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Lin H. Taft 

STATISTICAL METHODS TO STUDY HETEROGENEITY OF TREATMENT 

EFFECTS 

Randomized studies are designed to estimate the average treatment effect (ATE) 

of an intervention. Individuals may derive quantitatively, or even qualitatively, different 

effects from the ATE, which is called the heterogeneity of treatment effect. It is important 

to detect the existence of heterogeneity in the treatment responses, and identify the 

different sub-populations. Two corresponding statistical methods will be discussed in this 

talk: a hypothesis testing procedure and a mixture-model based approach.  The 

hypothesis testing procedure was constructed to test for the existence of a treatment effect 

in sub-populations. The test is nonparametric, and can be applied to all types of outcome 

measures. A key innovation of this test is to build stochastic search into the test statistic 

to detect signals that may not be linearly related to the multiple covariates. Simulations 

were performed to compare the proposed test with existing methods. Power calculation 

strategy was also developed for the proposed test at the design stage. The mixture-model 

based approach was developed to identify and study the sub-populations with different 

treatment effects from an intervention. A latent binary variable was used to indicate 

whether or not a subject was in a sub-population with average treatment benefit. The 

mixture-model combines a logistic formulation of the latent variable with proportional 

hazards models. The parameters in the mixture-model were estimated by the EM 

algorithm. The properties of the estimators were then studied by the simulations. Finally, 

all above methods were applied to a real randomized study in a low ejection fraction 
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population that compared the Implantable Cardioverter Defibrillator (ICD) with 

conventional medical therapy in reducing total mortality. 
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CHAPTER 1. INTRODUCTION 

In clinical trials, it is common practice to report the average treatment effect 

(ATE) for the whole trial population. However, ATE may fail when different subgroups of 

patients have different treatment effects. It is widely accepted that individuals may derive 

quantitatively, or even qualitatively, different effects from the ATE. Detecting the 

heterogeneity of the treatment effects (HTE) is of increasing interests and crucial in 

evaluating and selecting treatments for individuals. For example, if a treatment is 

expensive, and may have adverse effects for some, we should obviously apply it only 

when it will improve the health outcome of interest. Our goal is to determine which 

patients will benefit from treatment and which not, so as to not do more harm than good.  

The first step toward the goal is to develop a test, which can detect if there are 

beneficial effects and harmful effects from the treatment compared to the control. In 

addition, the test may help with power calculations and further study design. As a second 

step, we want to develop models to identify who benefits from the treatment and who 

does not, and the estimated average treatment effect in different sub-populations. 
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1.1 A Non-parametric Statistical Test of Null Treatment Effect in Sub-Populations  

It is common that a medical intervention has a treatment benefit only for some 

patients in the intended patient population, whereas the rest do not derive a benefit and 

some are even harmed by the intervention.  

Intuitively, to test the interaction effects between the treatment and subgroup, one 

can either partition patients into subgroups, to test the treatment effect in each subgroup, 

or add treatment-covariate interaction terms in the multiple regression. However, there 

are a lot of problems with the simple subgroups analysis methods. Not only does multiple 

comparison inflate the type I error, and creates selection bias, but also each subgroup may 

have a limited sample size making the test unreliable.   

A lot of researchers have been working on improving the tests. There are 

generally two types of tests, one is to pre-specify a fixed number of subgroups before the 

statistical analysis, and another one is a post hoc subgroup search. Most publications in 

these two types heavily rely on model assumptions. However, it is hard to choose the 

right form of the interaction terms of the correct covariates, which substantially affects 

the study results. In this dissertation, we propose a non-parametric test with built-in 

stochastic search to avoid model assumptions and apply the test on a dataset with time-to-

event outcome. 
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1.2 Power Calculation for Study Design 

As a post hoc test, the main purpose of the test is to help guide study design in the 

future. With some knowledge on the HTE, we can design a study to achieve the desired 

power to detect HTE. In this dissertation, we try to give recommendations on the sample 

sizes in study designs under the assumption that the treatment effects are normally 

distributed. We also use some computational methods to help deal with some very 

complex formulations.  

 

1.3 Logistic-Cox Mixture Model 

Mixture models have been applied to different areas in survival analysis, such as 

competing risks, and cure rate analysis.  

In this dissertation, we develop the mixture model to model the heterogeneity of 

the treatment effect with the assumption that different groups have different average 

treatment effects. We focus on having only two sub-populations in this dissertation; one 

group of patients has beneficial effect from the treatment, whereas the other group has no 

effect or a harmful effect. We use constrains to separate the treatment effects into 

different ranges to create two groups, and calculate the posterior probability of each 

patient in each group to use as a weight to model patients in different groups with 

different survival models. The mixture model can be simply expanded to accommodate 

more sub-populations with different treatment effects, although more complex models 

may require more patient subjects to estimate. In addition, the constraints on different 

groups’ treatment effects can be modified depending on different characteristics for 

different disease and different clinical trials. 
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My dissertation contains three related topics on the heterogeneity of treatment 

effects. In chapter 2, we introduce a statistical procedure to test the null treatment effect 

in sub-populations, and to determine the existence of sub-populations that have treatment 

effects in possibly different directions. In chapter 3, Study design and power calculations 

for the detection of HTE using the procedure described in chapter 2 are discussed. In 

chapter 4, a mixture model is developed to identify sub-populations with treatment 

benefit. Conclusions and discussions are summarized in chapter 5.  
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CHAPTER 2. A NON-PARAMETRIC STATISTICAL TEST OF NULL TREATMENT 

EFFECT IN SUB-POPULATIONS 

2.1 Background 

Randomized clinical trials (RCTs) are designed to estimate the average treatment 

effect (ATE) in a well-defined population. However, ATE may not reflect the impact of 

the treatment on every subject in the trials. It is well recognized that a medical 

intervention may have treatment benefit for some patients but not for others[1, 2]. For 

example, genetic variation can lead to different drug responses even in a relatively 

homogeneous population meeting the entry criteria of an RCT. In the extreme case, a 

medical intervention can even worsen the intended efficacy endpoints for some patients.  

In addition, medical interventions are applied to more heterogeneous populations in the 

real world, where the heterogeneity in treatment effect is likely enhanced. In principle, 

there are three types of patients, those who benefit from, are not affected by, and are 

harmed by the intervention. We will call them the “beneficial group”, “neutral group” and 

“harmed group”. The ATE is a net effect of the treatment effect in the three groups. In 

some clinical trials, treatment effect can be ‘a mixture of substantial benefits for some, 

little benefit for many, and harm for a few’[3]. In this case, ATE is the net result of the 

competition of the three groups and the inferred ATE can be tremendously misleading for 

some patients. 

Heterogeneity in treatment effect (HTE) is usually detected through the test of the 

interaction between treatment arm indicatory and a covariate whose value defines sub-

populations. There are two types of interactions first introduced by Peto [4]: the 

qualitative interaction (QLI) and the quantitative interaction (QNI). Peto described QLI 
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as when the true treatment effects vary in direction among sub-populations, and he used 

QNI when variation is only in magnitude, but not in direction. Obviously, the existence of 

QLI is critical and the most detrimental, where a patient can be given a treatment 

considered to be effective based on ATE that will actually worsen the outcome. 

The caveats of existing approaches subgroup analysis have been discussed in 

multiple publications[5-7]. Specifically for the detection of HTE, conventional statistical 

tests of interaction terms usually rely on correct specification of a parametric or semi-

parametric model. This is a major limitation as the test is not very meaningful if the 

model is wrong.  

Gail and Simon (G&S) [8] developed a likelihood ratio test to detect  QLI in the 

setting of I fixed sub-populations. They defined two test statistics that summarize positive 

and negative standardized treatment differences over subgroups. The null hypothesis of 

consistent direction in treatment effect across the sub-populations is rejected if both 

statistics exceed critical values. Later Piantadosi and Gail (P&G)[9] proposed a 

standardized range test where the maximum and the minimum of the standardized 

treatment difference of each subgroup are test statistics. Li and Chan [10] proposed an 

extension to the range test to utilize all the observations rather than only use the max and 

min, to reach better power. Recently, Bayman et al. [11] proposed a method using Bayes 

factor to test for QLI when multiple subgroups were determined only by one variable.  

All above methods are designed for pre-specified sub-populations. Alternative 

approaches have been developed to search for sub-populations (e.g. identify QLI with 

variable selection). Bonetti and Gelber[12] discussed the subpopulation treatment effect 

pattern plots (STEPP) approach. In this approach, they defined overlapping 
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subpopulations that contain patients with increasingly larger (or smaller) value of a 

specific covariate, to explore the interaction between this covariate and the treatment 

effect. Chen et al. [13] proposed a Bayesian approach to search for qualitative 

interactions in a multiple regression setting with adaptive decision rules. Tian et al. 

[14]developed a simple modified covariate method to estimate the covariates and 

treatment interaction without the need of  main effect. Several tree-based methods were 

proposed to avoid the problem of incorrect model assumption, such as Virtual Twins [15] 

and Qualitative Interaction Trees (QUINT)[16].  

Motivated by the methods of G&S and P&G, in this chapter, we propose a non-

parametric test to test the sharp null hypothesis that the treatment has null effect on every 

sub-group in the setting of a large number of sub-groups defined by a set of covariates. 

We focus on RCTs with discrete covariates in this chapter, though the method can be 

directly extended to continuous covariates and observational studies (see Discussions). 

Our strategy for the construction of the test strikes a balance between sufficient sample 

size for informative accuracy and adequate account of subject characteristics for the 

detection of HTE. Specifically, the subgroups, defined later in Method section as cells, 

induce a large number of overlapping sub-populations by various combinations. Our 

strategy is to sample from the pool of sub-populations and then to apply G&S and P&G 

type approaches. A key innovation of our method is that stochastic search is built into the 

test statistic to detect signals that may not be detectable through parametric and semi-

parametric modeling.   
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In section 2, we introduce our method and how to construct the test statistics. The 

test is then applied on a real data example in section 3, followed by two simulations in 

section 4. We concluded the chapter with a discussion in section 5.  

 

2.2 Method 

2.2.1 Definitions and Hypothesis 

We focus on randomized clinical trials with one intervention arm and one control 

arm. Let ,�, ,$, … , ,- denote the discrete baseline covariates. If each variable ,. has /. 

levels, then the covariate space can be divided in to ∏ /.-.1�  unique cells that cannot be 

further divided. In other words, a cell is the smallest sub-population at which treatment 

effect can be evaluated non-parametrically. For example, if there are three binary baseline 

variables, then there are eight different cells. In real datasets, some cells may be empty 

and can be removed. Let 2 denote the number of cells with at least one subject in each 

treatment arm.  

Let 34 be the true treatment effect in cell 5 = 1,2, … , 2, where positive values of 

34 represent treatment benefit and negative values of 34 represent treatment harm. A two-

sided null hypothesis is that there is no treatment effect in any cell, or 678: 34 = 0, 5 =
1,2, … , 2. The corresponding alternative hypothesis is 6�8: 34 ≠ 0, for some 5 = 1,2, … , 2. 

For one-sided test of either benefit or harm, the null hypotheses are: 67@: 34 ≤ 0, 5 =
1,2, … , 2 and 67B: 34 ≥ 0, 5 = 1,2, … , 2 respectively. Their corresponding alternative 

hypotheses are: 6�@: 34 > 0, for some 5 = 1,2, … , 2 and 6�B: 34 < 0, for some 5 =
1,2, … , 2.     
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2.2.2 Test Statistics 

In Gail and Simon[8], the estimated treatment effect 3F4 was assumed to be 

independent and normal distributed with mean 34, and known variance G4$. The two-sided 

null hypothesis was stated as 67$: H ∈ 0J ∪ 0L, where HM = N3�, 3$, … , 3OP, 0J =
NH: 34 ≥ 0 Q55 5P and 0L = NH: 34 ≤ 0 Q55 5P. Their two-sided null hypothesis is different 

than the one in this chapter, it is hypothesizing either all cells have benefit or no 

treatment effect, or all cells have harmful or no treatment effect. In other words, it is 

testing the existence of QLI. They provided R level critical values S$T for the likelihood 

ratio test, to reject 67$ if both ∑ V�3F4$/G4$�X�3F4 > 0�YO41� > S$T and ∑ V�3F4$/O41�
G4$�X�3F4 < 0�Y > S$T. Here X(. � is an indicator function, makes the summations over all 

positive 3F4’s in the first expression, and over all negative 3F4’s in the second expression. 

The standardized range test by P&G rejects 67$ at level R if both ZQ,V3F4/G4Y >
S$T[  and Z\]V3F4/G4Y < −S$T[ , where S$T[  are R level critical values provided by them. 

Although in principle we can apply approaches similar to G&S and P&G to test 

678, 67@ or 67B, there are some major limitations due to the small sample sizes in each cell. 

First, conventional asymptotic properties do not apply to cell-specific statistic and the 

critical values cannot be derived from asymptotic distributions. Second, in the extreme 

case, some cells may only have one data point in each arm, which makes the calculation 

of G&S and P&G statistic highly unreliable. Third, the test statistic tends to have high 

variation leading to reduced power. To address these issues, we propose a non-parametric 

permutation test that target on stochastic sub-populations that are the union of some cells. 

To create a stochastic sub-population, we select each cell with a pre-specified 

probability _. In the earlier example with eight cells, if _ is assumed to be 0.25, then on 
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average, a total of two cells may be selected to form a sub-population. Choosing the right 

_ is crucial to the proposed test. If _ is too large, too many cells will be selected, then 

different types of subgroups (i.e. beneficial group, harmed group, etc.) may likely to be 

mixed together causing the dilution effect. If _ is too small, then the sample size of the 

sub-population may not be large enough. Next, ` sub-populations can be drawn 

independently. ` is also important since enough variety of sub-populations need to be 

drawn to be able to detect treatment signals.  

For a particular sub-population \, a test statistic ab can be calculated depending on 

the type of outcomes, which represents the magnitude and direction of the treatment 

effect in sub-population \. In our set-up, positive sign of Zi corresponds to beneficial 

effect and the negative sign of Zi corresponds to harmful effect.  For the k sub-

populations, if one of them has an extreme ab or the average of ab’s with the same sign 

are extreme, then the null hypothesis is rejected. Thus, the  statistics for beneficial effect 

can be defined as either 

cd = max(ab�, 
or  

 c8 = g max(ab, 0�`h
b1� . 

Similarly, the harm statistics can be defined as 

id = min(ab� kl i8 = g min(ab, 0�`h
b1� . 

 

We call tests based on  cd or id the one-sided extreme value test, and tests based 

on both of them the two-sided extreme value test. Similarly, one or two-sided average 



 

 11

 

value test can be constructed using c8 and i8. The rationale of our test statistics is that if 

we explore a large number (`) of sub-populations, we will have better chance to detect 

the existence of treatment benefit/harm in some people. 

For binary outcomes, let _ be the proportion of patients with favorable outcome. 

A standard choice of ab is  

ab = _̂b� − _̂b7cnob  

cnob = p_̂b(1 − _̂b� q 1]b� + 1]b7st7.u
 

where _b�, _b7 are the sample proportions, and ]b�, ]b7 are the sample sizes for treatment 

and control groups respectively. Standard error (cnb) can be calculated using a pooled 

sample proportion (_b). 
In the case of a continuous outcome, the conventional T statistic ab can be used: 

ab = vwb� − vwb7
xyb�$]b� + yb7$]b7

, 
where vwb� and vwb$ are the sample means, yb�$  and yb7$  are the sample variances of the two 

groups. 

