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Impairment in episodic memory is typically the earliest clinical deficit to appear in 

Alzheimer's disease (AD), the most common cause of dementia and a source of immense 

personal and societal burden. Unfortunately, the mechanisms underlying AD and other age-

related conditions causing cognitive deficits are only partially understood, limiting the 

development of disease-modifying therapies and novel early diagnostic biomarkers.

Recently, we reported the discovery of a SNP in the FASTKD2 gene associated with better 

memory performance in a large sample of older Americans [1]. We also demonstrated that 

this new memory-protective SNP was associated with increased volume and gray matter 

density in the hippocampus, a key brain structure for encoding and retrieving memories that 
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is among the earliest regions affected by AD. Shortly thereafter, a separate report from an 

independent group identified perturbations in FASTKD2 expression in brain astrocytes 

derived from postmortem tissue samples from AD patients [2].

Prior to these studies, FASTKD2 had not been linked to cognition or AD. This new evidence 

obtained through diverse methodologies and analytical strategies suggests that FASTKD2 

may have potential as a novel target for biomarker and drug development against AD and 

age-associated cognitive decline. As a result, this is an opportune moment to critically 

appraise extant knowledge about FASTKD2 and its functional pathways in order to guide 

next steps aimed at translating mechanistic knowledge into potential clinical strategies.

FASTKD protein family

FASTKD2 encodes one of a family of proteins (including FASTK and FASTKD1–5) that 

share a common structure including a mitochondrial targeting domain, multiple serine/

threonine kinase domains and an RNA-binding domain [3]. Much of the early literature on 

this protein family focuses on FASTK, which constitutively inhibits apoptosis when tethered 

to the outer mitochondrial membrane but promotes apoptosis when released to the cell 

cytoplasm following activation of the Fas/CD95 ‘death receptor’ [3,4]. The proapoptotic 

function of FASTK is mediated by its binding and modulating the function of TIA1, an 

mRNA-binding protein that normally silences the production of apoptotic and inflammatory 

mediators including TNF-α [5].

As discussed below, initial studies of the other FASTKD protein family members indicate 

broadly shared functions with FASTK. This evidence is not surprising given the common 

structure and mitochondrial localization of these proteins. However, a closer examination of 

these putative functional pathways can provide mechanistic clues to characterize the 

particular impact of FASTKD2 on brain structure and function (Supplementary Figure 1; see 

online at: www.future-medicine.com/doi/suppl/10.2217/pgs.15.8).

FASTKD2 & apoptosis

The first functional study of FASTKD2 ensued following the discovery of gene mutations 

causing a rare mitochondrial encephalomyopathy [6]. Due to its FASTK domain, the authors 

hypothesized a role for the FASTKD2 protein in apoptosis and found that on treatment with 

staurosporine (a well-described inducer of apoptosis), cells with loss-of-function FASTKD2 

mutations exhibited less apoptosis while cells with FASTKD2 overexpression exhibited 

more apoptosis [6].

Subsequent studies identified FASTKD2 as a vital part – along with NRIF3 and DIF1 – of a 

‘death switch’ modulating apoptosis in cancer cells [7,8]. Further insight can also be found 

in the broader interaction network for the FASTKD2 protein, which includes numerous 

proapoptotic factors including TRAF6, TSC22D1 and c-Myc [9].

In our report, we demonstrated that the novel FASTKD2 SNP associated with better memory 

performance was also associated with lower levels in cerebrospinal fluid of four proteins 

involved in fas-mediated apoptosis [1]. Although it was beyond the scope of our manuscript 
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to directly assess the impact of this SNP on activation of apoptosis at the cellular level, this 

additional finding suggests that modulation of cell death pathways may account for the 

neuroprotective effect of FASTKD2 on memory.

