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Abstract

Ca?*/calmodulin-dependent protein kinase Ila (CaMKIla) autophosphorylation at Thr286 and
Thr305/Thr306 regulates kinase activity, modulates subcellular targeting, and is critical for normal
synaptic plasticity and learning and memory. Here, a mass spectrometry-based approach was used
to identify CaZ*-dependent and -independent in vitro autophosphorylation sites in recombinant
CaMKIlla and CaMKIIB. CaMKII holoenzymes were then immunoprecipitated from subcellular
fractions of forebrains isolated from either wildtype (WT) mice or mice with a Thr286 to Ala
knock-in mutation of CaMKIla (T286A-KI mice) and analyzed using the same approach in order
to characterize in vivo phosphorylation sites in both CaMKII isoforms and identify CaMKI|I
associated proteins (CaMKAPs). A total of 6 and 7 autophosphorylation sites in CaMKIlla and
CaMKIIB, respectively, were detected in WT mice. Thr286-phosphorylated CaMKIlla and
Thr287-phosphorylated CaMKIIf were selectively enriched in WT Triton-insoluble (synaptic)
fractions compared to Triton-soluble (membrane) and cytosolic fractions. In contrast, Thr306-
phosphorylated CaMKIla and Ser315- and Thr320/Thr321-phosphorylated CaMKIIf were
selectively enriched in WT cytosolic fractions. The T286A-KI mutation significantly reduced
levels of phosphorylation of CaMKIlla at Ser275 across all subcellular fractions, and of cytosolic
CaMKIIp at Ser315 and Thr320/Thr321. Significantly more CaMKAPs co-precipitated with WT
CaMKII holoenzymes in the synaptic fraction compared to the membrane fraction, with functions
including scaffolding, microtubule organization, actin organization, ribosomal function, vesicle
trafficking, and others. The T286A-KI mutation altered the interactions of multiple CaMKAPs
with CaMKIl, including several proteins linked to autism spectrum disorders. These data identify
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CaMKII isoform phosphorylation sites and a network of synaptic protein interactions that are
sensitive to the abrogation of Thr286 autophosphorylation of CaMKlla, likely contributing to the
diverse synaptic and behavioral deficits of T286A-KI mice.
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Introduction

The a and B isoforms of Ca?*/calmodulin-dependent protein kinase 11 (CaMKII) account for
up to 1-2% of total protein in several regions of mammalian forebrain. Studies of
genetically manipulated mice have revealed critical roles for both CaMKII isoforms in
regulating synaptic plasticity and behavior.2-8 Both isoforms can be autophosphorylated at
multiple sites in vitro®17 with distinct effects on kinase activity and/or on interactions with
other neuronal proteins. The best understood example is the Ca2*/calmodulin (CaM)-
dependent autophosphorylation of CaMKlla at Thr286, which generates a Ca2*/CaM-
independent (autonomous) form of the kinase®-1! and enhances CaMKI| interactions with
both Ca2*/CaM and GIuN2B subunits of the NMDA-type glutamate receptor.18-20 |n
contrast, CaMKlla autophosphorylation at Thr305 or Thr306 blocks binding of Ca2*/CaM
and a-actinin, thereby interfering with kinase activation.13-15 21 Studies of transgenic
mouse lines with knock-in mutations at Thr286 or Thr305/6 have demonstrated important
roles for these two phosphorylation sites in the synaptic targeting of CaMKII, synaptic
plasticity, and several neurobehaviors.22-26

While the “classical” view is that CaMKI|I activation is critical for long-term potentiation
(LTP) of synaptic transmission, more recent studies suggest a more complex picture. For
example, CaMKlla is required for long-term depression (LTD) in cerebellar Purkinje
neurons, whereas CaMKIIp is required for LTP.2: 7 Moreover, recent studies show that
CaMKIlla (and Thr286 autophosphorylation) is required for different forms of long-term
depression in the hippocampus, in addition to the classical role in LTP27: 28, These findings
emphasize the lack of detailed understanding of CaMKI| interactions, targeting, and
function in neurons, and of the inter-relationships and roles of CaMKIlla and CaMKIIp
autophosphorylation sites in vivo.

Here, we analyze mouse forebrain CaMKII holoenzymes using unbiased mass spectrometry-
based approaches to identify CaMKIla/p phosphorylation sites and CaMKIl-associated
proteins (CaMKAPs). We found that CaMKII holoenzymes isolated from different
subcellular fractions of wild-type (WT) mice are differentially phosphorylated and interact
with distinct networks of over 100 known and novel CaMKAPSs, many having established
roles in modulating synaptic structure and function. Parallel analyses in mice with a Thr286
to Ala knock-in mutation of CaMKIlla (T286A-KI mice) revealed changes in levels of
phosphorylation at other sites in CaMKIla and CaMKIIB, and in the relative levels of co-
precipitating CaMKAPs, which presumably contribute to the synaptic plasticity deficits and
multiple behavioral phenotypes of these mice.22 26 In combination, these data provide novel
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unbiased insights into the regulation, function and subcellular targeting of CaMKII and into
the deficits in specific downstream molecular signaling pathways.

