss to follow-
up. Abbreviations: JM, the joint modeling estimator; ACCF, the rate ratio estimator with all
carriage and event covariates carried forward; CCCF, the rate ratio estimator with carriage
covariates carried forward.

Percent Bias (%) Relative Efficiency

Proportion of
missingness ACCF CCCF JM ACCF CCCF JM

0% -6 -2 0 0.74 0.82 1.00
20% -10 -2 0 0.59 0.75 0.95
40% -15 -2 0 0.38 0.54 0.78
60% -22 -2 1 0.23 0.46 0.55

value is approximately constant under the assumed Markov model, the CCCF
approach also has negligible bias, while the ACCF approach yields substantial
bias. Some intuition for this behavior can be developed. Because the mean
covariate value is approximately constant, at any time t with β > 0, an es-
timate of the prevalence rate using all covariate data will tend to be biased
too high as events just prior to t will tend to have Z = 1. An estimate of the
prevalence rate by just carrying forward the carriage data will not be biased
and this differential behavior seems to have consequences for estimation of β
as well. The JM estimator has higher efficiency than the ACCF and CCCF
estimators, because it utilizes information in the longitudinal process and the
event data process simultaneously.

5 DATA ANALYSIS

We apply the proposed joint modeling approach to the Indian pharyngitis
study to determine the effect of GAS colonization on developing pharyngitis.
This study was undertaken in a rural area near Vellore, India between March
2002 and March 2004. A total of 232 school children were enrolled in 2002,
and 73 were enrolled in 2003 to replace the children who had left. Virtually
all children in the school participated in the study. Cases of pharyngitis were
identified weekly, where GAS colonization status were obtained on those with
pharyngitis. Additionally, throat cultures were obtained monthly to determine
the prevalence of GAS colonization. A two-week rule was applied to determine
an episode of pharyngitis, that is, a pharyngitis event occurred within 14 days
after a previous episode was considered as the same episode. The time origin
for the recurrent event analysis is set to be the first day of the study, that is,
March 11, 2002.

We analyze the data in the first year of the study, which included 232 school
children who were enrolled in 2002. Figure 1 provides a graphical summary
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Table 2 Results of throat swab cultures for the carriage and pharyngitis visits from 232
school-children.

Carriage Data Event Data
Group A Strep Monthly Visit Pharyngitis Events

Negative 863 258
Positive 153 72

Total 1016 330

of the experience of five selected children volunteers. The blue circles repre-
sent carriage visits while red circles represent pharyngitis visits. Note that
for children who had at least one event, GAS status can be obtained from
both carriage visits and pharyngitis visits. As a comparison, Figure 2 shows
the GAS status for the five children from carriage visits only. About 40% of
throat cultures were missing at the carriage visits before end of follow-up.
Table 2 presents a tally of outcomes based on the carriage and pharyngitis
data sets. During the first year of the study, 330 pharyngitis events occurred.
With 1016 monthly visits, the carriage data corresponds to a total follow-up
of about 194 children years. About 22% of the throat cultures collected at
pharyngitis visits were positive for GAS colonization, while 15% of the throat
cultures obtained at the carriage visits were positive.

The ACCF method that carries forward all available covariate data yields
a rate ratio of 1.28 (95% CI: 1.01–1.58), while the CCCF method that carries
forward only carriage covariate yields a rate ratio of 1.33 (95% CI: 1.01–1.76).
The joint modeling approach yields an estimated rate ratio of 1.39 (95% CI:
1.15–1.75), where priors and initial parameters are specified the same as in
the simulation study. Both the lag-5 autocorrelation and the Geweke’s test
confirm good convergence of the Markov chains. Confidence intervals for all
three estimators are obtained by the percentile method of the nonparametric
bootstrap for clustered data with 200 bootstrap samples, where the sampling
unit is the child. Since the simulations in the previous section show that the
joint modeling approach is unbiased and most efficient, we advocate the joint
modeling estimator for inference here. We conclude that there is significant
effect of GAS on the risk of developing pharyngitis among school children.
The risk of pharyngitis increases by 39% (CI: 15%–75%) for a child who is
colonized with GAS.

6 REMARKS

This article proposes a joint modeling approach to estimate the effect of time-
varying binary covariates on recurrent events when the covariates are mea-
sured periodically. We assume a Markov model on the covariate process and
a random-effect proportional intensity model for the recurrent event process.
The proposed approach complements the work of Faucett et al. (1998) by



12

Calendar Month

Mar 2002 May 2002 Jul 2002 Sep 2002 Nov 2002 Jan 2003

ID:  99

ID:  86

ID:  71

ID:  39

ID:  14

Data from 5 children

Fig. 1 GAS status from both carriage visits and pharyngitis visits for five selected children
in the Vellore study. For each child, the blue circles denote carriage visits while red circles
denote pharyngitis visits. Closed (open) circle denotes a throat culture positive (negative)
for GAS. Should a pharyngitis event occurs in the same calendar month, we report its result
rather than the carriage result