FASTKD2 & mitochondrial function

The protein encoded by FASTKD2 localizes to the inner mitochondrial membrane and is 

expressed at its highest levels in the richly energy-dependent tissues of the brain [6,10]. A 

nonsense mutation in FASTKD2 is known to underlie respiratory chain complex IV 

(cytochrome c oxidase) deficiency, a rare and typically fatal disorder that presents in infancy 

with developmental delay, myopathy and encephalopathy including demyelinating brain 

lesions and epilepsy [6,11]. Recently, missense FASTKD2 mutations were also identified in 

patients with inherited ataxias, a heterogeneous group of disorders with frequent 

mitochondrial origin [12].

It is not yet known how these FASTKD2 mutations lead to their cellular and clinical 

phenotypes. For example, while FASTKD2 may be directly involved in the synthesis, 

localization and/or function of cytochrome c oxidase, it is also possible that knocking out 

FASTKD2 starts a chain of events yielding broader mitochondrial dysfunction negatively 

impacting the respiratory chain and its central role in cellular energetics. Indeed, the protein 

encoded by family member FASTKD3 is known to interact with both respiratory chain 

components and mitochondrial DNA translation machinery [3], suggesting broad potential 

functionality of this protein class in the cellular powerhouse. Further study will be needed to 

better understand the pathogenic sequence initiated by rare mutations as well as more 

common genetic variants.

Beyond these findings in rare genetic conditions, mitochondrial dysfunction and closely 

related oxidative stress pathways are major candidate mechanisms proposed to underlie 

neurodegeneration in aging and disease [13,14]. The new identification of expression 

changes in FASTKD2 and other mitochondrial genes in AD brain cells burnishes this 

hypothesis and enhances the foundation for additional functional genomics studies to clarify 

underlying mechanisms [2].

FASTKD2 & inflammation

Despite the mitochondrial localization of its encoded protein, there is an increasing body of 

work suggesting a proinflammatory role for FASTKD2. A likely mechanism for this effect 

may be related to the FASTK domain and its inhibition of TIA1, ultimately promoting 

production of the systemic inflammation mediator TNF-α [15,16]. The Fas/FasL axis is 

itself considered a strong regulator of inflammation and in some biological contexts may 

lead to tissue damage through inflammatory responses rather than through apoptosis [17]. 

This evidence may be particularly compelling in the setting of AD, where inflammation and 

immune system activation are increasingly viewed as playing central roles in mediating 

and/or compensating for cellular stress induced by amyloid-β deposition [18,19].
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Future directions

Population genomics analyses of additional data sets, including other relevant AD 

endophenotypes, may provide further insight regarding the clinical impact of FASTKD2. 

Expression studies using microarray or RNA-seq data will also be useful to examine the 

relationship between specific genetic variants and canonical transcripts as well as splice 

variant and other alternative transcripts. Finally, deep sequencing of the FASTKD2 locus in 

large samples will facilitate characterization of regional linkage disequilibrium structure 

(including functional ‘tag’ SNPs), other types of variants (including rare, copy number and 

structural variants) and epigenetic modification sites.

Functional genomic studies will also be crucial to elucidate the basic mechanisms 

connecting these genetic variants to expression and biological action. The overlap of two 

microRNA genes (MIR 3130-1 and 2) with the intron containing the memory-associated 

SNP raises the possibility that variants in this region may regulate microRNA-mediated 

silencing of gene expression [1]. However, other leading possibilities for further exploration 

include potential dysfunction in the FASTKD2 RNA-binding domain [20] or at transcription 

factor or splicing machinery-binding sites. Although FASTKD2 appears to lack homologs in 

yeast, worms and flies [6], the creation of mammalian models and/or cell lines will be vital 

for this effort and could be crossed with analogous AD model systems to directly assess the 

impact of knockout, knockdown and overexpression of FASTKD2.

Conclusion

Along with related new discoveries and prior functional studies of this gene, the novel 

association of FASTKD2 with memory performance and hippocampal structure potentially 

opens new avenues for exploration of strategies to modulate neurodegeneration in AD and 

cognitive aging. Given that genes and proteins do not act in isolation [21], a better 

understanding of the range of biological activities for FASTKD2 will help focus efforts to 

develop potential disease-modifying drugs targeting these functional pathways.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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