For time-to-event outcome, a cox proportional hazard model can be fitted with 

treatment as the explanatory variable in the model. For the \th sub-population, the hazard 

function ℎb({|}� given } at time { can be written as: 

ℎb({|}� = ℎb({�exp (il{ ∗ �bM��� 

where ℎb({� is the baseline hazard function at time { for the \th sub-population. 

In this case, ab is  
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ab = − ��bM��y��(��bM��� 

 

2.2.3 Null distribution of c(3� and i(3� 

Permutation technique can be used for the construction of the null distribution of 

the test statistics. Here we are using cd to illustrate. Under our null hypothesis, the 

treatment and control do not differ on the outcome (i.e. the outcome is independent of 

treatment assignment). When we permute the treatment assignment � times, we therefore 

create � datasets of the possible alternative treatment assignments we could have had, 

and calculate � possible cd∗ (i.e. c�d∗, c$d∗,…, c�d∗). When � is a fairly large number, we 

can estimate the empirical null distribution of cd, and calculate the R level critical values 

based on this distribution. 

For the extreme value tests: 

1. Reject 678 if either cd > S$T�d  or id < S$TMd; 

2. Reject 67@ if cd > ST�d; 

3. Reject 67B if id < STMd. 

where R level critical values S$T�d  and ST�d  are defined as (1 − R/2) and (1 − R) 

percentile of cd∗ respectively. Similarly, R level critical values S$TMd and STMd are defined 

as R/2 and R percentile of id∗ correspondingly. The rejection rules are followed in the 

same way for the average value tests.  

  



 

 13

 

2.3. Application to Madit II data 

We apply these two tests to Multicenter Automatic Defibrillator Implantation Trial 

II (MADIT II)[17, 18]. MADITII ran from 1997 to 2001, in which1,232 patients with a 

prior myocardial infarction and a left ventricular ejection fraction of 0.3 or less were 

recruited. Patients were randomly assigned in 3:2 ratio to receive an implantable 

cardioverter defibrillator (ICD) (n=742) or conventional medical therapy (n=490). 

Patients were followed until death or end of study; the primary outcome is time to all-

cause mortality.  

Five binary risk factors have been identified as potential effect modifiers in a 

previous study [18]. They are New York Heart Association functional class (NYHA) > II, 

age > 70 years, blood urea nitrogen (BUN) > 26 mg/dl, QRS duration > 0.12 s, and atrial 

fibrillation. 112 patients with missing values in any of the five risk factors were excluded. 

Summary statistics on these five variables are included in Table 1.  

Table 1 Summary Statistics: Five Risk Factors of the 1232 Patients 

Characteristic 

Defibrillator 

Group 

n=674 

Conventional-

Therapy Group 

n=446 

Age (yr) > 70, n (%) 195 (29) 137 (31) 

NYHA Functional Class >II, n 

(%) 
202 (30) 123 (28) 

Blood Urea Nitrogen>26mg/dl, n 

(%) 
181 (27) 133 (30) 

Atrial Fibrillation, n (%) 57 (8) 38 (9) 

QRS interval≥0.12 sec, n (%) 233 (35) 134 (30) 
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32 cells were constructed based on these binary covariates; the size of each cell is 

shown in Table 2. Cell 28 was deleted in the simulation and analysis since both patients 

were in the treatment arm. 

Table 2 The Information of the 32 Cells Based on the Five Risk Factors 

Cell 

Number 

No. of Risk 

Factors 

Size Cell 

Number 

No. of Risk 

Factors 

Size 

1 0 346 17 3 47 

2 1 16 18 3 3 

3 1 99 19 3 9 

4 1 47 20 3 31 

5 1 72 21 3 6 

6 1 96 22 3 56 

7 2 6 23 3 24 

8 2 5 24 3 4 

9 2 35 25 3 17 

10 2 10 26 3 22 

11 2 58 27 4 6 

12 2 43 28 4 2 

13 2 7 29 4 3 

14 2 40 30 4 3 

15 2 48 31 4 24 

16 2 23 32 5 4 

 

The ` and _ pair was selected to provide the best power in the MaditII data. The 

explanation is provided in section 4. Specifically, _ = 0.5 and ` = 100 were used for the 

two-sided extreme value test, while _ = 0.1 and ` = 300 were used for the two-sided 

average value test. For one-sided tests, slightly different pairs were chosen. The selected 

pair of ` and _ for each test, and the corresponding p-values are shown in Table 3. 
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678 and 67@ were both rejected using extreme value tests and average value tests 

(p<0.0001). However, 67B was not rejected with p-values 0.5933 and 0.6483 for the one-

sided extreme value test and average value test. 

Table 3 The Pair of _ and ` Selected from the Simulations 

 
Test Statistics � � p-value 

Two-sided cdand id 0.1 300 <0.0001 

 
c8 and i8 0.5 100 <0.0001 

One-sided 
    

Test for beneficial 

effect 
cd 0.5 500 <0.0001 

 
c8 0.1 300 <0.0001 

Test for harmful 

effect 
id 0.3 100 0.5933 

 
i8 0.5 500 0.6483 

 

2.4. Simulation 

Two simulations were carried out. Simulation one is to find a set of ` and _ that 

has the most power under each simulation setting for each method, and to compare the 

power using the selected (`∗, _∗� in the proposed methods with some existing tests. Since 

data were simulated based on the Multicenter Automatic Defibrillator Implantation Trial 

II (MADIT II)[17, 18], (`∗, _∗� were applied to test the existence of the ‘benefit group’ 

and ‘harm group’ in MADIT II, as described in the previous section. 

To better understand the reasons behind the choice of (`∗, _∗�, we conducted 

simulation two. Different factors can affect the selection, so we simulated datasets with 

equal-sized cells to eliminate the effect from the unequal sample size.  
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All the parameter values used in the simulations are shown in Table 4. 

Table 4 The Parameter Values in the Simulations 

 
�� �� �� �� �� �� ��� ��� 

Simulation One-A 0.5 0.7 0.4 0.5 0.6 0.5 -0.4 NA 

Simulation One-B 0.5 0.7 0.4 0.5 0.6 0.5 -0.4 0.4 

Simulation Two-A 0.5 0.2 0.4 0.5 0.6 0.5 -0.4 NA 

Simulation Two-B 0.5 0.2 0.4 0.5 0.6 0.5 -0.8 0.8 

Simulation Two-C 0.5 0.2 0.4 0.5 0.6 0.5 -0.4 0.4 

 

2.4.1 Simulation One 

From the past papers [17-19], we believe the patient population in MADIT II 

consist at least ‘benefit group’ and ‘neutral group’, and we suspect the existence of a 

‘harm group’. As a result, we ran two simulation settings, one is to create a population 

consist with ‘benefit group’ and ‘neutral group’, to apply and examine the one-sided tests. 

The other setting is to imitate a patient population with all three types of patients (‘benefit 

group’, ‘harm group’ and ‘neutral group’), to utilize and assess both the one-sided and 

two-sided tests. In both simulation settings, 1000 Monte Carlo datasets were generated 

based on MADIT II data.  

2.4.1.1 Null and Alternative Hypotheses 
Three sets of hypotheses mentioned in section 2 were used in the simulations: 
1. 678: 34 = 0, 5 = 1,2, … , 2; 6�8: 34 ≠ 0, for some 5 = 1,2, … , 2 

2. 67@: 34 ≤ 0, 5 = 1,2, … , 2; 6�@: 34 > 0, for some 5 = 1,2, … , 2 

3. 67B: 34 ≥ 0, 5 = 1,2, … , 2; 6�B: 34 < 0, for some 5 = 1,2, … , 2 
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2.4.1.2 Simulation One-A: 

In this simulation, to produce the population with benefit and no effect sub-

groups. The simulation setting is as follows: 

� Benefit cells: Patients had QRS duration > 0.12s (16 cells, 367 patients); 

� No treatment effect cells: the rest of the patients;  

� Time to death was assumed to have exponential distribution with rate ��; 

� The five baseline characteristic variables from MADIT II data were used to 

generate the rate: �� = ℎ7exp (�� ∗ X(��6� > XX� + �$ ∗ X(Q�� > 70� + �� ∗
X(��� > 26� + �� ∗ X(��c > 0.12� + �u ∗ X(Q{l\Q5 �\ {\55Q{\k]� + �¡¢ ∗
X(��]��\{ /�55y� ∗ il{�  

� Censoring time is uniformly distributed between 2 to 4 years. 

Powers were calculated for both one-sided extreme value test and the average 

value test with ` = 100,200,300,400,500 and with _ = 0.1,0.2,…,0.5, to search for the 

pair that gives the best power. Then compare these two tests using their corresponding 

optimal pair of ` and _ with the following existing methods: 

1. The overall log-rank test (presented as ‘Logrank Test’ in the result Table); 

2. The true Cox Proportional Hazard models;  

3. One-sided likelihood ratio test by G&S[8]; 

4. One-sided range test by P&G[9]. 

2.4.1.3 Simulation One-B: 

The modification setting one-B from one-A is the harm cells were created, besides 

the benefit and no effect cells. The results were compared with the same existing methods 
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as in simulation one-A, with additional comparison with two coxPH models fitted using 

wrong model assumptions. 

The simulation setting is as follows: 

� Benefit cells: Patients had QRS duration > 0.12s(16 cells, 367 patients); 

� Harm cells: Patients had NYHA ≤ II, age ≤ 70, BUN ≤ 26 mg/dl, QRS duration 

≤ 0.12s (2cells, 362 patients);; 

� No treatment effect cells: the rest of the patients; 

� The time to death was assumed to have exponential distribution with rate �$; 

� Similarly, the five baseline characteristic variables from MADIT II data were used 

to generate the rate: �$ = ℎ7 exp(�� ∗ X(��6� > XX� + �$ ∗ X(Q�� > 70� + �� ∗
X(��� > 26� + �� ∗ X(��c > 0.12� + �u ∗ X(Q{l\Q5 �\ {\55Q{\k]� + �¡¢ ∗
X(��]��\{ /�55y� ∗ il{� + �£¡ ∗ X(ℎQlZ /�55y� ∗ il{;  

� Simulated time was censored uniformly between 2 to 3 years. 

The two wrong models were fitted as follows: 

Wrong Cox Proportional Hazard Model 1:  

¤� = ℎ7 exp(�� ∗ X(��6� > XX� + �$ ∗ X(Q�� > 70� + �� ∗ X(��� > 26� +
�� ∗ X(��c > 0.12� + �u ∗ X(Q{l\Q5 �\ {\55Q{\k]� + ���� ∗ il{ + ��¥¦¢ ∗
X(Q�� > 70� ∗ il{�;  

Wrong Proportional Hazard Model 2: Five baseline variables + Trt 

¤$ = ℎ7 exp(�� ∗ X(��6� > XX� + �$ ∗ X(Q�� > 70� + �� ∗ X(��� > 26� +
�� ∗ X(��c > 0.12� + �u ∗ X(Q{l\Q5 �\ {\55Q{\k]� + ���� ∗ il{�. 
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For the wrong Cox Proportional Hazard models, Wald tests were used to test the 

hypotheses. The null hypotheses for the Wald tests are ���� = ��¥¦¢ = 0 for wrong 

model 1, and ���� = 0 for wrong model 2. 

2.4.1.4 Type I error rate 

To examine the Type I error, no treatment effect was assumed, simulation data 

were constructed the same as simulation one-B with �¡¢ = �£¡ = 0. The type I errors 

were calculate for the two-sided extreme test with ` = 100,200,300,400,500 and with 

_ = 0.1,0.2,…,0.5 using 1000 Monte Carlo datasets. The results are shown in Table 5. 

Several combination of ` and _ were used to spot-check the type I error for the rest of the 

proposed methods. The results were all around 0.05. 

Table 5 The Type I Error Results of Two-Sided Test with cd and id 

  
� 

  
100 200 300 400 500 

� 

0.1 0.051 0.048 0.052 0.040 0.049 

0.2 0.050 0.046 0.062 0.052 0.053 

0.3 0.056 0.049 0.043 0.062 0.044 

0.4 0.058 0.048 0.050 0.052 0.050 

0.5 0.062 0.050 0.048 0.038 0.045 

 

2.4.1.5 Results 

 Simulation One-A 

The power for each combination of ` and _ for one-sided extreme value test and 

average value test was calculated as shown in Tables 6 and 7 respectively. In Table 6, 

when _ increases from 0.1 to 0.5, the power gets larger, and reaches the maximum at 

0.694 when (`∗, _∗� = (400,0.5). On the contrary, in Table 7, the power gets smaller 
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when _ increases from 0.1 to 0.5, and (`∗, _∗� = (500,0.1) are found to give the largest 

power 0.719.  

Table 6 The Power to detect existence of sub-populations with treatment benefit under 

simulation One-A using one-sided extreme value test cd. 

  
� 

  
100 200 300 400 500 

� 

0.1 0.442 0.468 0.429 0.458 0.452 

0.2 0.518 0.556 0.557 0.569 0.537 

0.3 0.624 0.616 0.609 0.628 0.647 

0.4 0.633 0.637 0.662 0.664 0.653 

0.5 0.659 0.675 0.67 0.694 0.673 

 

Table 7 The Power to detect existence of sub-population with treatment benefit under 

simulation One-A using one-sided average value test with c8 

    � 

    100 200 300 400 500 

� 

0.1 0.648 0.71 0.711 0.709 0.719 

0.2 0.632 0.664 0.691 0.665 0.668 

0.3 0.619 0.61 0.611 0.632 0.649 

0.4 0.57 0.578 0.565 0.551 0.589 

0.5 0.535 0.511 0.537 0.524 0.538 

 

Table 8 Power comparisons for simulation One-A 

One-sided 

Extreme value 

test k=400 

p=0.5 

One-sided 

Range 

Test 

One-sided 

Average 

value test 

k=500 p=0.1 

One-

sided LR 

Test 

Logran

k Test 

True 

Model 

0.694 0.346 0.719 0.669 0.147 0.950 
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The comparisons of the powers of different methods are shown in Table 8. The 

one-sided extreme value test is clearly better than its P&G counterpart (power = 0.694 vs 

0.346). In addition, the one-sided average value test performs better than the one-sided 

G&S test (power = 0.719 vs 0.669). Overall, both of the proposed one-sided tests 

achieved much better power than the logrank test, and the average value test is slightly 

better than the extreme test.  

Simulation One-B 

The power follows similar trend for the two-sided test when _ changes. The 

power reaches 0.839 when (`∗, _∗� = (100,0.5) for the two-sided extreme value test, and 

0.623 when (`∗, _∗� = (300,0.1) for the two-sided average value test. (Table 9 and Table 

10) 

Table 9 The Power to detect existence of sub-population with treatment benefit under 

simulation One-B using the two-sided extreme value test 

    � 

    100 200 300 400 500 � 0.1 0.72 0.719 0.71 0.708 0.715 

0.2 0.763 0.749 0.76 0.783 0.763 

0.3 0.83 0.795 0.808 0.809 0.822 

0.4 0.823 0.801 0.815 0.828 0.818 

0.5 0.839 0.822 0.829 0.82 0.827 
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Table 10 The Power to detect existence of sub-population with treatment benefit under 

simulation One-B using the two-sided average value test 

    � 

    100 200 300 400 500 � 0.1 0.542 0.61 0.623 0.597 0.601 

0.2 0.503 0.5 0.537 0.536 0.561 

0.3 0.483 0.479 0.467 0.468 0.488 

0.4 0.384 0.362 0.368 0.394 0.382 

0.5 0.313 0.28 0.274 0.285 0.297 

 

It is interesting that in the one-sided extreme value test and average value test, _ 

were selected the same as the corresponding two-sided tests, i.e. _ = 0.5 for the one-

sided extreme value test and _ = 0.1 for the one-sided average value test. One the other 

hand, when test for harmful effect, _ = 0.3 and _ = 0.5 were chosen for id and i8 

respectively (Table 11-14). It may be because there are more cells that have beneficial 

effect than harmful effect, as a result, _ for the two-sided tests are influenced by the one-

sided test for beneficial effect.  