Calendar Month

Mar 2002 May 2002 Jul 2002 Sep 2002 Nov 2002 Jan 2003

ID:  99

ID:  86

ID:  71

ID:  39

ID:  14

Data from 5 children

Fig. 2 GAS status from carriage visits for five selected children in the Vellore study. For
each child, closed (open) circle denotes a throat culture positive (negative) for GAS

extending single-event time model to recurrent event process model and by al-
lowing subject-specific random effects in the event time process. We compare
the proposed approach with the last covariate carried forward approach. Sim-
ulation studies show that the joint modeling approach is unbiased and most
efficient under the assumed Markov model, while the covariate carried forward
approach may lead to substantial bias.
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In this paper, we consider univariate binary covariate process. The exten-
sions to multivariate binary process are straightforward, though computation-
ally demanding. One can assume a Markov model for each binary covariate,
and the intensity function for the recurrent event process can be written as a
joint function of the multiple covariates.

As with all the model-based methods, the validity of the proposed ap-
proach depends on the validity of the models used, which could be difficult to
verify when there is substantial missingness. To relax the model assumptions,
one can consider the semiparametric transformation model for the recurrent
event process, which includes proportional intensity model as a special case
(Zeng and Lin 2006). For the binary covariate process, one can extend the
Markov model to order q, that is, the transition probability can be written as
a function of the q previous covariate values (Zeger and Qaqish 1988). Further
investigation is warranted.

Acknowledgements The authors thank Dr. Chiung-Yu Huang, Dr. Dean Follmann and
Dr. Richard Krause for their helpful comments.

Appendix

In this Appendix, we describe the details to draw samples from p(Θ,MIS |
OBS) using Gibbs sampling, following similar steps as in Faucett et al. (1998).
The priors for the parameter Θ = {β, π, α0, α1, (λ1, ..., λJ), σ2

U} take the fol-
lowing forms.

π ∼ Unif(0,1)
α0 ∼ N(µα0

, σα0
)

α1 ∼ N(µα1 , σα1)
σ2
U ∝ σ

−2
U

β ∼ N(µβ , σβ)
λk ∼ Gamma(a/b, a/b2), for k = 1, ..., J .

Furthermore, in Section 2, we impose the following assumptions

Ui ∼ N(0, σ2
U )

Zi1 ∼ Bernoulli(π)
logit{pr(Zij = 1 | Zi,j−1)} = α0 + α1Zi,j−1.

In Section 3, we show that the posterior distribution of Θ is proportional
to the prior of Θ times (4). Therefore, the Gibbs sampler takes the following
form:

1. Initialize Θ and MIS.
2. Sample π from p

(
π | {Zi1; i = 1, ..., n}

)
.

3. Sample α0 from p(α0 | α1, {Zij ; i = 1, ..., n, j = 1, ...,mi}, µα0
, σα0

); sample
α1 from p(α1 | α0, {Zij ; i = 1, ..., n, j = 1, ...,mi}, µα1

, σα1
).

4. For i = 1, ..., n and k = 1, ...,mi, where dik = 0, sample Zik from p
(
Zik |

{Zij ; j 6= k}, Ui, π, α0, α1, Ci, {til; l = 1, ..., ni}, {λj ; j = 1..., J}, β
)
.
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5. For i = 1, ..., n, sample Ui from p(Ui | {Zij ; j = 1, ...,mi}, Ci, {til; l =
1, ..., ni}, {λj ; j = 1..., J}, β, σ2

U

)
.

6. Sample σ2
U from p

(
σ2
U | Ui; i = 1, ...n

)
.

7. Sample β from p(β | {Zij ; j = 1, ...,mi}, Ci, {til; l = 1, ..., ni}, Ui, {λj ; j =
1, ..., J}, µβ , σβ ; i = 1, ..., n).

8. For k = 1, ..., J , sample λk from p
(
λk | {Zij ; j = 1, ...,mi}, Ci, {til; l =

1, ..., ni}, Ui, β, {λl; l 6= k}, a, b; i = 1, ...n
)
.

9. Go to step 2.

The full conditional distribution and the sampling method for each step
are given below.

1. p
(
π | {Zi1; i = 1, ..., n}

)
∝ p(π)× p

(
{Zi1; i = 1, ..., n} | π

)
∝ π

∑n
i=1 Zi1(1− π)n−

∑n
i=1 Zi1 ,

which is proportional to a Beta distribution. Therefore, π can be sampled
from a Beta distribution with shape parameters

∑n
i=1 Zi1 and n−

∑n
i=1 Zi1.

2. p(α0 | α1, {Zij ; i = 1, ..., n, j = 1, ...,mi}, µα0
, σα0

)
∝ p(α0 | µα0 , σα0)× p({Zij ; i = 1, ..., n, j = 1, ...,mi} | α0, α1)
∝ p(α0 | µα0 , σα0)×

∏n
i=1

∏mi

j=2 p(Zij | Zi,j−1, α0, α1)
which is proportional to the product of

n∏
i=1

mi∏
j=2

{ exp(α0 + α1Zi,j−1)

1 + exp(α0 + α1Zi,j−1)

}Zij

×
{ 1

1 + exp(α0 + α1Zi,j−1)

}1−Zij

and

exp
{−(α0 − µα0

)2

2σ2
α0

}
.