Results and Discussion

Analysis of in vitro autophosphorylation sites in CaMKlla and CaMKIIp

Recombinant CaMKIla was purified from insect cells and then incubated under three
conditions. 1) control conditions in the absence of ATP (basal); 2) to allow
autophosphorylation in the presence of Ca2*/calmodulin alone (Ca2*/CaM); 3) to allow
autophosphorylation first in the presence of Ca?*/calmodulin and then following Ca%*
chelation with EGTA to dissociate calmodulin (Ca2*/CaM then EGTA; sequential) (see
Materials and Methods for details). Similar conditions were used to identify the preferential
autophosphorylation of CaMKlla at Thr286 in the presence of Ca2*/calmodulin, and at
Thr305 or Thr306 and Ser314 in the presence of EGTA.%-15 However, the full repertoire of
sites phosphorylated under these conditions is poorly understood. Our MS-based analyses
recovered tryptic peptides covering >93% of the entire amino acid sequence of CaMKlla
under each condition (Fig 1A-1C) and detected a total of 19 residues that were
phosphorylated in at least one sample, 16 of which were detected only following in vitro
autophosphorylation (Fig 1D and Table S1). MS/MS spectra for each non-phosphorylated
and phosphorylated tryptic peptide were confirmed and annotated (Fig S1). The
chromatographic retention, percent phosphorylation, and PPM mass error of each peptide is
shown in Table S1.

Since CaMKIIB autophosphorylation has not been characterized extensively, we used the
same approach to identify phosphorylation sites in purified recombinant CaMKIIp (Fig 1A-
C, 1E), yielding ~80% amino acid sequence coverage across the three incubation conditions.
A total of 15 phosphorylation sites on CaMKIIf were phosphorylated in at least one sample,
with 13 sites detected only following in vitro autophosphorylation (Fig 1E, Table S2, Fig
S2).

Comparison of in vitro autophosphorylated CaMKlla and CaMKIIB under different
conditions

In order to compare relative levels of phosphorylation at each site under each condition, we
estimated relative phosphorylation stoichiometries from the areas under the curve (AUC) of
extracted ion chromatograms (XICs) for each phosphorylated and non-phosphorylated
peptide pair. This approach provides a relatively crude estimate of the absolute levels of
phosphorylation at each site (see Methods), so our interpretations are focused on relative
differences between the preincubation conditions. As expected, the homologous Thr286 and
Thr287 sites in CaMKIlla and CaMKIIp, respectively, appeared to be substantially
autophosphorylated in the presence of Ca2*/CaM. Additional Ca2*-independent incubation
(plus EGTA) appeared to decrease the levels of Thr286/Thr287 phosphorylation, perhaps
reflecting a lack of precision of this type of analysis. However, this decrease may also be
due to dephosphorylation in the presence of EGTA due to a previously reported auto-
catalytic event,?? or a contaminating phosphatase. The Ca2*-independent reaction also
selectively increased phosphorylation of CaMKIlla at Thr306 and Ser314, confirming
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previous reports.14 Prior studies using site-directed mutagenesis indicated that both Thr305
and Thr306 in CaMKlla could be phosphorylated in the Ca?*-independent phase,4 15 but
we detected only low levels of Thr305 phosphorylation, and then only when this tryptic
fragment was also phosphorylated at Thr310 (Table S1). The Ca2*-independent phase of
CaMKIIB autophosphorylation (plus EGTA) selectively enhanced modifications at Thr306,
Thr307, Thr311, and Ser315 (Fig 1 and Table S1, S2). Similar to the homologous CaMKlla
Thr305 site, CaMKIIp phosphorylation at Thr306 was only detected in the simultaneous
presence of Thr311 phosphorylation (Fig 1E and Table S2). However, these data cannot
exclude the possibility that Thr305(a) or Thr306(p) can be phosphorylated alone.
Interestingly, substantial CaMKIIp phosphorylation at Ser315 was detected only following
Ca?*-independent autophosphorylation, whereas phosphorylation of CaMKlla at the
homologous Ser314 residue was detected in all three samples, presumably due to basal
phosphorylation of this site in the insect cell expression system prior to purification.

In addition to several previously identified in vitro autophosphoryation sites in both
CaMKlla (Thr253, Ser275, Ser279) and CaMKI1pL (Ser280, Ser343, Thr382/

Thr3g3),% 13. 16,17 we detected autophosphorylation of CaMKlla at several novel sites in
the catalytic domain (e.g., Ser78 and Thr261), as well as at Ser331 and Thr378 in the C-
terminal association domain. We did not detect CaMKIIf autophosphorylation in the
catalytic domain, but the association domain was prominently autophosphorylated at 8
previously unidentified sites. Most of the novel CaMKIIp phosphorylation sites (Thr320/1,
Thr325, Ser327, Ser359, Ser368, Thr372, and Thr382/3) are located within two domains
implicated in F-actin binding (residues 317-342 and 354-393),8 and are not conserved in
CaMKIlla (Fig S3). Notably, Thr320/1 in CaMKIIp appeared to be phosphorylated
predominantly in the Ca2*-independent reaction (plus EGTA). However, even though the
recombinant CaMKII isoforms used for these studies were highly purified (see Methods),
we cannot completely exclude contributions of contaminating kinases to total CaMKlla/ 3
phosphorylation under these conditions.

In combination, these in vitro data confirm that Thr286 in CaMKIlla and Thr287 in
CaMKI1B are among several sites phosphorylated in the presence of Ca?*/CaM and also
indicate that the predominant sites of Ca2*-independent autophosphorylation are Thr306 and
Ser314 in CaMKlla and Thr307, Ser315 and Th320/1 in CaMKIIB. However, they also
identify several additional sites that can be autophosphorylated under these in vitro
conditions.

Phosphorylation of CaMKII in subcellular fractions from WT mouse brain

Having established methods to detect phosphorylation sites in purified CaMKlla and
CaMKIIB, we analyzed mouse forebrain CaMKII holoenzymes isolated by
immunoprecipitation in the presence of protease and protein phosphatase inhibitors from
cytosolic (S1), Triton-soluble (membrane; S2), and Triton-insoluble (synaptic; S3) fractions
that were rapidly prepared using progressively harsher detergents at approximately
physiological ionic strength.26 Following SDS-PAGE, bands containing CaMKlla or

1The version of rat CaMKIIp expressed for these studies has an alanine inserted at position 341 compared to the canonical rat
CaMKIIp sequence (accession number: P08413), increasing residue numbering by 1 after this site.