Table 11 The Power to detect existence of sub-population with treatment benefit under 

simulation One-B using the one-sided extreme value test with cd 

    �  

    100 200 300 400 500 � 0.1 0.427 0.459 0.451 0.458 0.451 

0.2 0.503 0.529 0.534 0.568 0.544 

0.3 0.614 0.593 0.606 0.61 0.638 

0.4 0.623 0.625 0.641 0.664 0.647 

0.5 0.652 0.655 0.66 0.68 0.684 
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Table 12 The Power to detect existence of sub-population with treatment benefit under 

simulation One-B using the one-sided extreme value test with id 

    � 

    100 200 300 400 500 � 0.1 0.721 0.711 0.722 0.686 0.709 

0.2 0.747 0.729 0.719 0.734 0.728 

0.3 0.751 0.734 0.733 0.738 0.733 

0.4 0.731 0.724 0.73 0.744 0.735 

0.5 0.691 0.735 0.702 0.729 0.73 

 

Table 13 The Power to detect existence of sub-population with treatment benefit under 

simulation One-B using the one-sided average value test with c8 

    � 

    100 200 300 400 500 � 0.1 0.548 0.616 0.624 0.601 0.614 

0.2 0.487 0.489 0.52 0.528 0.544 

0.3 0.417 0.424 0.428 0.417 0.452 

0.4 0.31 0.291 0.304 0.313 0.295 

0.5 0.203 0.171 0.178 0.176 0.171 

 

Table 14 The Power to detect existence of sub-population with treatment benefit under 

simulation One-B using the one-sided average value test with i8 

    � 

    100 200 300 400 500 � 0.1 0.175 0.151 0.143 0.136 0.137 

0.2 0.293 0.27 0.316 0.302 0.304 

0.3 0.386 0.368 0.383 0.394 0.383 

0.4 0.377 0.372 0.393 0.388 0.375 

0.5 0.371 0.36 0.371 0.371 0.395 
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The comparisons of the powers of different methods in this setting are shown in 

Table 15. Different from Table 8, methods using the extreme values (extreme value test 

and P&G range test) are in general better than using the average values, although they are 

all better than the logrank test, and the coxPH models with incorrect assumptions. 

Table 15 Power comparisons for simulation One-B 

Two-sided 

Extreme value test 

k=100 p=0.5 

Range Test Two-sided 

Average value test 

k=300 p=0.1 

LR Test 

0.839 0.726 0.623 0.559 

Logrank Test Wrong Model 1 Wrong Model 2 True Model 

0.130 0.297 0.047 Close to 1 

 

2.4.2 Simulation Two  

In this simulation section, the focus is to better understand the nature of choosing 

the set of ` and _ using the two sets of test statistics. 32 cells with equal number of 

patients were generated in three different settings. Powers were calculated in these 

settings for all proposed tests with ` = 100, 200, …, 500 and _ = 0.1, 0.2, … , 0.5, to 

study which pair gives the best power, and to summarize any patterns. 

2.4.2.1 Null and Alternative Hypotheses 

Two sets of hypotheses were used for this section: 

67@: 34 ≤ 0, 5 = 1,2, … , 2; 6�@: 34 > 0, for some 5 = 1,2, … , 2 

67B: 34 ≥ 0, 5 = 1,2, … , 2; 6�B: 34 < 0, for some 5 = 1,2, … , 2 
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2.4.2.2 Simulation Two-A 

� Five binary baseline characteristic variables X�, X$,…, Xu were generated to create 

32 cells with equal number of patients; 

� Treatment control ratio is 1:1 in each cell; 

� Benefit cells: ]¡¢£¢§b� out of 32 cells were randomly selected to be cells 

benefitting from the treatment in each simulated Monte Carlo dataset �]¡¢£¢§b� =
4,8,16�; 

� No treatment effect cells: the rest of the patients; 

� Time to death was assumed to have exponential distribution with rate ��; 

� �� = ℎ7 exp(�� ∗ X� + �$ ∗ X$ + �� ∗ X� + �� ∗ X� + �u ∗ Xu + �¡¢ ∗
X(��]��\{ /�55y� ∗ il{�;  

� Simulated time was censored uniformly between 1 to 2 years. 

2.4.2.3 Simulation Two-B 

� Five binary baseline characteristic variables were generated to create 32 cells with 

equal number of patients; 

� Treatment control ratio is 1:1 in each cell; 

� Benefit cells: ]¡¢£¢§b� out of 32 cells were randomly selected to be benefit cells in 

each Monte Carlo dataset �]¡¢£¢§b� = 4,8,12�; 

� Harm cells: ].¥�¨ out of 32 cells were randomly selected to be benefit cells in 

each Monte Carlo dataset (].¥�¨ = 4� 

� No treatment effect cells: the rest of the patients; 

� The time to death was assumed to have exponential distribution with rate ��; 
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� �� = ℎ7 exp(�� ∗ X� + �$ ∗ X$ + �� ∗ X� + �� ∗ X� + �u ∗ Xu + �¡¢ ∗
X(��]��\{ /�55y� ∗ il{� + �£¡ ∗ X(ℎQlZ /�55y� ∗ il{;  

� Simulated time was censored uniformly between 1 to 2 years. 

2.4.2.4 Simulation Two-C 

� Different �¡¢, �£¡ (with smaller absolute values compare to the fourth simulation) 

were used to calculate rate �u; 

� Other settings were the same as the fourth simulation setting. 

2.4.2.5 Results 

Simulation Two-A 

The power results of the one-sided tests using cd and c8 with ]¡¢£¢§b� = 4,8,16 

are presented in Table 16 to Table 21 respectively. Similarly to the one-sided test results 

in simulation one-A, testing using c8 has increasing power when _ decreases from 0.5 to 

0.1; on the other hand, testing using cd has increasing power when _ increases from 0.1 

to 0.5, for ]¡¢£¢§b� = 8,16. For ]¡¢£¢§b� = 4 using cd, however, power increases and 

reach the maximum at _∗ = 0.4, and starts to decrease. There is no noticeable pattern of 

power change when ` changes.   

_∗ = 0.1 was chosen for all the scenarios using c8, this makes sense since when 

using the average positive (or average negative), the more sub-populations have only 

beneficial (or harm) effects, the better the signal can be intensified. So smaller _ and 

larger ` are the top pick as in the simulation results. 

 

When using cd, things are a little bit different, since there is no harm cell to pull 

the beneficial cell into the opposite direction, and we are using a fairly small ` (compare 
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to the large number of possible combination of subpopulations), we are trying to find a 

balance between choosing a larger _∗ to provide a bigger sub-population with a better 

chance of more beneficial cells being selected into each sub-population, and choosing a 

small enough _∗, so not too many no treatment effect cells are included in each sub-

population. As a results, _∗ = 0.5 were chosen for ]¡¢£¢§b� = 8, and _∗ = 0.4 were 

chosen for ]¡¢£¢§b� = 4. 

Table 16 The Power to detect existence of sub-population with treatment benefit under 

simulation Two-A with ]¡¢£¢§b� = 16 using the one-sided extreme value test with cd 

    � 

    100 200 300 400 500 � 0.1 0.6 0.626 0.612 0.625 0.629 

0.2 0.747 0.756 0.755 0.75 0.766 

0.3 0.802 0.806 0.833 0.808 0.839 

0.4 0.835 0.845 0.852 0.847 0.855 

0.5 0.855 0.868 0.878 0.856 0.877 

 

Table 17 The Power to detect existence of sub-population with treatment benefit under 

simulation Two-A with ]¡¢£¢§b� = 8 using the one-sided extreme value test with cd 

    � 

    100 200 300 400 500 � 0.1 0.307 0.297 0.309 0.324 0.314 

0.2 0.333 0.391 0.389 0.393 0.361 

0.3 0.383 0.39 0.404 0.433 0.41 

0.4 0.42 0.412 0.427 0.445 0.453 

0.5 0.437 0.43 0.43 0.454 0.452 

Table 18 The Power to detect existence of sub-population with treatment benefit under 

simulation Two-A with ]¡¢£¢§b� = 4 using the one-sided extreme value test with cd 

    � 
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    100 200 300 400 500 � 0.1 0.144 0.149 0.168 0.14 0.186 

0.2 0.149 0.197 0.175 0.2 0.172 

0.3 0.176 0.183 0.177 0.214 0.176 

0.4 0.168 0.186 0.207 0.214 0.19 

0.5 0.158 0.189 0.205 0.204 0.21 

 

Table 19 The Power to detect existence of sub-population with treatment benefit under 

simulation Two-A with ]¡¢£¢§b� = 16 using the one-sided extreme value test with cd 

    � 

    100 200 300 400 500 � 0.1 0.879 0.891 0.896 0.903 0.89 

0.2 0.874 0.903 0.882 0.872 0.89 

0.3 0.855 0.865 0.884 0.89 0.882 

0.4 0.853 0.881 0.885 0.88 0.875 

0.5 0.852 0.879 0.882 0.875 0.873 

 

Table 20 The Power to detect existence of sub-population with treatment benefit under 

simulation Two-A with ]¡¢£¢§b� = 8 using the one-sided extreme value test with cd 

    � 

    100 200 300 400 500 � 0.1 0.446 0.456 0.463 0.449 0.447 

0.2 0.384 0.433 0.445 0.447 0.442 

0.3 0.436 0.422 0.42 0.439 0.428 

0.4 0.42 0.434 0.424 0.438 0.443 

0.5 0.409 0.433 0.424 0.431 0.441 

 

Table 21 The Power to detect existence of sub-population with treatment benefit under 

simulation Two-A with ]¡¢£¢§b� = 4 using the one-sided extreme value test with cd 
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    � 

    100 200 300 400 500 � 0.1 0.18 0.195 0.227 0.211 0.206 

0.2 0.186 0.183 0.18 0.194 0.187 

0.3 0.17 0.172 0.171 0.194 0.181 

0.4 0.169 0.17 0.187 0.189 0.187 

0.5 0.159 0.166 0.188 0.183 0.183 

 

Simulation Two-B and Two-C 

Results in simulation two-B and two-C have very similar characteristics in terms 

of _, except the power in two-C is in general smaller due to smaller effects were used, so 

we are only showing results for simulation two-B here. A table summarizing the selected 

(_∗, `∗) and power can be found in Table 22.  

For one-sided tests using c8 and i8, and id, _∗ = 0.1 was chosen for all the 

scenarios (]¡¢£¢§b� = 4,8,12, ].¥�¨ = 4). It is proven again, for the average value test, 

smaller _ is the better choice.  

For one-sided tests using cd, _∗ = 0.1, 0.3, 0.4 were chosen for ]¡¢£¢§b� = 4,8,12 

respectively (].¥�¨ is always 4). It seems that _∗ is chosen so that one of the sub-

populations can be formed by just the 12 (or 8, or 4) beneficial cells. Similarly, when 

using id, ideally _∗ should be selected to form a sub-population with the 4 harm cells, 

and _∗ = 0.1 was indeed chosen. 
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Table 22 The power results of one-sided tests using cd, id, c8, and i8 and the 

corresponding chosen _ and ` 

 ©ª
 «ª

 ©¬
 «¬

 

 Scenario ]¡¢£¢§b� = 4 ].¥�¨ = 4 

]¡¢£¢§b� = 4 ].¥�¨ = 4 

]¡¢£¢§b� = 4 ].¥�¨ = 4 

]¡¢£¢§b� = 4 ].¥�¨ = 4 _∗ 0.1 0.1 0.1 0.1 `∗ 500 500 100 100 

Power 0.536 0.543 0.237 0.136 

 Scenario ]¡¢£¢§b� = 8 ].¥�¨ = 4 

]¡¢£¢§b� = 8 ].¥�¨ = 4 

]¡¢£¢§b� = 8 ].¥�¨ = 4 

]¡¢£¢§b� = 8 ].¥�¨ = 4 _∗ 0.3 0.1 0.1 0.1 `∗ 500 500 400 200 

Power 0.891 0.526 0.789 0.018 

 Scenario ]¡¢£¢§b� = 12 ].¥�¨ = 4 

]¡¢£¢§b� = 12 ].¥�¨ = 4 

]¡¢£¢§b� = 12 ].¥�¨ = 4 

]¡¢£¢§b� = 12 ].¥�¨ = 4 _∗ 0.4 0.1 0.1 0.1 `∗ 400 500 400 100 

Power 0.996 0.48 0.991 0.001 

 

2.5. Discussion 

Why non-parametric is good? Methods require some assumption of a model. 

Modeling of interactions between covariates and treatment indicator faces challenges. A 

major one is choosing the correct covariates in the right forms for the interaction terms, 

which heavily affects the results. Even if the terms of interactions are linear, the orders of 

the terms are still need to be determined.[19]   

In this chapter, we proposed a test that has a stochastic search built into the test 

statistic to detect signals that may not be linearly related to the multiple covariates. The 

one-sided and two-sided extreme value tests are based on the strongest positive and 

negative signals, while one-sided and two-sided average value tests are based on the 



 

 31

 

average positive and negative signals. The choice for the pair of ` and _ in the stochastic 

search are essential to this test.  

The choice of ` and _ has a major impact on the power of the test. Our simulation 

studies suggest that larger values of ` in general leads to better power or at least not far 

off the optimal power. The choice of parameter _ depends on the method. For the average 

value tests, smaller _ such as 0.1 is recommended. For the extreme value tests, it depends 

on the number of cells that have benefit (harmful) effect. When both benefit and harm 

groups exist, the optimal _∗ can be roughly estimated by  

{ℎ� ]­Z �l k�  �]��\{ (ℎQlZ�­5� /�55y ® {ℎ� {k{Q5 ]­Z �l k� /�55y. 
To construct the cells, we need non-missing clinical meaningful covariates. In this 

paper, we focused on RCTs with discrete covariates. To use the continuous covariates, 

they can be discretized by a series of the thresholds. The proposed methods can also be 

directly applied in observational studies, after the standard procedure to adjust for 

confounding variables before analyzing an observational study. 

Although the harmful effect was not detected for ICD using the MADIT-II data, 

Shen et al(ref) showed that 4-12% may actually be harmed  by an ICD in terms of two-

year survival after ICD implantation.  The difference is due to the fact that the current test 

cannot detect heterogeneity within a cell. In other words, if some patients in a cell is 

actually harmed by the ICD, such an effect may be masked if others in the same cell 

benefit from the ICD.   

The proposed tests in this chapter can serve as a first-line procedure to protect 

against false discoveries of benefit and harm. In next chapter, we apply this test to help 

calculate power and benefit study design. Our next step is to develop models to identify 
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who benefit from the ICD and who do not, and the estimated average treatment effect in 

different sub-populations.  Identification of sub-populations with treatment benefit or 

harm and estimation of treatment effect in sub-populations is an active research area[20-

24]. Nevertheless, active search is prone to selection bias and inflation of the probability 

of false positives. Our test can serve as a gatekeeping procedure to prevent false positives.   
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CHAPTER 3. POWER CALCULATION FOR STUDY DESIGN 

3.1 Background 

As a post hoc test, the main purpose of the test is to help guide study design in the 

future. With some knowledge on the HTE, we can design a study to achieve desired 

power to detect HTE. In this chapter, the treatment effects are under normal distribution. 