Because the full conditional does not form a well-known distribution, we
use the adaptive rejection sampling (Gilks and Wild 1992) to draw samples
of α0. Adaptive rejection sampling (ARS) is a commonly used sampling
method which improves the rejection sampling by constructing proposal
distributions that are adaptively refined using past rejected samples. The
ARS algorithm is available in many software toolkits, and samples can be
drawn using those toolkits as long as we specify the probabilistic models.
The parameter α1 can be sampled in an analogous manner.

3. For i = 1, ..., n and k = 1, ...,mi, where dik = 0, let Γi = {Ci, {til; l =
1, ..., ni}}.
p
(
Zik | {Zij ; j 6= k}, Ui, π, α0, α1, Ci, {til; l = 1, ..., ni}, {λj ; j = 1..., J}, β

)
∝ p(Γi | rest)× p({Zij ; i = 1, ..., n, j = 1, ...,mi} | α0, α1, π)
∝ p(Γi | rest)×

∏n
i=1

∏mi

j=2 p(Zij | Zi,j−1, α0, α1)×
∏n
i=1 p(Zi1 | π)

which is proportional to the product of

exp
[ ni∑
l=1

βZi(til)−
∫
Ik

λk exp(βZik + Ui)du
]
,

{ exp(α0 + α1Zi,k−1)

1 + exp(α0 + α1Zi,k−1)

}Zik

×
{ 1

1 + exp(α0 + α1Zi,k−1)

}1−Zik

for k > 1,
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{ exp(α0 + α1Zi,k)

1 + exp(α0 + α1Zi,k)

}Zi,k+1

×
{ 1

1 + exp(α0 + α1Zi,k)

}1−Zi,k+1

for k < mi,

and πZik(1− π)1−Zik if k = 1.
Since Zik is binary, we draw Zik from a Bernoulli distribution with mean
p1/(p1+p0), where p1 and p0 are obtained by evaluating the above function
at Zik = 1 and Zik = 0 respectively.

4. For i = 1, ..., n, let Γi = {Ci, {til; l = 1, ..., ni}}.
p(Ui | {Zij ; j = 1, ...,mi}, Ci, {til; l = 1, ..., ni}, {λj ; j = 1..., J}, β, σ2

U

)
∝ p(Γi | rest)× p(Ui | σ2

U )
which is proportional to the product of

exp
{
niUi −

∫
Ij ;1≤j≤mi

λj exp(βZij + Ui)du
}

and exp(−U2
i /2σ

2
U ).

Similarly as in Step 2, we draw samples of Ui using adaptive rejection
sampling.

5. p(σ−2U | {Ui; i = 1, ...n}) ∝ p(σ−2U )× p({Ui; i = 1, ...n} | σ−2U )
∝ σ2

U × σ
−2n
U exp{−

∑n
i=1 U

2
i /2σ

2
U}

which is proportional to a Chi-Square distribution with parameters S =∑n
i=1 U

2
i and degree of freedom n. Therefore, samples of σ−2U are drawn

from a Chi-Square distribution and σ2
U can be obtained by taking the

inverse of σ−2U .
6. Let Γi = {Ci, {til; l = 1, ..., ni}}.
p(β | {Zij ; j = 1, ...,mi}, Γi, Ui, {λj ; j = 1, ..., J}, µβ , σβ ; i = 1, ..., n)
∝ p(Γi; i = 1, ..., n | rest) × p(β | µβ , σβ), which is proportional to the

product of

n∏
i=1

exp
{ ni∑
l=1

βZi(til)−
∫
Ij ;1≤j≤mi

λj exp(βZij + Ui)du
}

and exp{−(β − µβ)2/(2σ2
β)}. Similarly as in Step 2, samples from this dis-

tribution can be generated using adaptive rejection sampling.
7. Let Γi = {Ci, {til; l = 1, ..., ni}}. For k = 1, ..., J ,
p
(
λk | {Zij ; j = 1, ...,mi}, Γi, Ui, β, {λl; l 6= k}, a, b; i = 1, ...n

)
∝ p(Γi | rest)× p(λj | a, b)

∝
∏n
i=1

[{∏ni

j=1 λj(tij | Zi, Ui, β)
}

exp
[
−
∫ Ci

0
λj{t | Zi, Ui, β}dt

}]
×λa−1k exp(−bλk)

∝ λDk+a−1
k exp{−(Yk + b)λk},

where Dk =
∑n
i=1

∑ni

j=1 I{tij∈Ik} and Yk =
∑n
i=1 I{k≤mi}

∫
Ik

exp{βZik +

Ui}du. The function I{tij∈Ik} indicates that the jth event time of sub-
ject i occurred during interval Ik, and I{k≤mi} indicates that subject i
was followed during interval Ik. This is proportional to a gamma density.
Therefore, λk can be sampled from a Gamma distribution with parameters
Dk + a and Yk + b.
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