ACS Chem Neurosci. Author manuscript; available in PMC 2016 April 15.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Baucum et al.

Page 5

CaMKIIB (~50 and ~60 kDa, respectively) were excised (Fig 2A), separately digested with
trypsin, and then analyzed by LC-MS/MS. Relative levels of phosphorylation at each site
between subcellular fractions were compared based on the ratio of AUCs for the XICs of
phosphorylated and non-phosphorylated tryptic peptides (see Methods).

Coverage of CaMKIla varied from 45-93% across the three fractions in four biological
replicates (projects A-D; Supplementary Table S4), detecting a total of six phosphorylation
sites with estimated ratios ranging from 0.1-11.4% (Ser275, Thr286, Thr306, Ser314,
Ser331, and Thr337). Ser275, Ser314, and Ser331 were phosphorylated at similar levels in
all three subcellular fractions (Fig 2B). However, the level of Thr286 phosphorylation in
synaptic fractions was 5-fold or 2.4-fold higher than detected in the cytosolic or membrane
fractions, respectively (Fig 2B). Differential Thr286 phosphorylation of CaMKIla between
subcellular fractions was confirmed by immunoblotting using a phospho-Thr286 specific
antibody (Fig 2C). Notably, the selective enrichment of Thr286-autophosphorylated
CaMKlIla in synaptic fractions is generally consistent with prior studies showing that
Thr286 autophosphorylation enhances synaptic targeting of CaMK11a25: 30. 31 |n contrast,
levels of Thr306 phosphorylation were >6-fold higher in the cytosolic kinase relative to
membrane or synaptic pools of kinase (Fig 2B). These data are consistent with previous
observations that Thr305/306 phosphorylation destabilizes synaptic targeting of
CaMKIlla.23: 30 |t js interesting that CaMKIla was predominantly phosphorylated at Thr306
rather than Thr305, because phosphorylation at Thr306, but not at Thr305, blocks the
CaMKI| interaction with a-actinin-2,21 a major synaptic F-actin-binding protein. Taken
together, these data show that distinct subcellular pools of CaMKIlla are phosphorylated in a
site-specific manner.

Mouse forebrain CaMKIIp was phosphorylated at 7 sites (Thr287, Ser315, Thr320/Thr321,
Ser367, Thr381/Thr382, Ser397, and Thr401), with estimated ratios varying from 0.4—
54.0%. Alternative mRNA splicing, mostly in the C-terminal domain, generates several
CaMKII variants, and our data cannot address whether these variants are differentially
phosphorylated at sites in the conserved domains. Therefore, all CaMKIIp residues are
numbered according to the major, canonical, CaMKIIf isoform (Accession # P28652).
Somewhat surprisingly, we did not detect significant phosphorylation of CaMKIIf at Thr306
or Thr307 in any subcellular fraction. Levels of phosphorylation at Ser367, Ser397, and
Thr401 were not significantly different between subcellular fractions (Fig 2D), but there was
a trend for enrichment of Thr287 phosphorylation in synaptic CaMKIIp, as noted for Thr286
phosphorylation of CaMKIla (see above). However, phosphorylation at multiple sites was
selectively enriched in cytosolic CaMKIIp. Specifically, levels of Ser315 and Thr320/
Thr321 phosphorylation in cytosolic CaMKIIf were >5-fold and >9-fold higher,
respectively, than in the membrane or synaptic kinases (Fig 2B). Thr381/Thr382
phosphorylation was detected in only one replicate, but levels were >7-fold higher in the
cytosolic fraction compared with membrane and synaptic fractions. Although we could not
unambiguously distinguish modifications at Thr320/Thr321 or Thr381/Thr382, these sites
lie within previously defined F-actin binding domains (Fig. 2E).8 Thus, it seems reasonable
to suggest that phosphorylation of these sites modulates CaMKIIf binding to F-actin, and
thereby F-actin assembly and dendritic spine morphology/function.3: 32-35 |n combination,
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these data show that distinct subcellular pools of CaMKIIp are differentially phosphorylated
at specific sites.

All of the phosphorylation sites that we detected in mouse brain CaMKII isoforms were also
identified as in vitro autophosphorylation sites. However, we cannot exclude potential
contributions of other protein kinases to CaMKII phosphorylation in vivo. Fig. 2E integrates
data from our in vitro and in vivo studies with the repertoire of CaMKlla and CaMKIIp
phosphorylation sites that have been identified in previous global mouse brain proteomics
studies.36-41 Even though our total coverage of both CaMKII isoforms was high (32-93%
depending on fraction, genotype and replicate), we detected a more limited number of in
vivo sites than detected in the prior studies or in vitro. Notably, whereas prior studies
detected phosphorylation of several additional sites in some tryptic fragments, we identified
a more limited number of sites in the same tryptic fragments (Fig. 2E). The lower sensitivity
of our in vivo studies relative to the in vitro studies may reflect a lower efficiency of
digestion/extraction of the kinase from polyacrylamide gels versus TCA precipitates, or ion
suppression from peptides derived from co-immunoprecipitated proteins. Moreover, the
greater sensitivity of prior in vivo studies likely reflects the use of metal affinity-based
methods to enrich for phosphopeptides. Nevertheless, the present study provides new
insights into CaMKII biology by demonstrated that specific sites are differentially
phosphorylated between subcellular fractions.