Normal approximation and central limit theorem were used in the formulation. Some 

computational methods were used to help deal with some very complex formulation. In 

section 2, we introduce different theoretical methods to calculate power with different 

parameter settings using cd and c8. Then the simulations are done to discover how the 

power changes when each parameter changes in the test, and to check the performance of 

the theoretical results by checking the results between the powers calculated by theory 

and by simulation in section 3. We concluded this chapter with a discussion in section 4.  

 

3.2 Method 

As mentioned in chapter two, there are two sets of test statistics: the maximum, 

minimum test statistics (cd = max(ab�, id = min(ab�); and the average positive, 

negative test statistics (c8 = ∑ ¯°±(²³,7�hhb1� , i8 = ∑ ¯��(²³,7�hhb1� ). Since the two test 

statistics in each set are symmetric, for simplicity, we will focus on using cd and c8 in 

this chapter.  

First, we introduce some general terms. Let Δ4 be the true mean difference for cell 

5, 5 = 1,2, … , 2, and ΔF4 be the estimated differences in sample means. For 2 cells (2 

relatively large), assume there are ]∗ control and l]∗ treatment units in each cell. Assume 
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constant G$ within each cell for both treatment and control. For Z randomly selected 

cells ¤� = (¤�, ¤$, … , ¤̈ � based on the selection probability _ = Z/2, the Z statistics 

for testing the equality of the means can be written as 

a�¤� � = x ]∗µ1 + 1l¶ ZG$ g ΔF·¸
¨

¹1� ≜ Q g ΔF·¸
¨

¹1�  

In general, to calculate the power, first we calculate a critical value to control for the type 

one error, and then use it to calculate the power. 

» Pr-½(cd(3� > ,7� = RPr-¾(cd(3� > ,7� = 1 − �  , 
and 

» Pr-½(c8(3� > ,7� = RPr-¾(c8(3� > ,7� = 1 − � 

All the power results will be in terms of _ and `, we will determine the best pair of _ and 

` to use. 

 

3.2.1 Power Calculation with cd 

First, for a given type I error R, a critical value ,7 can be determined by 

Pr-½(cd(3� > ,7� = R. This equation can be solved using the joint distribution of 

a(¤� (���, a(¤� ($��, … , a(¤� (h��. Under the null, 

Pr-½(cd(3� < ,7� = 1 − R 

= Pr-½�a(¤� (��� ≤ ,7 a(¤� ($�� ≤ ,7 , … , a(¤� (h�� ≤ ,7�. 
Using the critical value ,7, the power of the test can be represented by 
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Pr-¾(cd(3� > ,7� = 1 − � 

under the alternative hypothesis, which can be derived into 

� = Pr-¾�a(¤� (��� ≤ ,7 a(¤� ($�� ≤ ,7 , … , a(¤� (h�� ≤ ,7�. 
The joint distribution of a(¤� (���, a(¤� ($��, … , a(¤� (h�� can be represented by `, _, ]∗ 

and l. So we can determine ` and _ by minimizing the type II error �, and also this can 

help us design a study by choosing the most appropriate sample size in each treatment 

arm and cell. 

Now we just need to determine the joint distribution of 

a(¤� (���, a(¤� ($��, … , a(¤� (h��. Under the null hypothesis that there is no mean 

difference between the treatment and control in each cell, so a�¤� �|¤�  is �(0,1�. For 

independently drawn ¤� (��, ¤� ($�, … , ¤� (h�, the joint distribution of a(¤� (���, a(¤� ($��, …, 
a(¤� (h�� can be described as  

�a(¤� (���, … , a(¤� (h���M~� À0Xh×�, Â1 __ 1 … _… _⋮ ⋮_ _ ⋱ ⋮… 1Å
h×h

Æ 

according to appendix A. 

The joint distribution of a(¤� (���, a(¤� ($��, … , a(¤� (h�� under the alternative hypothesis 

is discussed in two situations, with fixed H4 and random H4. 
3.2.1.1 �a(¤� (���, … , a(¤� (h���M

Distribution With Fixed Δ4 
Assume under the alternative hypothesis, each Δ4 has �(Ç, È$�, and they are fixed. 

This assumption is realistic since the true treatment effect for each subgroup of patients is 

normally fixed.  
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Then a�¤� �|¤� ~� µQ ∑ ∆·¸¹̈1� , 1¶, and ∑ ∆·¸¹̈1�  is approximately normal with 

mean ZÇ and /ZÈ$, where / = (2 − Z�/(2 − 1� is the finite sample correction factor, 

followed by a�¤� �~�(QZÇ, 1 + Q$/ZÈ$�. 

According to appendix A, for any a�¤(Ê��, and a(¤(���, y ≠ { and y, { = 1, …, 

`. 

SkË�a�¤� (Ê��, a(¤� (���� = n�a�¤� (Ê��a(¤� (���� − n$Ìa�¤� �Í = _ 

and  

�a(¤� (���, … , a(¤� (h���M
 

~� ÎÏÏ
ÐQZÇXh×�, Â1 + Q$/ZÈ$ __ 1 + Q$/ZÈ$ … _… _⋮                    ⋮_                   _ ⋱ ⋮… 1 + Q$/ZÈ$Å

h×hÑÒÒ
Ó
 

3.2.1.2 �a(¤� (���, … , a(¤� (h���M
Distribution With Random Δ4 

In the situation that Δ4s are random variables, there is no need for the finite 

sample corrector /. After the derivation in appendix A,  

SkË�a�¤� (Ê��, a(¤� (���� = n�a�¤� (Ê��a(¤� (���� − n$Ìa�¤� �Í
= Q$Z$Ç$ + _ + Q$_$2È$ − Q$Z$Ç$ = _ + Q$_$2È$ ≜ _∗ 

�a(¤� (���, … , a(¤� (h���M
 

~� ÎÏÏ
ÐQZÇXh×�, Â1 + Q$ZÈ$ _∗_∗ 1 + Q$ZÈ$ … _∗… _∗⋮                    ⋮_∗                   _∗ ⋱ ⋮… 1 + Q$ZÈ$Å

h×hÑÒÒ
Ó
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3.2.2 Power Calculation with c8 

The idea of calculating the distribution of c8 is to use the central limit theorem. 

Let �(b� = ZQ,�a�¤� (b��, 0�, \ = 1, … , `, then �(��|∆ÔÕ, …, �(h�|∆ÔÕ are independent, and 

�(b�|∆ÔÕ has a normal distribution �(b�|∆ÔÕ~� µn Ö�|∆ÔÕ× , ØQl Ö�|∆ÔÕ×¶. By central limit 

theorem, �̅|∆ÔÕ= c8|∆ÔÕ~� µn Ö�|∆ÔÕ× , ØQl Ö�|∆ÔÕ× `⁄ ¶. The distribution of �̅ = c8 is hard to 

determine, but we can use numerical methods to achieve our goal. To control for the type 

I error to be 0.05, we can calculate a threshold ,7 under the null hypothesis, so that for a 

large number of given ∆ÔÕ b’s, the average probability of µ�̅|∆ÔÕ¶bexceeding ,7 is 0.05: 

1�4¥�¦¢ g Ûl Öµ�̅|∆ÔÕ¶bb > ,7×�ÜÝÞßà
bb1� = 0.05. 

Since we can calculate the distribution of each µ�̅|∆ÔÕ¶bb given µ∆ÔÕ¶bb, the Ûl Öµ�̅|∆ÔÕ¶bb >
,7×is easy to write out. 

Before determine n Ö�|∆ÔÕ× and ØQl Ö�|∆ÔÕ×, we need to know the distribution of 

Q ∑ ∆Õ·¸¹̈1� . Let /7 = (2 − Z� (2 − 1�á , Q ∑ ∆Õ·¸¹̈1�  has an approximately normal 

distribution �(QZÇ̂, /7Q$ZÈ̂$�, where Ç̂ = ∑ ∆ÕÜâÜãäO   and È̂$ = ∑ �∆ÕÜLåæ�çâÜãä O . Distribution of Ç̂ 

and È̂$can be calculated based on the distribution of ∆Õ 4. Under the null hypothesis, ∆Õ 4 has 

a normal distribution �(0, è7$�, where è7$ = éç£∗ (1 + 1/l�. Then, Ç̂Q__lk,         ê �(0, è7$/2�, 

OL�ë½ç È̂$Q__lk,         ê ì$(2 − 1�, and they are independent. 
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With the distribution of Ç̂ and È̂$known, generating a pair of Ç̂ and È̂$ is 

equivalent to generating Δ� (where Δ� = Δ�, … , HO), and then use the estimated ∆ÔÕ  to 

calculate them. For each generated pair of Ç̂ and È̂$, assuming � = QZÇ̂, and S =
í(/7Q$ZÈ̂$�ç , then using truncated normal distribution property: 

n Ö�|∆ÔÕ× =  n Ömax�a�¤� �, 0� |∆ÔÕ× = Ûl µa > 0|∆ÔÕ¶ n Öa|∆ÔÕ, a > 0× 

= q1 − Φ ï0 − �S ðs q� + Sñ ï− �Sðs 

where ñ(,� = ò(,�/ó1 − ô(,�õ, ò(,� and ô(,� are the density function and the  

cumulative probability function of standard normal. 

Ø Ö�|∆ÔÕ× =  n Ömax$ �a�¤� �, 0� |∆ÔÕ× − n$ Ömax�a�¤� �, 0� |∆ÔÕ×
= Pr µa > 0|∆ÔÕ¶  n Öa$�¤� �|∆ÔÕ, a > 0× − n$ Ömax�a�¤� �, 0� |∆ÔÕ×
= Pr µa > 0|∆ÔÕ¶ ön Öa$�¤� �|∆ÔÕ, a > 0× − n$ Öa�¤� �|∆ÔÕ, a > 0×÷
+ Pr µa > 0|∆ÔÕ¶ n$ Öa�¤� �|∆ÔÕ, a > 0× − n$ Ömax�a�¤� �, 0� |∆ÔÕ×
= Pr µa > 0|∆ÔÕ¶  Ø Öa�¤� �|∆ÔÕ, a > 0× + Pr µa > 0|∆ÔÕ¶ n$ Öa�¤� �|∆ÔÕ, a > 0×
− n$ Ömax�a�¤� �, 0� |∆ÔÕ× 

Let è(,� = ñ(,� ∗ óñ(,� − ,õ, then 
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Ø Ö�|∆ÔÕ× = q1 − Φ ï0 − �S ðs S$ q1 − è ï− �Sðs 

+ q1 − Φ ï0 − �S ðs q� + Sñ ï− �Sðs$ + n$ Ö�|∆ÔÕ× 
Under the alternative distribution, power can be calculated using 

��ÜÝÞßà ∑ Ûl Öµ�̅|∆ÔÕ¶bb > ,7×�ÜÝÞßàbb1� . The distribution of each µ�̅|∆ÔÕ¶bb under the alternative 

distribution can be calculated in two scenarios: with fixed H4 and random H4. 
3.2.2.1 �|∆ÔÕ Distribution With Fixed Δ4 

Assume under the alternative hypothesis, each Δ4 has �(Ç, È$�, and they are fixed. 

The distribution of ∆Õ 4 is then �(Ç, è�$�, where è�$ = éç£∗ (1 + 1/l�, and Ç̂Q__lk,         ê �(Ç, è�$/
2�,  

OL�ëäç È̂$Q__lk,         ê ì$(2 − 1�, and they are independent. 

Similar to n Ö�|∆ÔÕ× and Ø Ö�|∆ÔÕ× calculated earlier under the null hypothesis. For 

each generated pair of Ç̂ and È̂$ under the alternative hypothesis and the fixed Δ4 
assumption, 

n Ö�|∆ÔÕ× =  q1 − Φ ï0 − �S ðs q� + Sñ ï− �Sðs 

and  

Ø Ö�|∆ÔÕ× =  q1 − Φ ï0 − �S ðs S$ q1 − è ï− �Sðs 

                                   + q1 − Φ ï0 − �S ðs q� + Sñ ï− �Sðs$ + n$ Ö�|∆ÔÕ× 
where � = QZÇ̂, and S = í(/7Q$ZÈ̂$�ç , ñ(,� = ò(,�/ó1 − ô(,�õ, ò(,� and ô(,� are 

the density function and the cumulative probability function of standard normal. 
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3.2.2.2 �|∆ÔÕ Distribution With Random Δ4 
Assume under the alternative hypothesis, each Δ4 has �(Ç, È$�, and they are 

random. n Ö�|∆ÔÕ× and Ø Ö�|∆ÔÕ× can be calculated using the exact same formula as above, 

once pairs of Ç̂ and È̂$are generated under the alternative hypothesis with random Δ4 
assunptions. The distribution of ∆Õ 4 in this case is �(Ç, è$$�, where è$$ = éç£∗ (1 + 1/l� +
È$. Ç̂Q__lk,         ê �(Ç, è$$/2�, 

OL�ëçç È̂$Q__lk,         ê ì$(2 − 1�, and they are independent. 

 

3.2.3 Unequal ]∗ in Each Cell (Two Values) 

In a population of patients, each cell has equal amount of patients is really rare, 

the more likely situation is most of the cells have a few patients, the rest have more 

patients. Assume ]∗ = ö]� _�]$ _$, for ` randomly selected cells, ¤ = (¤�, ¤$, … , ¤h�, 

a(¤� = ∑ øù¸∆Õù¸ú̧ãäø¥�µ∑ øù¸∆Õù¸ú̧ãä ¶ where Øû¸ = £ù¸∗
∑ £ù¸∗ú̧ãä , then ØQl µ∑ Øû¸∆Õû¸h¹1� ¶ = éçµ�JäÞ¶∑ £ù¸∗ú̧ãä     

So a(¤� = ∑ üù¸∗
∑ üù¸∗ú̧ãä ∆Õù¸ú̧ãä

ý þçµä�äÞ¶∑ üù¸∗ú̧ãä
= ∑ £ù¸∗ ∆Õù¸ú̧ãä�∑ £ù¸∗ú̧ãä éçµ�JäÞ¶.   