Surprisingly, we failed to detect some previously well-characterized autophosphorylation
sites in vivo. For example, CaMKIlla phosphorylation at Thr253 in vivo was detected in
prior proteomics studies,36-39: 42, 43 and using phospho-site specific antibodies.1: 44
However, we failed to detect phosphorylation of CaMKIla at Thr253 or of CaMKIIp at
Thr254 in samples from mouse brain, even though in vitro Thr253 phosphorylation was
readily detected (Fig. 1D). Perhaps the phosphorylation stoichiometry was relatively low in
our in vivo samples because Thr253 phosphorylation is favored under physiological or
pathophysiological conditions that were not prevalent prior to, or during, tissue isolation.
Alternatively, the phospho-Thr253 peptide may contain an additional unknown covalent
modification that affects its mass, so that it could not be identified. Similarly, even though
commercially available antibodies raised to phospho-Thr305 in CaMKIla can detect
CaMKIlla phosphorylation in the brain, we detected substantial phosphorylation at Thr306,
but not at Thr305. Thus, data obtained using phospho-Thr305 antibodies should be
cautiously interpreted because it is unclear whether these antibodies consistently detect
phospho-Thr306 in CaMKlla.

Effect of T286A-KI mutation on CaMKIl phosphorylation in mouse brain

CaMKII holoenzymes isolated from T286A-KI mouse forebrain subcellular fractions were
analyzed in parallel with WT samples discussed above. There was a robust effect of the
T286A-KI genotype (p<0.0001) to reduce Ser275 phosphorylation by >90% in all three
subcellular fractions (Fig 3A). These data suggest that Ser275 phosphorylation may require
prior phosphorylation at Thr286, although it is unclear whether Ser275 phosphorylation
results from autophosphorylation (Fig. 1D), or from PKC phosphorylation.4> We also found
that the T286A-KI mutation decreased Ser314 phosphorylation by 27-47% across the three
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subcellular fractions (p=0.0003) (Fig 3C), perhaps because the lack of Thr286
phosphorylation reduces autonomous CaMKI| activity. However, there was no effect of
genotype on CaMKIla phosphorylation at Thr306, with similar enrichment in cytosolic
CaMKII holoenzymes in both T286A-KI and WT mice (p<0.0001) (Fig 3B). In addition,
genotype or fractionation effects on CaMKIlla phosphorylation at Ser331 (Fig 3D) or
Thr337 were not detected (Fig 3E).

The T286A-KI genotype had a significant effect on, and a significant interaction with
subcellular fraction, on CaMKIIf phosphorylation at Ser315 (fraction, p<0.0001; genotype,
p<0.0001; interaction, p<0.0001; Fig 3G) and Thr320/Thr321 (fraction, p<0.0001; genotype,
p<0.0145; interaction, p<0.0206; Fig 3H), with decreased levels in T286A-KI cytosolic
fractions compared to WT cytosolic fractions (by 59.5% and 49.0%, respectively).
Moreover, in the one biological replicate that detected phosphorylation at Thr381/Thr382,
the levels were 3.2-fold higher in the WT cytosolic fraction that in the T286A-KI fraction.
However, there was no statistically significant effect of genotype or fractionation on
CaMKIIB phosphorylation at Thr287 (Fig 3F), Ser367 (Fig 3l1), Ser397 (Fig 3J), or Thr401
(Fig 3K).

In combination, these data show that abrogation of Thr286 phosphorylation in CaMKlla by
the T286A-KI mutation affects the levels of phosphorylation at other sites in CaMKlla and
in CaMKIIp in different subcellular fractions, perhaps representing some form of
compensatory adaptation to the disruption of synaptic CaMKII targeting in T286A-KI mice
and also suggesting previously unrecognized functional linkages between sites. Further
studies are required to investigate the contributions of these sites to CaMKII regulation, and
perhaps to the phenotypes of T286A-KI mice.

Characterization of CaMKIl associated proteins (CaMKAPSs)

We also performed an unbiased proteomic screen for CaMKAPs associated with cytosolic,
membrane, and synaptic CaMKII holoenzymes. Although the precise macromolecular
nature of the solubilized synaptic fraction is unclear, we previously showed that it is highly
enriched in PSD marker proteins, such as PSD95, NMDAR subunits, and other cytoskeletal
proteins.26 CaMKII holoenzymes were immunoprecipitated from each subcellular fraction
and then separated by SDS-PAGE. Control samples were isolated from each fraction in
parallel using a non-specific 1gG. CaMKII (a or ) or CaMKAP (non-CaMKII, non-1gG
regions) regions of the gel lanes (Fig 2A) were excised and separately analyzed using a
shotgun LC-MS/MS approach.

The total numbers of mass spectra (spectral counts) matching all proteins in analyses of WT
CaMKII or IgG control samples isolated from cytosolic, membrane, and synaptic fractions
were used to calculate WT/IgG ratios of 1.2, 4.3, and 5.0, respectively, for the first
biological replicate (project A) (Table S3). Thus, CaMKII immunoprecipitation from
cytosolic fractions lacks specificity, perhaps in part due to the lack of detergent in these
samples. Consequently, subsequent analyses focused on membrane and synaptic fractions.
CaMKII-derived spectral counts were 2.9-fold higher in membrane compared to synaptic
fractions (Fig 4A), consistent with immunoblotting and protein staining data showing higher
total levels of CaMKII in membrane, compared to synaptic, fractions (Fig 2A, 2C). In
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contrast, the total number of CaMKAP-derived spectral counts was 3.2-fold higher in the
synaptic fraction compared to the membrane fraction (Fig 4B), even though the harsher
solubilization conditions might destabilize some protein-protein interactions. Thus, it
appears that CaMKAPs are preferentially associated with synaptic CaMKII holoenzymes.
Unsurprisingly, most of the non-CaMKII derived spectral counts were detected in analyses
of the two CaMKAP gel regions (above CaMKIIp and below CaMKIla), although a few co-
precipitating proteins were detected in CaMKIlla or CaMKIIf gel regions. Similar trends in
the spectral count data were observed in two independent biological replicates (Projects B
and D) (Fig S4; Table S3).

All proteins detected in CaMKII complexes for all three projects are shown in Table S3.
This list was then filtered to remove three types of “non-specific” proteins. 1. Proteins also
detected in the cytosolic fraction (due to the lack of specificity; see above). 2. Proteins
detected with <7 spectral counts in membrane and synaptic fractions combined. 3. Proteins
with WT/1gG spectral count ratios of <4 (since a WT/IgG ratio of 3.8 was calculated for
CaMKIlla-derived spectral counts in the synaptic fraction). Remaining proteins from the
three independently analyzed gel regions were then combined to form a final filtered list of
138 CaMKAPs (Table 1). Scaffold peptide probability*® and XCorr values for all peptides
matching to any of the 138 CaMKAPs are shown in Table S4. The membrane and synaptic
fractions contained 47 and 110 CaMKAPs, respectively, with >7 spectral counts (Fig 4C),
and 34 CaMKAPs were detected with <7 spectral counts in either fraction, individually, but
> 7 total spectral counts in both fractions combined. Based on the number of spectral counts,
a total of 15 CaMKAPs were selectively enriched in the membrane CaMKII complex,
whereas 93 CaMKAPs were selectively enriched in the synaptic CaMKII complex, with 30
showing little selectivity (< 2-fold difference in number of spectral counts between the two
fractions). About half of the CaMKAPs identified in Project A were also detected in at least
one of the two independent replicates (Projects B and D) (Table S3). Note that our definition
of CaMKAPs as proteins that specifically co-precipitate with CaMKII is not intended to
imply direct binding to CaMKII, because CaMKII holoenzymes may be components of
large multiprotein complexes. However, CaMKAPs may be important downstream targets
whether or not they directly interact with CaMKI|I.

Several synaptic CaMKAPs identified here were previously shown to directly interact with
CaMKI|I, validating our approach. For example, NMDA receptor subunits (GIuN1, GIuN2B,
and GIuN2A), densin (LRRCY), spinophilin (PPP1R9b; neurabin-2), and myosin Va can
directly bind CaMKII and modulate kinase activity and/or subcellular

localization.19-21. 47-51 CaMKII interaction with GIUN2B was recently shown to be
important for normal synaptic plasticity.52-54 However, some previously characterized
CaMKAPs were either undetected (e.g., diacylglycerol lipase-a°®) or did not meet our
rigorous cutoffs (e.g., a-actinin?l). This may be due to dissociation of the interacting protein
from CaMKII during subcellular fractionation, weakness of the interaction in the tissue
analyzed here, or low abundance. Moreover, some weaker interactions may be easier to
detect when the CaMKAP, rather than CaMKI|, is immunoprecipitated (e.g., diacylglycerol
lipase-a®®). However, most CaMKAPs detected here have not been previously reported to
associate with CaMKI|, including several synaptic scaffolding proteins (e.g., SAPAP1/2/3/4,
Shank1/2/3, and Brain-enriched guanylate kinase-associated protein) and proteins with other
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functions (e.g., brain-specific angiogenesis inhibitor 1-associated protein 2 (BAIAP2)); TNF
receptor-associated factor 3; multiple subunits of phosphorylase b kinase; Limbic system-
associated membrane protein; Eukaryotic initiation factor 4A (elF4A); and
phosphodiesterase 1. Additional studies will be required to ascertain whether these novel
CaMKAPs directly bind to CaMKI|I, or are components of larger macromolecular
complexes.

To provide initial insight into functionally related groupings and roles of the CaMKAPs, the
STRING database of mouse proteins, containing all but one CaMKAP (SynGAP), was used
to assign CaMKAPs into 14 groups based on known associations and functions (CaMKII;
NMDARSs; synaptic scaffolds; myosins; tubulin and microtubules; actin cytoskeleton;
ribosome and translation; ATPase/GTPase; metabolism and mitochondria; junction and
myelin; general signaling, intermediate filaments; vesicle trafficking; and other) (Fig. 5).
The top Kyoto Encyclopedia of Genes and Genomes (KEGG; www.kegg.jp°®) pathways in
this network were then identified using WebGestalt®>’: 58 (Table S5), including Ca2*
signaling, long-term potentiation, and the ribosome. Taken together, these analyses
emphasize that CaMKII is involved in diverse pathways in multiple cellular compartments.
However, additional studies will be required to identify specific functional roles of the
interactions.

Effect of the T286A-K| mutation on CaMKIl interactions

In order to provide additional perspective about the biological relevance of CaMKAPs, we
isolated and analyzed in parallel synaptic CaMKII complexes from WT and T286A-KI
mice. Since T286A-KI mice display robust changes in synaptic plasticity and diverse
behavioral deficits,22 26 we hypothesized that changes in the CaMKII interactome would
provide insights into molecular mechanisms underlying behavioral and synaptic phenotypes.
Consistent with a prior observation that synaptic levels of CaMKlla are reduced in T286A-
KI mice relative to WT,26 the number of CaMKII spectral counts in synaptic T286A-KI
complexes were reduced by ~33% relative to WT complexes. Therefore, to provide an initial
semi-quantitative comparison of the relative levels of CaMKAPs associated with CaMKI|
holoenzymes in WT and T286A-KI synaptic fractions, we normalized the number of
CaMKAP spectral counts to the number of CaMKII spectral counts (all isoforms), and then
expressed normalized values as a KI/WT ratio. KI/WT ratios of between 0.6 and 1.4 for the
majority (10 out of 18) of CaMKAPs, indicated minimal changes in relative association.
However, average KI/WT ratios across two biological replicates were >1.40 for elF4A,
GIuN1, GIuN2B, PSD-95, SAPAP1, SAPAP2, and Shank3, but less than 0.6 for only one
CaMKAP, BAIAP2 (Table 2).