Let   = 1 �G$ µ1 + ��¶� , under the sharp null that the means are the same between 

the treatment arms and the control arms for all cells, a(¤�|¤~�(0,1�, therefore 

a(¤�~�(0,1�.  
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Given ∆Õ , n�a(¤�|∆Õ� =  n �∑ £ù¸∗ ∆Õù¸ú̧ãä�∑ £ù¸∗ú̧ãä |∆Õ� =   ∑ Øb∆Õ bOb1� nó�∑ ]û¸∗h¹1� õ. Let / =
nó�∑ ]û¸∗h¹1� õ= ∑ íQ�]� + (` − Q��]$ ïQ̀�ð _�¥ä _$(hL¥ä�h¥ä17 , then 

SkËÌa�¤(���, a�¤($��Í = nÌn$óa(¤�õ|∆ÕÍ =  $/$n Ö�∑ Øb∆Õ bOb1� �$× = /$ �∑ £³∗â³ãä ≜ ��∗ 

For independently drawn ¤� (��, ¤� ($�, … , ¤� (h�, the joint distribution of 

a(¤� (���, a(¤� ($��, …, a(¤� (h�� can be described as  

�a(¤� (���, … , a(¤� (h���M~� À0Xh×�, Â 1 ��∗��∗ 1 … ��∗… ��∗⋮ ⋮��∗ ��∗ ⋱ ⋮… 1 Å
h×h

Æ. 
Under the alternative distribution, assume 2 ∆bs are fixed and follow �(Ç, È$�. Then, 

a(¤�|¤~�(  ∑ Øû¸∆û¸h¹1� , 1� , and ∆û¸~Q__lk,~�(Ç, /7È$�, /7 = OLhOL�. 

nóa(¤�õ = nÌnóa(¤�|¤õÍ = n �  ∑ £ù¸∗ ∆ù¸ú̧ãä�∑ £ù¸∗ú̧ãä � =  Çn � ∑ £ù¸∗ú̧ãä�∑ £ù¸∗ú̧ãä �(Assume ∆Õ⊥ ]∗) 

                =  Çn q�∑ ]û¸∗h¹1� s =  /Ç, where / = n q�∑ ]û¸∗h¹1� s  

ØQlóa(¤�õ = nÌØQlóa(¤�|¤õÍ + ØQlÌnóa(¤�|¤õÍ = 1 +  $ØQl �∑ £ù¸∗ ∆ù¸ú̧ãä�∑ £ù¸∗ú̧ãä � ≜ è�$. 

ØQl �∑ £ù¸∗ ∆ù¸ú̧ãä�∑ £ù¸∗ú̧ãä � = /7È$n �∑ £ù¸∗ çú̧ãä∑ £ù¸∗ú̧ãä 	 + Ç$(`(_�]� + _$]$� − /$� = 1 +  $ó/7È$
 +
Ç$(`(_�]� + _$]$� − /$�õ, where 
 = n �∑ £ù¸∗ çú̧ãä∑ £ù¸∗ú̧ãä 	 =
∑ pÌ¥ä£äçJ(hL¥ä�£ççÍ¥ä£äJ(hL¥ä�£ç ïQ̀�ð _�¥ä _$(hL¥ä�th¥ä17 .  
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nÌa�¤(���a�¤($��Í = nÌn$óa(¤�õ|∆ÕÍ =  $/$n Ö�∑ Øb∆Õ bOb1� �$× = �ç∑ £³∗â³ãä +  $/$Ç$   

⇒  SkËÌa�¤(���, a�¤($��Í = nÌa�¤(���a�¤($��Í − nÌa�¤(���ÍnÌa�¤($��Í  
                                              = �ç∑ £³∗â³ãä +  $/$Ç$ −  $/$Ç$ ≜ �$∗ 

�a(¤� (���, … , a(¤� (h���M~� ÎÏÏ
Ð /ÇXh×�, 


�è�$ �$∗�$∗ è�$ … �$∗… �$∗⋮   ⋮�$∗ �$∗ ⋱ ⋮… è�$�
�

h×hÑÒÒ
Ó
 

More detailed derivation can be found in appendix B.  

 

3.2.4 Unequal ]∗ in Each Cell (Shifted Poisson Distribution) 

Sometimes, ]∗ may follow a certain distribution, in this dissertation, shifted 

Poisson distribution was used as an example. Numerical methods were also applied to 

help calculate certain values. Detailed derivation can be found in appendix C. 

Assume ,~_k\yyk](ñ�, and let ]∗ = , + 1, then ]∗ is shifted Poisson distributed. 

For ` randomly selected cells, ¤ = (¤�, ¤$, … , ¤h�, a(¤� = ∑ øù¸∆Õù¸ú̧ãäø¥�µ∑ øù¸∆Õù¸ú̧ãä ¶ where 

Øû¸ = £ù¸∗
∑ £ù¸∗ú̧ãä . Since ØQl µ∑ Øû¸∆Õû¸h¹1� ¶  = éçµ�JäÞ¶∑ £ù¸∗ú̧ãä , then a(¤� = ∑ £ù¸∗ ∆Õù¸ú̧ãä�∑ £ù¸∗ú̧ãä éçµ�JäÞ¶.   

Let   = 1 �G$ µ1 + ��¶� , under the sharp null that the means are the same between the 

treatment arms and the control arms for all cells, a(¤�|¤~�(0,1�, therefore 

a(¤�~�(0,1�. Similarly, given ∆Õ , n�a(¤�|∆Õ� =  n �∑ £ù¸∗ ∆Õù¸ú̧ãä�∑ £ù¸∗ú̧ãä |∆Õ� =
  ∑ Øb∆Õ bOb1� nó�∑ ]û¸∗h¹1� õ. Since ,û¸~Ûk\yyk](ñ�, then v ≜ ∑ ,û¸h¹1� ~Ûk\yyk](`ñ�. 
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Let / ≜ n q�∑ ]û¸∗h¹1� s = nÌív + `Í = ∑ ív + ` ���! �L���17 , which can be calculated by 

Monte Carlo Method. So SkËÌa�¤(���, a�¤($��Í = nÌn$óa(¤�õ|∆ÕÍ = /$ �∑ £³∗â³ãä ≜ ��∗. 

Above all, under Null, Ìa�¤(���, a�¤($��ÍM~� qµ00¶ , ï 1 ��∗��∗ 1 ðs. 

For independently drawn ¤� (��, ¤� ($�, … , ¤� (h�, the joint distribution of 

a(¤� (���, a(¤� ($��, …, a(¤� (h�� can be described as  

�a(¤� (���, … , a(¤� (h���M~� ÎÏÏ
Ð0Xh×�, Â 1 ��∗��∗ 1 … ��∗… ��∗⋮ ⋮��∗ ��∗ ⋱ ⋮… 1 Å

h×hÑÒÒ
Ó
 

Under alternative hypothesis, a(¤�|¤~�(  ∑ Øû¸∆û¸h¹1� , 1� , and 

∆û¸~Q__lk,~�(Ç, /7È$�, /7 = OLhOL�. 

nóa(¤�õ = nÌnóa(¤�|¤õÍ =  Çn � ∑ £ù¸∗ú̧ãä�∑ £ù¸∗ú̧ãä �  (assume ∆Õ⊥ ]∗) 

                =  Çn q�∑ ]û¸∗h¹1� s =  /Ç  where / = n q�∑ ]û¸∗h¹1� s, and 

ØQlóa(¤�õ = nÌØQlóa(¤�|¤õÍ + ØQlÌnóa(¤�|¤õÍ = 1 +  $ó/7È$
 + Ç$(`ñ + ` −
/$�õ, where 
 = n �∑ £ù¸∗ çú̧ãä∑ £ù¸∗ú̧ãä 	, which can be calculated by Monte Carlo 

nÌa�¤(���a�¤($��Í = nÌn$óa(¤�õ|∆ÕÍ =  $/$n Ö�∑ Øb∆Õ bOb1� �$× = �ç∑ £³∗â³ãä +  $/$Ç$  

⇒  SkËÌa�¤(���, a�¤($��Í = nÌa�¤(���a�¤($��Í − nÌa�¤(���ÍnÌa�¤($��Í =
�ç∑ £³∗â³ãä +  $/$Ç$ −  $/$Ç$ ≜ ��∗ 
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�a(¤� (���, … , a(¤� (h���M~� ÎÏÏ
Ð /ÇXh×�, 


�è�$ ��∗��∗ è�$ … ��∗… ��∗⋮   ⋮��∗ ��∗ ⋱ ⋮… è�$�
�

h×hÑÒÒ
Ó
 

 

3.3 Simulation 

There are two objectives of the simulation. One is to discover how the power 

changes when each parameter changes in the test. The other is to compare the results 

between the power calculated by theory and by simulation. For each objective, the 

simulation section will consist two parts, the power simulation using cd, and using c8. 

The following parameter combinations were used:  

1. For equal number of patients in each cell ]∗ = 3,5,10,15, or 

2. ]∗ = p 5 _� = 0.820 _$ = 0.2, or ]∗ = p 5 _� = 0.830 _$ = 0.2, or 

3. ]∗ = , + 1, ,~_k\yyk](5�, ,~_k\yyk](10� 

4. 2 = 30,100 

5. G$ = 1.5, 2, 2.5, 3 

6. È$ = 0.25, 0.5, 1, 1.5 

7. l = 1, 2 

For both section in the second objective, under the null hypothesis, the outcomes 

for patients under treatment and control for all 2 cells were generated from the same 

normal distribution �(1, G$�. Under the alternative hypothesis, the outcomes under the 

control were generated from �(0, G$�. If using fixed ∆Ô , one set of ∆Ô  was generated from 

�(Ç, È$�, and was used to generate the outcomes under the treatment by each cell. For 

cell 5, the outcomes were generated using �(Δ4, G$�, 5 = 1,2, … , 2. 
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3.3.1 Objective One 

Powers were calculated in different settings, to better show how each parameter 

affects the power, selected results will be shown in figures. In each setting, the pair of 

(`, Z� corresponding to the best power was used. 

3.3.1.1 Power Simulation Using cd 

Figure 1 Power Plot of 2 = 100, l = 1, and Equal Cell Size ]∗ = 3,5,10,15, 

G$ = 2, 3, È$ = 0.25, 0.5, 1, 1.5 using cd 
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3.3.1.2 Power Simulation Using c8 

Figure 2 Power Plot of 2 = 100, l = 1, and Equal Cell Size ]∗ = 3,5,10,15, 

G$ = 2, 3, È$ = 0.25, 0.5, 1, 1.5 
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3.3.2 Objective Two 

3.3.2.1 Power Simulation Using cd 

The type I errors were checked for different scenarios by simulations using cd. 

The selected results are shown in Table 23. When ` is large enough, the type I error is 

fairly stable around 0.05.  

Table 23 Type I error results for 2 = 100, l = 1, ]∗ = 10, G$ = 1 

� 

  � 

 
30 50 100 200 300 

3 0.046 0.039 0.053 0.053 0.051 

5 0.064 0.05 0.047 0.037 0.057 

10 0.039 0.05 0.043 0.052 0.046 

15 0.045 0.041 0.048 0.041 0.054 

20 0.045 0.048 0.056 0.048 0.053 

30 0.038 0.056 0.036 0.055 0.042 

35 0.035 0.05 0.051 0.049 0.036 

40 0.045 0.052 0.036 0.046 0.048 

50 0.045 0.044 0.059 0.047 0.046 

60 0.06 0.055 0.047 0.037 0.055 

 

The powers calculated by the extreme value method were compared with the 

simulations. The comparisons were shown in Figure 3. We can see, when the power is 

small (power<0.5), the two methods have similar results, however, when the power is 

getting larger, the extreme value method tends to over estimate the power.  
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Figure 3 Results comparison between the extreme value method and the simulation 
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3.3.2.2 Power Simulation Using c8 

The type I errors were checked for different scenarios by simulations using c8. 

The selected results are shown in Table 24. When ` is large enough (` > 300), the type I 

error is fairly stable around 0.05.  
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Table 24 Type I error results for 2 = 100, l = 1, ]∗ = 10, G$ = 1.5 

� 

  � = ��  � = ��� � = ��� � = ��� � = ��� 

5 0.0295 0.0352 0.0373 0.0406 0.0384 

10 0.0355 0.0366 0.0417 0.0456 0.048 

15 0.0369 0.0435 0.0467 0.0493 0.0484 

20 0.0401 0.0444 0.0446 0.0451 0.048 

25 0.0428 0.0482 0.046 0.0477 0.0467 

30 0.0408 0.0462 0.0493 0.0493 0.049 

35 0.0419 0.0426 0.0484 0.0505 0.047 

40 0.0451 0.0444 0.0479 0.0469 0.0485 

45 0.0446 0.0461 0.049 0.047 0.0486 

50 0.0463 0.0446 0.0467 0.0472 0.0548 

55 0.0449 0.0494 0.0495 0.049 0.0501 

60 0.0487 0.0474 0.0454 0.0515 0.0503 

  � = ��� � = ��� � = ��� � = ��� � = ��� 

5 0.0453 0.0463 0.0455 0.0471 0.0471 

10 0.0503 0.0457 0.0504 0.0453 0.0463 

15 0.0453 0.0485 0.0489 0.0468 0.0486 

20 0.0456 0.0491 0.0461 0.045 0.0486 

25 0.0479 0.0486 0.0498 0.0452 0.0521 

30 0.0489 0.045 0.0502 0.0487 0.0503 

35 0.0504 0.0493 0.0523 0.0501 0.0467 

40 0.0505 0.0505 0.0454 0.0479 0.0508 

45 0.0492 0.0483 0.049 0.0486 0.0513 

50 0.0516 0.0464 0.053 0.0512 0.0489 

55 0.0478 0.0488 0.0481 0.049 0.0488 

60 0.0513 0.0488 0.0475 0.0492 0.0498 
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The powers calculated by the average value method were compared with the 

simulations. The comparisons were shown in Figure 4. The figure shows the two methods 

have similar results.  

 

Figure 4 Results comparison between the average value method and the simulation 
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3.4 Discussion 

In this chapter, some theoretical methods were proposed to help determine the 

most appropriate study design, such as how many subjects in each cell to achieve certain 

desired power. 

Normal approximation was used in the extreme value method, and hence induced 

some bias when reach high power. The central limit theorem was used in the average 

value method, and no obvious bias detected comparing to the simulation results.  

For both methods, the larger the constant G$ within each cell (for both treatment 

and control), the lower the power of the tests; while the greater the sample size ]∗in each 

cell, and the greater the variance (È$) among the true mean difference (Δ4) for different 

cells, the higher the power of the tests. In other words, smaller G$, larger ]∗ and È$ make 

the tests easier to reject the null hypothesis that there is no treatment difference. 

All the simulation results shown in this chapter were under the assumption that 

each cell has equal sample size, however, in the real circumstances, there could be two or 

more different sample sizes in different cells, sometimes the sample sizes may follow a 

specific distribution. The study design can be extended to accommodate these situations, 

which were mentioned in the method section.  
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CHAPTER 4. LOGISTIC-COX PROPORTIONAL HAZARDS MIXTURE MODEL 

4.1 Background 

Mixture models have been applied to different settings in survival analysis. 

Farewell[25, 26] used the combination of logistic regression with proportional hazards 

regression to distinguish the individuals who will eventually experience the event and the 

ones who will never experience the event in the model. Kuk et al.[27] proposed a 

semiparametric mixture model based on Farewell’s parametric model.  Ng and 

McLachlan[28] developed a semiparametic mixture model approach to analyze the 

competing-risks data. Peng and Dear[29] studied a general nonparametric mixture model 

to estimate the cure rate of the patients. In addition, Corbière et al. [30]proposed a 

penalized likelihood approach in the mixture cure model to allow flexible hazard function 

assumption and direct way to calculate the variance of parameters.  

In this chapter, the mixture model was used to model the heterogeneity of the 

treatment effect. The treatment effect on any given patient can be conceptually defined, 

but estimation is impossible in most studies as we only observe one outcome (either 

under control or intervention). Let � = 1 represents the patient under the treatment, �� be 

the corresponding outcome, and � = 0 represents the patient under the control, �7 be the 

corresponding outcome. Then the outcome � can be described as � = ��� + (1 − ���7. 

One can only observe either �� or �7, not both, so the treatment effect Δ = �� − �7 can 

not be directly calculated for each patient. Although we reply on average treatment effect, 

we can assume different groups to have different average treatment effect. In our 

proposed mixture model, we define there are two groups, one with the benefit averaged 

treatment effect, and the other one without. The probability of a patient in either group 
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can be calculated with the given information about each patient, and used as a weight in 

the proposed model. Different survival models can be constructed for the two groups 

separately to analyze the characteristic and treatment effect of each group.  

In section 2, we introduce the mixture model, EM algorithm and other techniques 

used in the simulations, which are demonstrated in section 3. In section 4, the mixture 

model is applied to the MADITII data again, followed by discussion in section 5. 

 

4.2 The mixture model  

4.2.1 Cox proportional hazard (CoxPH) model  

Given data ({b, èb, ,�b�, \ = 1, … , ], where {b is the event time when èb = 1, and {b 
is the censored time when èb = 0, ,�b is the covariate vector. In the CoxPH model, for the 

\th individual, it is assumed that 

ñ({; ,�b� = ñ7({�exp (,�bM Ô + � 8� 

where ñ({; ,�b� is the hazard for individual \ at time {, given covariate values ,�b, and ñ7({� 

is the baseline hazard function of {.  8 is the coefficient of the treatment, when  8 < 0, 

the treatment reduces the hazard, and vice versa. If we order the event time as 3∗ distinct 

time: {� < {$ < ⋯ < {�∗ with no tied events, then  Ô can be estimated by maximizing the 

partial likelihood   

� exp ó,�(¹�M  Ô + � 8õ∑ exp ó,�hM Ô + � 8õh∈���¸�
�∗

¹1�  

where ��{¹� represents all individuals at risk at a time just prior to {¹, and ,�(¹� is the 

covariate vector of the individual whose failure time is {¹. 
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4.2.2 Mixture Model and EM Algorithm 

To set up the mixture model, we introduce a latent variable a, the benefit 

indicator, i.e. a = 1 indicates the individual is in the group that assumed to have benefit 

average treatment effect ( 8 < 0), and a = 0 means the individual is in the other group 

( 8 ≥ 0). For simplicity, we call the individuals who have a = 1 in the ‘benefit group’, 

and the rest who have a = 0 in the ‘not benefit group’. a is assumed to have a Bernoulli 

distribution with probability _, which is modeled as a logistic model: 

log ï _1 − _ð = 6�M�Ô 

where 6� are covariates, such as baseline characteristic variables. 6� can be the same or 

different as }Ô. 

Our mixture model consists of two parts, the logistic regression part, and the 

survival part. The logistic regression part describes the probability of an individual in the 

‘benefit group’, and the survival part is the corresponding survival probability. Let �b be 

the survival likelihood function if individual \ is in the ‘benefit group’, and ℎb be the 

function if he/she is in the ‘not benefit group’. If we have the complete set of data 

(}, i, a�, the likelihood for individual \ can be represent as  

2b� = /(,b�_b�³(1 − _b��L�³�b�³ℎb(�L�³�  
�b and ℎb are assumed in the form of Ìñ7({� exp�,�M Ô + � 8�Íëc7(i��± �!�"¡ÔJ8¡¾� with 

the proportional hazard assumption. The only difference between the two functions is the 

assumption about the coefficients for treatment.  
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Since a cannot be directly observed, the dataset (}, i, a� is not complete; EM 

algorithm can be used to solve the problem. The observed likelihood for individual \ can 

be written as 

2b# = /(,b�(Pr(a = 1� �b + Pr(a = 0� ℎb�.  
Let $Ô represents the unknown parameters in the model. To start the process of estimating 

$Ô, assume initial values $Ô(7�. The process will be illustrated at the `th iteration, ` =
0,1, …%. $Ô(h� is used to denote the current value of $Ô, and 5]2b#(h�

 can be estimated by 

plugging in $Ô(h�. E step is performed to calculate: 

n&�(ú�Ì5]2�($�'$Ô(h�, }, iÍ = g ­b5]_b + (1 − ­b�5](1 − _b� + ­b5]�b + (1 − ­b�5]ℎb
£

b1�  

where ­b = Pr óab = 1|$Ô(h�, }, iõ. Then $Ô(hJ�� is estimated and updated in the M step by 

solving the weighted logistic model and the weighted CoxPH model. At the end of the M 

step, calculate 5]2b#(hJ��
. The EM algorithm improves the observed log-likelihood, i.e. 

5]2b#(hJ�� −  5]2b#(h�
 is always positive. Repeat the E step and the M step, until the %th 

iteration where 5]2b#((J�� −  5]2b#((�
 is sufficiently small. 

 

  



 

 57

 

4.2.3 Baseline Hazard ñ7({� Estimation 

After    �F  and  8o were estimated using partial likelihood, they can be plug into the 

likelihood function, and the likelihood function can be written in a function of the 

baseline hazard ñ7({�: 

Lβ (λ0 (t))∝ λ0 (ti )exp −λ0 (ti ) e j

j∈R(ti )

∑






















i=1

D*

∏  

where . 

LLβ λ0 (t)( ) = log λ0 (ti )( ) − λ0 (ti ) e j

j∈R(ti )

∑










i=1

D

∑ ⇒
∂

∂λ0 (ti )
= 1

λ0 (ti )
− e j

j∈R(ti )

∑ = 0  

⇒ λ̂0 (t) = 1

e j

j∈R(ti )

∑
= z j exp(β beAj )+ (1− z j )exp(β nbAj )

j∈R(ti )

∑










−1

 

The more detailed derivation can be found in the appendix. 

 

4.2.4 Louis’s Method 

Louis’s method is used to calculate the standard errors of the estimators estimated 

by the EM algorithm. At the last (%th) iteration of the M step,  $ �ois estimated to 

maximize n&�(ú�Ì5]2�($�'$Ô((�, }, iÍ. Define cB($;}, i, a� to be the score function of 

∑ 5]2b�£b1� , then the information matrix X µ $ �o;}, i¶ can be calculated by: 

X µ $ �o;}, i¶ = XB µ $ �o;}, i¶ − Ẍ µ $ �o;}, i¶ 

where XB�$Ô((�;}, i� = n& ö− )ç)&)&" 5]2B($�|}, i÷&1 & �o  and Ẍ �$Ô((�;}, i� =
óSkË&NcB($;}, i, a�|}, iPõ&1 & �o .  
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4.2.5 Calculate Treatment Benefit and Treatment Harm Rate 

Treatment benefit rate (TBR) and treatment harm rate (THR) can be used to 

describe the proportion of the patients that benefit or harmed by the treatment as 

compared with the control respectively[31]. They are also important measurements to 

describe the heterogeneity within the given group of patients, although they describe 

things slightly different than a. In the setting of survival outcomes, a = 1 indicates that 

an individual survives longer under the treatment than under the control, regardless the 

actual survival time.  Whereas in the calculation of TBR, ‘benefit’ means an individual 

survives beyond a fixed time threshold under treatment and dies before the threshold 

under control. 

According to the paper[31], in the time-to-event outcome case, assume 

c7({� = Pr(i > {|}, � = 0�, 
c�({� = Pr(i > {|}, � = 1�, 

then TBR and THR can be expressed as 

i��({� = nó�1 − c7({��c�({�õ, 
i6�({� = nÌc7({��1 − c�({��Í. 

In our situation with the un-observed parameter a, the expressions become 

i��({� = nóa µ1 − c¡¢£¢§b�7 ({�¶ c¡¢£¢§b�� ({� + 

(1 − a� µ1 − c�*M¡¢£¢§b�7 ({�¶ c�*M¡¢£¢§b�� ({�õ, 
i6�({� = nóac¡¢£¢§b�7 ({� µ1 − c¡¢£¢§b�� ({�¶ + 

(1 − a�c�*M¡¢£¢§b�7 ({� µ1 − c�*M¡¢£¢§b�� ({�¶õ. 
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4.3 Simulation 

4.3.1 Objective 

There are two objectives for the simulation. The first one is to examine the 

performance of the mixture model with simulated patient data. The second one is to 

compare the Louis’s method estimated standard error with the true standard error. 

4.3.2 Data and Setting 

Data were simulated based on the MADIT II data, the same dataset as in 

Chapter2.  

For objective one, ] =1,000 and 10,000 patients were simulated with patients’ 

age, sex, health index, treatment assignment. Each patient’s age was generated from a 

normal distribution with mean 50 and standard deviation of 2. Probability of a male 

patient is 0.5, and the probability of being assigned to treatment arm is also 0.5. Health 

indexes were generated from the standard normal distribution. The probability of a 

patient benefiting from the treatment is determined by health index (6) – the logistic 

regression part. The logit of the probability for each patient to benefit is a linear function 

of his/her health index: 

_b��+¢ = exp(��6� /(1 + exp (��6�� 

The benefit indicator (ab) for each patient was then generated using _b��+¢.  

Two different sets of coefficients were assumed for the ‘benefit group’ and the 

‘not benefit group’. Particularly,  8 was assumed to be a negative number for the ‘benefit 

group’ and a non-negative number for the ‘not benefit group’. The time to event was then 

generated with the rate based on a patient’s age, sex, and treatment assignment for each 

group respectively using exponential distribution: 
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lQ{� = a × Ìñ7({� exp�,�M Ô¡¢ + � 8¡¢�Í + (1 − a� × Ìñ7({� exp�,�M Ô£¡ + � 8£¡�Í. 
For objective two, ] =1000 patients were simulated in a simple setting with only 

health index (6) and treatment assignment (�). The coefficients for treatment assignment 

 8 in the ‘benefit group’ and ‘not benefit group’ were assumed to be negative and non-

negative respectively. Monte Carlo simulations for 200, 500, 1000, and 5000 times were 

completed to calculate both the bootstraping and Louis’s method estimation of standard 

error of each parameter. The difference between the two sets of standard errors was then 

compared. 

 

4.3.3 Selected Results for Objective One 

Different coefficients were used to discover the characteristic of the mixture 

model. In this dissertation, two scenarios are presented. Both scenarios have the same 

beneficial treatment effect in the ‘benefit group’. While first scenario has harmful 

treatment effect in the ‘not benefit group’, the second scenario has no treatment effect in 

that group. In addition, the second scenario added a intercept parameter into the model, 

The true value, the estimated value, and the standard error of each coefficient, are shown 

in the tables below for ] =1,000 and ] =10,000. 
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Table 25 First Scenario ] =1,000 

n=1,000 Health 

Index 

(��) 

BG-

age 

(����) 

BG-

sex 

(����) 

BG-

trt 

(�¬��) 

NBG-

age 

(����) 

NBG-

sex 

(����) 

NBG-

trt 

(�¬��) 

Mixture 

Model Results 
1.232 1.038 -0.649 -0.991 0.275 -0.330 0.537 

True Value 1 1 -0.8 -1 0.3 -0.3 0.5 

Standard 

Error 
0.182 0.081 0.213 0.211 0.033 0.141 0.142 

 

Table 26 First Scenario ] =10,000 

n=10,000 Health 

Index 

(��) 

BG-

age 

(����) 

BG-

sex 

(����) 

BG-

trt 

(�¬��) 

NBG-

age 

(����) 

NBG-

sex 

(����) 

NBG-

trt 

(�¬��) 

Mixture 

Model 

Results 

0.904 0.984 -0.808 -0.943 0.291 -0.309 0.468 

True Value 1 1 -0.8 -1 0.3 -0.3 0.5 

Standard 

Error 
0.078 0.027 0.068 0.073 0.011 0.045 0.052 

 

The comparison of the computed and the true baseline cumulative hazard over 

time are shown in the figures. 
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Figure 5 Baseline Cumulative Hazard over Time ] =1,000 

 

Figure 6 Baseline Cumulative Hazard over Time ] =10,000 
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Table 27 Second Scenario ] =1,000 

n=1,000 Intercept Health 

Index 

BG-

age 

BG-

sex 

BG-

trt 

NBG-

age 

NBG-

sex 

NBG

-trt 

Mixture 

Model 

Results 

-0.231 1.315 0.895 -0.831 -0.716 0.247 -0.268 
4.941

E-06 

True 

Value 
-0.5 1 1 -0.8 -1 0.3 -0.3 0 

Standar

d Error 
0.476 0.329 0.167 0.285 0.198 0.045 0.128 0.077 

 

Table 28 Second Scenario ] =10,000 

n=10,000 Intercept Health 

Index 

BG-

age 

BG-

sex 

BG-

trt 

NBG

-age 

NBG-

sex 

NBG

-trt 

Mixture 

Model 

Results 

-0.559 0.955 0.986 -0.730 -0.991 0.300 -0.334 
1.204

E-07 

True 

Value 
-0.5 1 1 -0.8 -1 0.3 -0.3 0 

Standard 

Error 
0.116 0.082 0.037 0.074 0.082 0.013 0.038 0.024 

 

Table 29 Results for Objective Two ] =1,000, � =200 

n=1,000 B=200 seed=123 
 

 
�� �¬�� �¬�� 

True SE 0.131 0.198 0.159 

Louis's Method 

SE 
0.121 0.212 0.145 

Difference 0.010 -0.013 0.014 
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Table 30 Results for Objective Two ] =1,000, � =500 

n=1,000 B=500 seed=736 
 

 
�� �¬�� �¬�� 

True SE 0.116 0.212 0.155 

Louis's Method 

SE 
0.121 0.211 0.145 

Difference -0.005 0.001 0.010 

 

Table 31 Results for Objective Two ] =1,000, � =1,000 

n=1,000 B=1000 seed=3294   

  �� �¬�� �¬�� 

True SE 0.118 0.211 0.151 

Louis's Method 

SE 
0.121 0.212 0.145 

Difference -0.003 -0.001 0.006 

 

Table 32 Results for Objective Two ] =1,000, � =500 

n=1,000 B=5000 seed=123   

  �� �¬�� �¬�� 

True SE 0.121 0.213 0.151 

Louis's Method 

SE 
0.121 0.213 0.145 

Difference 0.000 0.001 0.006 
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4.4 Application to MADITII Data 

The mixture model was applied to the MADITII data using, the five clinical 

characteristic variables in the logistic regression part, and the five clinical characteristic 

variables in the survival part. Two year TBR and THR were calculated and compared 

with the results in the paper of Shen et al[31].   

Table 33 Results of TBR , THR, and the Mean Posterior Probability of ab 
TBR  THR the mean of posterior probability of Zi 

0.176 0.098 0.962 

   

From the results in the table, we can see that 17.6% of the patients who can 

survive beyond two years under treatment would die before two years under control 

(compare to 18% in Shen et al.[31]); while 9.8% patients would die within two years in 

the treatment arm but survive in the control arm (compare to 10% in Shen et al.[31]). The 

average probability of an individual survives longer under the treatment than under the 

control, regardless the actual survival time is 0.962. 

 

4.5 Discussion  

n=1000 seems sufficient to estimate the coefficients well. Clearly, when there are 

more patients, the mixture model gives better estimation. 

As mentioned earlier, in the logistic part of the model, baseline characteristic 

variables (6�) are used to determine the model of a. In some cases, there are maybe 

hundreds even thousands baseline variables for us to use. To select the important 

variables for the model, some variable selection method, such as the LASSO selection 

procedure, can be added in the M step when solving the weighted logistic regression. 



 

 66

 

In this dissertation, we simply used 0 as the threshold to separate the two groups, 

i.e. the ‘benefit group’ is assumed to have  8 < 0, and the ‘not benefit group’ is assumed 

to have  8 ≥ 0. This means on average in the ‘benefit group’, the treatment reduces the 

hazard, and in the ‘not benefit group’, the treatment is the same as the control or even 

increase the hazard.  

Other threshold values can be chosen depending on the nature of the treatment. 

Sometimes, we may want to choose a negative value instead of 0 as the threshold, for 

example, when both sub groups are beneficial from the treatment, with one group benefit 

more than the other. 