We also compared relative levels of CaMKII and CaMKAPs in WT and T286A-KI synaptic
complexes by measuring AUCs of XICs for several peptides. In project A, this analysis
indicated that levels of CaMKIla and CaMKIIB in T286A-KI complexes were 46.4+5.1% (9
peptides) and 57.3+13.8% (7 peptides) of the levels in WT complexes, respectively. In
project B, levels of CaMKIla in T286A-KI complexes were 49.5+4.7% (9 peptides) of the
levels in WT complexes (CaMKIIf was not analyzed in this project). Raw AUCs of XICs
for 2-9 peptides matching each CaMKAP were then normalized to the mean CaMKlla
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AUC of XIC in the same project, before calculating a KI/WT ratio. KI/WT ratios were
significantly greater than 1.0 for GIuN2B, GIuN1, Shank3, PSD-95, and SAPAP1 in both
projects A and B (Fig. 6A-E), generally similar to KI/WT ratios calculated from spectral
counts (see above), with the exception of SAPAP2 (Fig 6F; Table 2). As a control, KI/'WT
ratios for myosin Va were not significantly different from 1.0 by AUC analysis in either run
(Fig. 6l), consistent with the KI/WT ratio based on spectral counts (Table 2). A KI/WT ratio
for elF4A could be calculated in only one biological replicate because relevant MS/MS
spectra could not be validated in the other analysis. The 4.5-fold increase in mean KI/WT
ratio for elF4A based on AUCs was consistent with the 7.5-fold increase based on spectral
counts, although the increased AUC-based ratio was not statistically significant (Fig 6G). In
contrast, mean AUC-based KI/WT ratios for BAIAP2 were significantly decreased in both
projects (Fig 6H), consistent with KI/WT ratios based on spectral counts.

These independent analytical approaches indicate that T286A-KI mutation of CaMKlla
significantly affects an array of protein-protein interactions in S3 synaptic fractions. Since
Thr286 autophosphorylation stabilizes direct interactions of CaMKII with GIUN2B in
vitro,19 20 it is perhaps surprising that we detected a significant increase in KI/WT ratio for
GIuN2B. However, this observation is consistent with a previous analyses of NMDAR
subunits association with synaptic CaMKII holoenzymes in T286A-KI mice by Western
blotting.26 We also detected significant increases in KI/WT ratios for several other
CaMKAPs (e.g., GIuN1, PSD-95, SAPAP1, SAPAP2, Shank3, elF4A) using both methods
(Table 2; Fig 6A, B). However, KI/WT ratios for related CaMKAPs (e.g., homer, SAPAP3,
shank1, shank2 and myosin Va) were essentially unchanged, suggesting that this is not a
technical artifact (Table 2; Fig. 61). Although changes in KI/WT ratios may not reflect direct
effects of a lack of Thr286 autophosphorylation on an interaction with CaMKI|, these data
indicate a broad but selective impact of T286A-KI mutation on synaptic protein-protein
interactions.

Insights into novel roles of CaMKII

The classical model of a critical role for CaMKII during LTP has been extended by recent
observations that CaMKI1 is also involved in different forms of LTD.27- 28 The identification
of 138 CaMKAPs in the present study suggests novel mechanisms of postsynaptic CaMKI|I
signaling that may contribute to these different functions. For example, direct or indirect
association of Homer and Shank proteins with CaMKII might be important for mGIuR1/5-
dependent signaling pathways that are critical for some forms of LTD, especially because
some of these interactions are sensitive to Thr286 mutation (Fig. 6; Table 2). Thus, the
current observations provide novel insights into the physiological targeting of CaMKII to
distinct pathways that mediate diverse synaptic outcomes.

Several of the novel CaMKAPs detected here have been linked to neurological and/or
psychiatric disorders. For example, BAIAP2 (also known as IRSp53) is highly abundant in
CaMKII complexes, based on the number of spectral counts detected, and was the only
CaMKAP predominantly detected in the CaMKIlla gel segment. Moreover, it was the only
CaMKAP with a significantly decreased KI/WT ratio, estimated by both methods. The
simplest interpretation of this observation is that BAIAP2 association with CaMKI|I is
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decreased in T286A-KI mice, although it is also possible that changes in posttranslational
modifications of BAIAP2 (e.g. phosphorylation) in T286A-KI synaptic fractions affect the
electrophoretic mobility of BAIAP2 to decrease the amount of BAIAP2 that essentially co-
migrates with CaMKIlla. Nevertheless, BAIAP2 merits validation as a CaMKAP followed
by functional analyses because of its known roles in binding PSD95, in regulating actin
dynamics, filopodia formation, and excitatory synaptic transmission and in modulating
learning and memory.59-62

Several novel CaMKAPs are involved in mRNA translation, and T286A-KI mutation
increased relative levels of elF4A associated with CaMKII (Table 2; Fig 6G). As part of the
elF4 translation initiation complex, elF4A is a D-E-A-D-box RNA helicase.63. 64
Interestingly, CaMKI|I regulates the recruitment of elF4GII to the elF4 initiation complex,5°
and CaMKII phosphorylation of cytoplasmic polyadenylation element-binding protein
enhances protein synthesis during LTP.6 Since abnormal protein synthesis is being
increasingly implicated in neurological and psychiatric disorders,67- 68 our data support
additional investigation of interactions between CaMKII and the protein synthesis
machinery.