We need to try to confirm the existence of two groups with (quantitatively or 

qualitatively) different treatment effect by either testing or by experience before using the 

mixture model. Since there is a constraint in the model, it forces  8s to separate by the 

threshold. Our simulation shows, if both  8s are actually on the same side, and the 

threshold assumption is wrong, then the estimation of the one  8that assumed to be on the 

wrong side of the threshold, will be really close to the threshold, and the other 

coefficients for all the other parameters will be estimated poorly. 

 



 

 67

 

CHAPTER 5 CONCLUSIONS AND DISCUSSIONS 

Heterogeneity of the treatment effect in the treated population is frequently 

encountered in medical research. The literature of testing is dominated by either 

improved subgroup analysis with fixed subgroups, or by post hoc subgroup search with 

certain model assumptions. In this dissertation, we proposed a non-parametric test 

adopting G&S’s likelihood ratio test, and P&G’s range test. We extended their tests with 

a built-in stochastic search. This extension allows us to detect signals that may not be 

linearly related to the multiple covariates. The one-sided and two-sided extreme value 

tests are based on the strongest positive and negative signals, while one-sided and two-

sided average value tests are based on the average positive and negative signals. The 

choice for the pair of ` and _ in the stochastic search are essential to this test. We 

evaluated our methods through simulation study and applied this method to the MADIT 

II data. Nevertheless, active search is prone to selection bias and inflation of the 

probability of false positives. Our test can serve as a gatekeeping procedure to prevent 

false positives.   

Using our proposed test, with some knowledge of the targeted patient population, 

we can calculate power under different settings to help guide future study designs. We 

focused on normal distributed outcomes in this chapter. It seems like the ‘extreme value 

test’ works better than the ‘average value test’ when the true treatment effects are from a 

normal distribution. Without surprise, changing from 3 patients in each cell, to 10 

patients in each cell (in each treatment arm) can considerably increase the power of our 

tests. In addition, larger variance between the true treatment effects, and less variation of 

the treatment effect for patients within each cell, improve the power as well. Although 
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formulation maybe hard to derive in other outcomes, such as survival outcomes, one can 

certainly use numerical methods to calculate powers for study design. Faster 

computational methods may need to be developed to be able to handle large calculations.    

Finally, we developed a mixture model to model the patients who benefit from the 

treatment and who do not, and to estimate the average treatment effect in different sub-

populations.  In our proposed mixture model, we defined two groups, with and without 

the benefit averaged treatment effect. We calculated the posterior probability of each 

patient in either group with the given clinical knowledge about each patient, and used it 

as a weight in the proposed model. Different survival models were constructed for the 

two groups separately to analyze the characteristic and treatment effect of each group. 

The mixture model can be easily extend to serve more than two sub-populations, however, 

one should bear in mind that more available patient samples may be required to estimate 

all parameters in a more complex model. We evaluated our methods through simulation 

study and applied this method to the MADIT II data. The use of this method allows us to 

discover the treatment effects when qualitative treatment interactions exist, to separate 

patients into different groups, and to estimate the average treatment effect in different 

sub-populations. 
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APPENDIX A DISTRIBUTION OF �a(¤� (���, … , a(¤� (h���M
UNDER NULL AND 

ALTERNATIVE HYPOTHESES 

For Z randomly selected cells, _ = Z/2, ¤� = (¤�, … , ¤̈ �, the a statistic for testing 

the equality of the means is of the form 

a�¤� � = x ]∗µ1 + 1l¶ ZG$ g ∆Õû¸
¨

¹1� ≜ Q g ∆Õû¸
¨

¹1� . 
Under the sharp null that the means are the same between the treatment arms for all cells, 

a�¤� �|¤� ~�(0,1�, and therefore a�¤� �~�(0,1�. For two independent draws, ¤� (�� and 

¤� ($�, we have SkË�a�¤� (���, a(¤� ($��� = n�a�¤� (���, a(¤� ($��� = 

n Ön µa�¤� (���, a�¤� ($��¶ |H�× = nÌn�a�¤� (���|H��n�a�¤� ($��|H��Í =
nÌn$�a�¤� ($��|H��Í = Q$n Ö�_ ∑ H�bOb1� �$× = ¥ç,çOµ�JäÞ¶éç£∗ = _. (Note that 

n Ö∑ ∆Õû¸¹̈1� |H�× = _ ∑ H�bOb1� ). Since for any a�¤� (Ê�� and a(¤� (���, y ≠ { and y, { =
1, … , `, SkË�a�¤� (Ê��, a(¤� (���� is the same value, the distribution of 

a(¤� (���, a(¤� ($��, …, a(¤� (h�� can be described as  

�a(¤� (���, … , a(¤� (h���M~� À0.ú×ä , Â1 __ 1 … _… _⋮ ⋮_ _ ⋱ ⋮… 1ÅÆ. 
Under the alternative hypothesis, Δ4~�(Ç, È$�, a�¤� �|¤� ~� µQ ∑ ∆·¸¹̈1� , 1¶, and 

∑ ∆·¸¹̈1�  is approximately normal with mean ZÇ and /ZÈ$, where / = (2 − Z�/(2 −
1� is the finite sample correction factor. Then, when Δ4s are fixed, a�¤� �~�(QZÇ, 1 +
Q$/ZÈ$�. 
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For any a�¤� (Ê��, and a(¤� (���, y ≠ { and y, { = 1, … , `,  

n�a�¤� (Ê��a(¤� (���� = nÌn$�a�¤� �|∆Õ�Í = Q$_$n �/g ∆Õ b
O

b1� 0$�
= Q$_$ 1n$ /g ∆Õ b

O
b1� 0 + Ø /g ∆Õ b

O
b1� 02

= Q$_$2$Ç$ + Q$_$ �2 (1 + 1/l�G$]∗ 	 = Q$Z$Ç$ + _ 

SkË�a�¤� (Ê��, a(¤� (���� = n�a�¤� (Ê��a(¤� (���� − n$Ìa�¤� �Í
= Q$Z$Ç$ + _ − Q$Z$Ç$ = _ 

Then,�a(¤� (���, … , a(¤� (h���M
 

~� ÎÏÏ
ÐQZÇ.ú×ä , Â1 + Q$/ZÈ$ _ … __ 1 + Q$/ZÈ$ … _⋮ ⋮ ⋱ ⋮_ _ … 1 + Q$/ZÈ$ÅÑÒÒ

Ó
 

Then, when Δ4s are random, a�¤� �~�(QZÇ, 1 + Q$ZÈ$�. For any a�¤� (Ê��, and 

a(¤� (���, y ≠ { and y, { = 1, … , `, 

n�a�¤� (Ê��a(¤� (���� = Q$_$ 1n$ /g ∆Õ b
O

b1� 0 + Ø /g ∆Õ b
O

b1� 02
= Q$_$2$Ç$ + Q$_$ �2 (1 + 1/l�G$]∗ + 2È$	 = Q$Z$Ç$ + _ + Q$_$2È$ 
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SkË µa�¤� (Ê��, a�¤� (���¶ = n µa�¤� (Ê��a�¤� (���¶ − n$Ìa�¤� �Í
= Q$Z$Ç$ + _ + Q$_$2È$ − Q$Z$Ç$ = _ + Q$_$2È$ ≜ _∗ 

Then,�a(¤� (���, … , a(¤� (h���M
 

~� ÎÏÏ
ÐQZÇ.ú×ä , Â1 + Q$ZÈ$ _∗ … _∗_∗ 1 + Q$ZÈ$ … _∗⋮ ⋮ ⋱ ⋮_∗ _∗ … 1 + Q$ZÈ$ÅÑÒÒ

Ó. 
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APPENDIX B FORMULATION OF POWER CALCULATION FOR UNEQUAL 

PATIENT SAMPLE SIZE CASE (TWO VALUES) 

Assume ]∗ = ö]� _�]$ _$,  

For ` randomly selected cells, ¤ = (¤�, ¤$, … , ¤h� 

  a(¤� = ∑ øù¸∆Õù¸ú̧ãäø¥�µ∑ øù¸∆Õù¸ú̧ãä ¶ where Øû¸ = £ù¸∗
∑ £ù¸∗ú̧ãä  

ØQl µ∑ Øû¸∆Õû¸h¹1� ¶ = ∑ Øû$̧ ØQl µ∆Õû¸¶ =h¹1� ∑ Øû$̧ éç£ù¸∗ µ1 + ��¶h¹1� = ∑ üù¸∗ çþç
üù¸∗ µ�JäÞ¶ú̧ãä

µ∑ £ù¸∗ú̧ãä ¶ç  =
éçµ�JäÞ¶ ∑ £ù¸∗ú̧ãä

µ∑ £ù¸∗ú̧ãä ¶ ç = éçµ�JäÞ¶∑ £ù¸∗ú̧ãä     

a(¤� = ∑ üù¸∗
∑ üù¸∗ú̧ãä ∆Õù¸ú̧ãä

ý þçµä�äÞ¶∑ üù¸∗ú̧ãä
= ∑ £ù¸∗ ∆Õù¸ú̧ãä�∑ £ù¸∗ú̧ãä éçµ�JäÞ¶   

  Let   = 1 �G$ µ1 + ��¶�     

Under the sharp null that the means are the same between the treatment arms and the 

control arms for all cells, a(¤�|¤~�(0,1�, the therefore a(¤�~�(0,1�. 

  n�a(¤�|∆Õ� =  n �∑ £ù¸∗ ∆Õù¸ú̧ãä�∑ £ù¸∗ú̧ãä |∆Õ� 
                          =   ∑ Ànó £ù¸∗

�∑ £ù¸∗ú̧ãä |∆Õõn Ö∆Õû¸|∆Õ×Æh¹1�      Assume ∆Õ⊥ ]∗ 
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                          =   ∑ Øb∆Õ bOb1� nó ∑ £ù¸∗ú̧ãä�∑ £ù¸∗ú̧ãä |∆Õõ 
                          =   ∑ Øb∆Õ bOb1� nó�∑ ]û¸∗h¹1� õ 
Let / = nó�∑ ]û¸∗h¹1� õ= ∑ íQ�]� + (` − Q��]$ ïQ̀�ð _�¥ä _$(hL¥ä�h¥ä17  

 SkËÌa�¤(���, a�¤($��Í = nÌa�¤(���a�¤($��Í = nÌn$óa(¤�õ|∆ÕÍ 
                                                =  $/$n Ö�∑ Øb∆Õ bOb1� �$× 

n �ïg Øb∆Õ bO
b1� ð$	 = ØQl qg Øb∆Õ bO

b1� s = g (Øb�$O
b1� ØQlÌ∆Õ bÍ 

 = µ1 + ��¶ G$ ∑ ï �£∗³ ðOb1� ∙ 4 £³∗∑ £³∗â³ãä 5$ = µ1 + ��¶ G$ ∑ £³∗â³ãä�∑ £³∗â³ãä �ç = µ1 + ��¶ G$ �∑ £³∗â³ãä  

 ⇒  SkËÌa�¤(���, a�¤($��Í =  $ /$ µ1 + ��¶ G$ �∑ £³∗â³ãä = /$ �∑ £³∗â³ãä ≜ ��∗ 

 ⇒ Under Null: Ìa�¤(���, a�¤($��ÍM~� qµ00¶ , ï 1 ��∗��∗ 1 ðs 

Under alternative distribution: 

a(¤�|¤~�(  ∑ Øû¸∆û¸h¹1� , 1� , and ∆û¸~Q__lk,~�(Ç, /È$�, / = OLhOL�. 

nóa(¤�õ = nÌnóa(¤�|¤õÍ = n �  ∑ £ù¸∗ ∆ù¸ú̧ãä�∑ £ù¸∗ú̧ãä � =  Çn � ∑ £ù¸∗ú̧ãä�∑ £ù¸∗ú̧ãä �  Assume ∆Õ⊥ ]∗ 

                   =  Çn q�∑ ]û¸∗h¹1� s =  /Ç  where / = n q�∑ ]û¸∗h¹1� s  

 

ØQlóa(¤�õ = nÌØQlóa(¤�|¤õÍ + ØQlÌnóa(¤�|¤õÍ = 1 +  $ØQl �∑ £ù¸∗ ∆ù¸ú̧ãä�∑ £ù¸∗ú̧ãä �. 



 

 74

ØQl �∑ £ù¸∗ ∆ù¸ú̧ãä�∑ £ù¸∗ú̧ãä � = ∑ ÀØQl � £ù¸∗ ∆ù¸�∑ £ù¸∗ú̧ãä �Æh¹1� = ∑ 6n À7 £ù¸∗ ∆ù¸�∑ £ù¸∗ú̧ãä 8$Æ −h¹1�

n$ � £ù¸∗ ∆ù¸�∑ £ù¸∗ú̧ãä �9  

 

= ∑ :n � £ù¸∗ ç
∑ £ù¸∗ú̧ãä 	 ∙ n Ö∆û¸$ × − n$ � £ù¸∗

�∑ £ù¸∗ú̧ãä � ∙ n$ Ö∆û¸×;h¹1�   

 

= ∑ :n � £ù¸∗ ç
∑ £ù¸∗ú̧ãä 	 ∙ (Ç$ + /7È$� − 7n � £ù¸∗ ç

∑ £ù¸∗ú̧ãä 	 − ØQl � £ù¸∗
�∑ £ù¸∗ú̧ãä �8 ∙ Ç$;h¹1�   

= ∑ : n � £ù¸∗ ç
∑ £ù¸∗ú̧ãä 	 ∙ Ç$ + n � £ù¸∗ ç

∑ £ù¸∗ú̧ãä 	 /7È$ − n � £ù¸∗ ç
∑ £ù¸∗ú̧ãä 	 Ç$ + ØQl � £ù¸∗

�∑ £ù¸∗ú̧ãä � ∙ Ç$;h¹1�   

 = ∑ :n � £ù¸∗ ç
∑ £ù¸∗ú̧ãä 	 /7È$ + ØQl � £ù¸∗

�∑ £ù¸∗ú̧ãä � ∙ Ç$;h¹1�   

= /7È$n �∑ £ù¸∗ çú̧ãä∑ £ù¸∗ú̧ãä 	 + Ç$ 7ØQl � ∑ £ù¸∗ú̧ãä�∑ £ù¸∗ú̧ãä �8 = /7È$n �∑ £ù¸∗ çú̧ãä∑ £ù¸∗ú̧ãä 	 +
Ç$ ïØQl q�∑ ]û¸∗h¹1� sð  

= /7È$n �∑ £ù¸∗ çú̧ãä∑ £ù¸∗ú̧ãä 	 + Ç$ ïn Ö∑ ]û¸∗h¹1� × − n$ q�∑ ]û¸∗h¹1� sð  

= /7È$n �∑ £ù¸∗ çú̧ãä∑ £ù¸∗ú̧ãä 	 + Ç$(`(_�]� + _$]$� − /$�  
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 = n �∑ £ù¸∗ çú̧ãä∑ £ù¸∗ú̧ãä 	 = ∑ pÌ¥ä£äçJ(hL¥ä�£ççÍ¥ä£äJ(hL¥ä�£ç ïQ̀�ð _�¥ä _$(hL¥ä�th¥ä17   

ØQlóa(¤�õ = 1 +  $ó/7È$
 + Ç$(`(_�]� + _$]$� − /$�õ. 
nÌa�¤(���a�¤($��Í = nÌn$óa(¤�õ|∆ÕÍ =  $/$n Ö�∑ Øb∆Õ bOb1� �$×  
n Ö�∑ Øb∆Õ bOb1� �$× = ØQlÌ∑ Øb∆Õ bOb1� Í + n$Ì∑ Øb∆Õ bOb1� Í = ∑ Øb$ØQló∆Õ bõOb1� +
�∑ ØbnÌ∆Õ bÍOb1� �$

  

                                = µ1 + ��¶ G$ ∑ ï �£∗³ ðOb1� ∙ 4 £³∗∑ £³∗â³ãä 5$ + (∑ Øb∆bOb1� �$  

                                = µ1 + ��¶ G$ �∑ £³∗â³ãä + Ç$  

⇒ nÌa�¤(���a�¤($��Í =  $ /$ q µ1 + ��¶ G$ �∑ £³∗â³ãä + Ç$s = �ç∑ £³∗â³ãä +  $/$Ç$  

nÌa�¤(���ÍnÌa�¤($��Í = n$óa(¤�õ =  $/$Ç$  

⇒  SkËÌa�¤(���, a�¤($��Í = nÌa�¤(���a�¤($��Í − nÌa�¤(���ÍnÌa�¤($��Í  
                                                     = �ç∑ £³∗â³ãä +  $/$Ç$ −  $/$Ç$ = ��∗ 
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APPENDIX C FORMULATION OF POWER CALCULATION FOR UNEQUAL 

PATIENT SAMPLE SIZE CASE (POISSON DISTRIBUTION) 

L cells, within each cell there are ]∗ control units and l]∗ treatment units.  