Synaptic scaffolding proteins implicated in neurological and/or psychiatric disorders were
also identified as novel synaptic CaMKAPs. For example, the Shank3, DIgap2, and Syngapl
genes have been linked to Autism Spectrum Disorder (ASD),% and specific haplotypes in
the DIgap2 gene (SAPAP2) correlate with increased risk for schizophrenia.”® Moreover,
Shank3 knockout mice exhibit ASD-like behaviors,’! and some ASD-related disorders have
been linked to abnormal CaMKI| signaling (e.g. Angelman syndrome?® 72). Notably, we
detected increased KI/WT ratios for PSD95, Shank3, and SAPAP1, indicating that these
interactions are sensitive to Thr286 autophosphorylation (Table 2; Fig 6C-E). Thus,
regardless of whether CaMKII interacts directly or indirectly with Shank3, SAPAPs, or
Syngapl, our data suggest that T286 A-KI mutation causes significant changes in
postsynaptic protein architecture. The potential involvement of CaMKI|I in the physiological
regulation of these proteins, and in associated pathologies, should be further investigated.

Summary and Conclusions

Prior studies have established that CaMKIla and CaMKII are critical for many aspects of
synaptic regulation and behavior, and that CaMKIla autophosphorylation is a key regulator
of kinase activity, interactions with other proteins, and subcellular location. However,
understanding specific molecular mechanisms underlying the diverse synaptic roles of
CaMKII requires comprehensive information about CaMKII phosphorylation and the
CaMKII interactome in situ. Here, we used an unbiased semi-quantitative proteomics
approach to identify biologically relevant phosphorylation sites on both CaMKIla and
CaMKIIB. Our data are consistent with known roles for Thr286/287 and Thr306
phosphorylation in regulating CaMKII localization. Additional novel sites are differentially
phosphorylated in the subcellular fractions, and analyses of T286A-KI mice suggest an
inter-dependence of some phosphorylation events and/or compensatory changes in response
to mutation. These data suggest a complex physiological interdependence between distinct
subcellular pools of CaMKII. Using the same unbiased approach, we also identified 138
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CaMKAPs linked to diverse cellular functions, the majority of which (~100) are
preferentially associated with synaptic CaMKII holoenzymes. Notably, all the CaMKAPs
appear to be present at sub-stoichiometric levels relative to CaMKII itself (Fig. 2A),
consistent with a model in which subpopulations of CaMKII holoenzymes are associated
with different CaMKAPs to subserve distinct roles. Moreover, interactions with CaMKAPs
appear to be differentially affected by T286A-KI mutation of CaMKIlla, providing insight
into molecular changes that may contribute to well-established synaptic and behavioral
phenotypes of these mice. In combination, these findings should promote future studies to
identify novel CaMKIlI-regulated pathways involved in the normal and pathological
modulation of synaptic physiology, and various forms of learning and memory.

Materials and Methods

DNA constructs and CaMKlla/B expression

Murine CaMKIla (Uniprot #P11798) was expressed in Sf9 insect cells.”3 Rat CaMKII,
with an Ala inserted at position 341 in the canonical sequence (Uniprot #P08413), was PCR
amplified from a construct provided by Dr. L. Redmond Hardy33 and inserted into
pcDNAS3.1 for transfection into HEK293 cells growing in suspension. Thus, residue
numbering of rat CaMKIIB used for in vitro studies is increased by one relative to the
canonical sequence after the Ala insertion site. Both isoforms were purified to =95% purity,
essentially as described.”3:74,

In vitro autophosphorylation of CaMKII

Mice

Purified recombinant CaMKIlla and CaMKII (5.5 and 2.5 uM, respectively) were incubated
for 2 min at 30°C in 50 mM HEPES pH 7.5, 2 mM DTT in the absence or presence of 10
mM Mg(CH3C00),, 1.5 mM CaCl,, 10 pM calmodulin, 500 uM ATP (basal or Ca2*/CaM
conditions, respectively). A third sample was first autophosphorylated in the presence of
Ca?*/calmodulin prior to the addition of EGTA (4 mM final) to allow continued Ca2*-
independent autophosphorylation for 2 min at 30°C (Ca2*/CaM then EGTA; sequential). All
reactions were terminated by addition of EDTA (25 mM final) and then mixed with
trichloracetic acid (10% (w/v) final). After incubation on ice for 30 minutes and
centrifugation (10,000 x g for 15 min), protein pellets were washed by resuspension in cold
acetone and then re-centrifuged.

T286A-KI or WT littermates (male: 3-6 months of age) bred from heterozygous breeding
pairs on a C57BL/6J background (as described previously2%) were used for separate
comparative proteomics analysis. All animal protocols were approved by the Vanderbilt
Institutional Care and Use Committee.

Immunoprecipitations from whole forebrain fractions

Cytosolic (S1), Triton-soluble membrane (S2), and Triton/deoxycholate soluble synaptic
(S3) fractions of mouse forebrain’® (~3 mg total protein each) were immunoprecipitated
using a polyclonal goat CaMKI|I antibody (5.4 pg) or a goat 1gG control (purified from pre-
immune serum by ammonium sulfate precipitation).>1: 73 The CaMKII antibody exhibits
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approximately equivalent sensitivity for purified a, B, y and & isoforms of CaMKI|I in
immunoblots. Since CaMKII constitutes ~1% of total forebrain protein, each input contains
~30 g of CaMKI|, likely saturating the antibody during immunoprecipitation, consistent
with the similar SYPRO Ruby staining intensity for 1gG and CaMKII bands in the
immunoprecipitation lanes in Fig. 2A.

Immunoblotting

Mouse forebrain subcellular fractions were immunoblotted using phospho-Thr286-specific
(Santa Cruz, 12886-R; 1:1000-1:2000 dilution) and total (Thermo-Pierce, MA1-048;
1:4000-1:10000 dilution) CaMKlla antibodies.”