Assume ,~_k\yyk](ñ�, ]∗ = , + 1 shifted Possion (or truncated) 

∆b : true mean difference for cell \, \ = 1,2, … , 2, and ∆Õ b: the difference of sample means. 

G$: constant variance within each cell. 

For ` randomly selected cells, ¤ = (¤�, ¤$, … , ¤h� 

  a(¤� = ∑ øù¸∆Õù¸ú̧ãäø¥�µ∑ øù¸∆Õù¸ú̧ãä ¶ where Øû¸ = £ù¸∗
∑ £ù¸∗ú̧ãä  

ØQl µ∑ Øû¸∆Õû¸h¹1� ¶ = ∑ Øû$̧ ØQl µ∆Õû¸¶ =h¹1� ∑ Øû$̧ éç£ù¸∗ µ1 + ��¶h¹1� = ∑ üù¸∗ çþç
üù¸∗ µ�JäÞ¶ú̧ãä

µ∑ £ù¸∗ú̧ãä ¶ç  =
éçµ�JäÞ¶ ∑ £ù¸∗ú̧ãä

µ∑ £ù¸∗ú̧ãä ¶ ç = éçµ�JäÞ¶∑ £ù¸∗ú̧ãä     

a(¤� = ∑ üù¸∗
∑ üù¸∗ú̧ãä ∆Õù¸ú̧ãä

ý þçµä�äÞ¶∑ üù¸∗ú̧ãä
= ∑ £ù¸∗ ∆Õù¸ú̧ãä�∑ £ù¸∗ú̧ãä éçµ�JäÞ¶   

  Let   = 1 �G$ µ1 + ��¶�     

Under the sharp null that the means are the same between the treatment arms and the 

control arms for all cells, a(¤�|¤~�(0,1�, the therefore a(¤�~�(0,1�. 

  n�a(¤�|∆Õ� =  n �∑ £ù¸∗ ∆Õù¸ú̧ãä�∑ £ù¸∗ú̧ãä |∆Õ� 
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                          =   ∑ Ànó £ù¸∗
�∑ £ù¸∗ú̧ãä |∆Õõn Ö∆Õû¸|∆Õ×Æh¹1�      Assume ∆Õ⊥ ]∗ 

                          =   ∑ Øb∆Õ bOb1� nó ∑ £ù¸∗ú̧ãä�∑ £ù¸∗ú̧ãä |∆Õõ 
                          =   ∑ Øb∆Õ bOb1� nó�∑ ]û¸∗h¹1� õ 
Since ,û¸~Ûk\yyk](ñ�, then v ≜ ∑ ,û¸h¹1� ~Ûk\yyk](`ñ� 

/ ≜ n q�∑ ]û¸∗h¹1� s = nÌív + `Í = ∑ ív + ` ���! �L���17  (Can be calculated by Monte 

Carlo Method) 

 SkËÌa�¤(���, a�¤($��Í = nÌa�¤(���a�¤($��Í = nÌn$óa(¤�õ|∆ÕÍ 
                                                =  $/$n Ö�∑ Øb∆Õ bOb1� �$× 

n �ïg Øb∆Õ bO
b1� ð$	 = ØQl qg Øb∆Õ bO

b1� s = g (Øb�$O
b1� ØQlÌ∆Õ bÍ 

 = µ1 + ��¶ G$ ∑ ï �£∗³ ðOb1� ∙ 4 £³∗∑ £³∗â³ãä 5$ = µ1 + ��¶ G$ ∑ £³∗â³ãä�∑ £³∗â³ãä �ç = µ1 + ��¶ G$ �∑ £³∗â³ãä  

 ⇒  SkËÌa�¤(���, a�¤($��Í =  $ /$ µ1 + ��¶ G$ �∑ £³∗â³ãä = /$ �∑ £³∗â³ãä ≜ ��∗ 

 ⇒ Under Null: Ìa�¤(���, a�¤($��ÍM~� qµ00¶ , ï 1 ��∗��∗ 1 ðs 

a(¤�|¤~�(  ∑ Øû¸∆û¸h¹1� , 1� , and ∆û¸~Q__lk,~�(Ç, /7È$�, /7 = OLhOL�. 

nóa(¤�õ = nÌnóa(¤�|¤õÍ = n �  ∑ £ù¸∗ ∆ù¸ú̧ãä�∑ £ù¸∗ú̧ãä � =  Çn � ∑ £ù¸∗ú̧ãä�∑ £ù¸∗ú̧ãä �  Assume ∆Õ⊥ ]∗ 

                   =  Çn q�∑ ]û¸∗h¹1� s =  /Ç  where / = n q�∑ ]û¸∗h¹1� s  
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ØQlóa(¤�õ = nÌØQlóa(¤�|¤õÍ + ØQlÌnóa(¤�|¤õÍ = 1 +  $ØQl �∑ £ù¸∗ ∆ù¸ú̧ãä�∑ £ù¸∗ú̧ãä �. 
ØQl �∑ £ù¸∗ ∆ù¸ú̧ãä�∑ £ù¸∗ú̧ãä � = ∑ ÀØQl � £ù¸∗ ∆ù¸�∑ £ù¸∗ú̧ãä �Æh¹1� = ∑ 6n À7 £ù¸∗ ∆ù¸�∑ £ù¸∗ú̧ãä 8$Æ −h¹1�

n$ � £ù¸∗ ∆ù¸�∑ £ù¸∗ú̧ãä �9  

 

= ∑ :n � £ù¸∗ ç
∑ £ù¸∗ú̧ãä 	 ∙ n Ö∆û¸$ × − n$ � £ù¸∗

�∑ £ù¸∗ú̧ãä � ∙ n$ Ö∆û¸×;h¹1�   

 

= ∑ :n � £ù¸∗ ç
∑ £ù¸∗ú̧ãä 	 ∙ (Ç$ + /7È$� − 7n � £ù¸∗ ç

∑ £ù¸∗ú̧ãä 	 − ØQl � £ù¸∗
�∑ £ù¸∗ú̧ãä �8 ∙ Ç$;h¹1�   

= ∑ : n � £ù¸∗ ç
∑ £ù¸∗ú̧ãä 	 ∙ Ç$ + n � £ù¸∗ ç

∑ £ù¸∗ú̧ãä 	 /7È$ − n � £ù¸∗ ç
∑ £ù¸∗ú̧ãä 	 Ç$ + ØQl � £ù¸∗

�∑ £ù¸∗ú̧ãä � ∙ Ç$;h¹1�   

 = ∑ :n � £ù¸∗ ç
∑ £ù¸∗ú̧ãä 	 /7È$ + ØQl � £ù¸∗

�∑ £ù¸∗ú̧ãä � ∙ Ç$;h¹1�   

= /7È$n �∑ £ù¸∗ çú̧ãä∑ £ù¸∗ú̧ãä 	 + Ç$ 7ØQl � ∑ £ù¸∗ú̧ãä�∑ £ù¸∗ú̧ãä �8 = /7È$n �∑ £ù¸∗ çú̧ãä∑ £ù¸∗ú̧ãä 	 +
Ç$ ïØQl q�∑ ]û¸∗h¹1� sð  

= /7È$n �∑ £ù¸∗ çú̧ãä∑ £ù¸∗ú̧ãä 	 + Ç$ ïn Ö∑ ]û¸∗h¹1� × − n$ q�∑ ]û¸∗h¹1� sð  
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= /7È$n �∑ £ù¸∗ çú̧ãä∑ £ù¸∗ú̧ãä 	 + Ç$ ïnóv + ` õ − n$ q�∑ ]û¸∗h¹1� sð  

= /7È$n �∑ £ù¸∗ çú̧ãä∑ £ù¸∗ú̧ãä 	 + Ç$(`ñ + ` − /$�  


 = n �∑ £ù¸∗ çú̧ãä∑ £ù¸∗ú̧ãä 	 Can be calculated by Monte Carlo 

ØQlóa(¤�õ = 1 +  $ó/7È$
 + Ç$(`ñ + ` − /$�õ. 
nÌa�¤(���a�¤($��Í = nÌn$óa(¤�õ|∆ÕÍ =  $/$n Ö�∑ Øb∆Õ bOb1� �$×  
  

n Ö�∑ Øb∆Õ bOb1� �$× = ØQlÌ∑ Øb∆Õ bOb1� Í + n$Ì∑ Øb∆Õ bOb1� Í = ∑ Øb$ØQló∆Õ bõOb1� +
�∑ ØbnÌ∆Õ bÍOb1� �$

  

                                = µ1 + ��¶ G$ ∑ ï �£∗³ ðOb1� ∙ 4 £³∗∑ £³∗â³ãä 5$ + (∑ Øb∆bOb1� �$  

                                = µ1 + ��¶ G$ �∑ £³∗â³ãä + Ç$  

⇒ nÌa�¤(���a�¤($��Í =  $ /$ q µ1 + ��¶ G$ �∑ £³∗â³ãä + Ç$s = �ç∑ £³∗â³ãä +  $/$Ç$  

nÌa�¤(���ÍnÌa�¤($��Í = n$óa(¤�õ =  $/$Ç$  

⇒  SkËÌa�¤(���, a�¤($��Í = nÌa�¤(���a�¤($��Í − nÌa�¤(���ÍnÌa�¤($��Í  
                                                     = �ç∑ £³∗â³ãä +  $/$Ç$ −  $/$Ç$ = ��∗ 
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APPENDIX D PARTIAL LIKELIHOOD ESTIMATION 

Partial Likelihood (no tied events): 

Data: T j ,δ j , X j( ), j = 1,2,...,n. 

 
Ordered event times: t1 < t2 <L < tD . 

R(ti ) :  All individuals still under study at a time just prior to ti .  

X(i ) :  Covariate of the individual whose failure time is ti .  

P the particular person in R(ti ) died at ti | one death at ti( ) =
exp[β T X(i )]

exp[β T X j ]j∈R(ti )∑
 

LL β( ) = X(i )
T β

i=1

D

∑ − log
i=1

D

∑ exp(βT X j )j∈R(ti )∑


 

Ul β( ) = x(i )l
i=1

D

∑ −
z jl exp(β T X j )j∈R(ti )∑
exp(β T X j )j∈R(ti )∑i=1

D

∑  

In our case: 

P the particular person in R(ti ) died at ti | one death at ti( ) =

exp[β beA(i ) ]

z j exp[β beAj ]{ }
j∈R(ti )∑













zi

exp[β nbA(i )]

1− z j( )exp[β nbA j ]{ }j∈R(ti )∑















1−zi

 

 

LL β be,β nb( ) = zi *β beA(i ) − zi log z j exp[β beAj ]{ }
j∈R(ti )∑( ){

i=1

D

∑

+(1− zi )*β nbA(i ) − (1− zi )log 1− z j( )exp[β nbAj ]{ }j∈R(ti )∑( )}  

 

 

U β be( ) = zi A(i ) −
z j A j exp[β beA j ] j∈R(ti )∑
z j exp[β be

A j ]{ }
j∈R(ti )∑











i=1

D

∑  0 



 

 81

 

U β nb( ) = 1− zi( ) A(i ) −
1− z j( ) Aj exp[β nbAj ]



j∈R(ti )∑

1− z j( )exp[β nbAj ]{ }j∈R(ti )∑














i=1

D

∑  0  

 

The likelihood: 

g j = f (T j | Aj )
δ jS(T j | Aj )

1−δ j = λ(T j | Aj )S(T j | Aj ) 
δ j

S(T j | Aj )
1−δ j

= λ(T j | Aj ) 
δ j

S(T j | Aj ) = λ0 (T j )exp(β beA j ) 
δ j

S0 (T j )
exp(β be

A j )
 

h j = λ0 (T j )exp(β nb Aj ) 
δ j

S0 (T j )
exp(βnb

A j )

 

Breslow’s estimator of H0 (T j ) = λ0(ti )ti≤Tj

∑  

And S0 (T j ) = 1− λ0 (ti )[ ]
ti≤Tj

∑  

⇒ Lβ (λ0 (t)) = g j

z j hj

1−z j

j=1

n

∏

= λ0 (T j )exp(β beAj ) 
δ j

S0(T j )
exp(βbeAj ){ }z j

j=1

n

∏ ⋅ λ0 (T j )exp(β nbAj ) 
δ j

S0 (T j )
exp(β nbA j ){ }1−z j

= λ0 (T j )exp(β beAj ) 
δ j

exp −H0 (T j )exp(β beAj ) { }z j

j=1

n

∏

⋅ λ0(T j )exp(β nb
Aj ) 

δ j

exp −H0 (T j )exp(β nb
Aj ) { }1−z j

= λ0 (T j )exp(z jβ
beA j + (1− z j )β

nbAj ) 
δ j

j=1

n

∏
⋅exp −H0 (T j ) z j exp(β beAj ) + (1− z j )exp(β nbAj ) 





 

 

 
Let di  ziβ

beAi + (1− zi )β
nb Ai  and e j  z j exp(β beAj ) + (1− z j )exp(β nbAj ) 
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Lβ (λ0 (t )) = λ0 (ti )exp(di )
i=1

D

∏






exp − I

ti≤Tj{ }λ0 (ti )e j







i=1

D

∑
j=1

n

∑










= λ0 (ti )exp(di )
i=1

D

∏






exp −λ0 (ti ) ej

j∈R(ti )

∑
i=1

D

∑










= λ0 (ti )exp(di )
constant

123
exp −λ0 (ti ) e j

j∈R(ti )

∑




















i=1

D

∏

∝ λ0 (ti )exp −λ0 (ti ) ej

j∈R(ti )

∑




















i=1

D

∏

 

 

LLβ λ0 (t)( ) = log λ0 (ti )( ) − λ0 (ti ) e j

j∈R(ti )

∑










i=1

D

∑ ⇒
∂

∂λ0 (ti )
= 1

λ0 (ti )
− e j

j∈R(ti )

∑ = 0  

⇒ λ̂0 (t) = 1

e j

j∈R(ti )

∑
= z j exp(β beAj )+ (1− z j )exp(β nbAj )

j∈R(ti )

∑










−1
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