Mass spectrometric analysis

CaMKII and control immunoprecipitates were resolved by SDS-PAGE and stained with
either SYPRO Ruby (Life Technologies) or colloidal blue stain (Life Technologies). Each
gel lane was excised in segments, corresponding to the CaMKlla or CaMKIIp regions and
two CaMKAP regions below CaMKIla and above CaMKIIp (Fig. 2A). Thus, the gel
segment containing the highly abundant IgG heavy chain was excluded from all subsequent
analyses in order to minimize the suppression of MS signals from less abundant proteins. In
some replicates, only the CaMKIlla and/or CaMKIIf segments were analyzed for
phosphorylation sites, whereas other replicates analyzed all four segments to detect co-
precipitating proteins. Gel segments were incubated with 200 mM ammonium bicarbonate,
pH 8, reduced with 4 mM DTT or TCEP, alkylated with 8 mM iodoacetamide and digested
overnight with trypsin (10 ng/ul; 37 °C). Extracted peptides were dissolved in 0.1% formic
acid and resolved using a reverse-phase C18 capillary column (360 um o.d and 100 pm i.d.)
packed with Jupiter beads (3-um, 300 A; Phenomenex) and equipped with a laser-pulled
emitter tip using an Eksigent Ultra LC and autosampler. Mobile phases were 0.1% formic
acid, 99.9% water (solvent A) and 0.1% formic acid, 99.9% acetonitrile (solvent B). The
elution gradient (500 nl/min) was: 0-10 min, 2% B; 10-50 min, 2-35% B; 50-60 min, 35—
90% B; 60—65 min, 90% B, 65-70 min, 90-2% B, 70-90 min, 2% B. Eluted peptides were
analyzed on LTQ Orbitrap XL or LTQ Orbitrap Velos mass spectrometers (Thermo
Scientific) using a data-dependent method with dynamic exclusion enabled. Full scan (m/z
300-2,000) spectra were acquired with the Orbitrap as the mass analyzer, and the most
abundant ions (5 on the LTQ Orbitrap XL or 12 on the LTQ Orbitrap Velos) in each MS
scan were selected for fragmentation via collision-induced dissociation (CID). All tandem
mass spectra were converted into DTA files using Scansifter and matched to a mouse subset
of the UniProtKB protein database (also containing reversed (decoy) protein sequences)
using a custom version of SEQUEST’® on the Vanderbilt ACCRE Linux cluster. The results
were assembled in Scaffold 3 (Proteome Software) with minimum filtering criteria of 95%
peptide probability.46 Searches were configured to use variable modifications of cysteine
carbamidomethylation, methionine oxidation, and serine, threonine, and tyrosine
phosphorylation. Modifications were validated by manual inspection of raw tandem mass
spectra using QualBrowser (Xcalibur 2.1.0, Thermo Scientific) (Fig. S1, S2). Peptides
originating from CaMKIlla and CaMKIIB were matched to the canonical mMRNA splice
variants in the UniProt database (P11798 and P28652, respectively).

ACS Chem Neurosci. Author manuscript; available in PMC 2016 April 15.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Baucum et al. Page 14

Spectral Counting from Assembled Scaffold Files

Relative protein abundance in samples from WT and T286A-KI mice was estimated from
the total number of spectral counts (in all regions of the gel analyzed in a given biological
replicate) matching a specific protein based on Scaffold files, using both unmodified and
modified (i.e. cysteine alkylation, methionine oxidation, STY phosphorylation) spectra. The
global list of ranked proteins, with common contaminants (e.g., keratin) deleted, separated
by the segment of the parent gel in which they were identified is available online as Table
S3, which also lists the number of spectral counts detected for each protein in each segment
and project. For normalizing CaMKAPs from WT and KI synaptic fractions, the total
number of spectral counts matching a specific CaMKAP was divided by the total number of
spectral counts matching all of the CaMKII isoforms isolated from the synaptic fraction of
the same biological replicate.

Extracted lon Chromatogram (XIC) Analysis

Accurate mass measurements were used to generate extracted ion chromatograms (XICs)
with a 10 PPM tolerance for non-phosphorylated and phosphorylated peptide pairs, and were
validated from the MS/MS fragmentation pattern. Monoisotopic nvz values of observed
precursor ions (across different charge states) were used to generate XICs. The abundance of
each phosphorylated and non-phosphorylated peptide pair was estimated from areas under
the curve (AUC) of each XIC. An estimated “percentage phosphorylation” was calculated as
the ratio of the AUC for the phosphorylated tryptic peptide divided by the sum of AUCs for
the phosphorylated and non-phosphorylated tryptic peptides (AUCphospho / (AUCphospho +
AUCh0n-phospho)- AUC based methods can be used to compare relative stoichiometries of
phosphorylation between different experimental groups,’’ although effects of covalent
modifications on peptide ionization efficiencies and peptide “flyability” suggest caution
when interpreting absolute values.’8 However, even with this caveat, the patterns of absolute
percentages of CaMKIla phosphorylation under the in vitro conditions (Fig. 1D, E) are
consistent with previous data showing that Thr286 is a preferred site of Ca2*/CaM-
dependent autophosphorylation,®-11 whereas Ser314 is a preferred site for Ca2*/CaM-
independent autophosphorylation (Ca?*/CaM followed by EGTA conditions).13 14 In cases
where tryptic fragments contains multiple modifications (e.g., oxidation, phosphorylation at
other sites in the same peptide), or a missed cleavage resulted in the separation of multiple
tryptic peptides containing the same site-specific modification, the percentage
phosphorylation was calculated based on the sum of AUCs for all relevant XICs. The
percentage phosphorylation at a given site in each subcellular fraction from WT or T286A-
KI mice within each biological replicate (processed and analyzed in parallel) was
normalized to the highest level of phosphorylation detected in a WT subcellular fraction.
Normalized ratios were then averaged across biological replicates.

AUCs of XICs for precursor ions of a specific tryptic fragment of a CaMKAP were also
used to compare the abundance of specific CaMKAPs in WT and T286A-KI CaMKI|
holoenzyme samples prepared and analyzed in parallel. For these AUC analyses, we
carefully selected tryptic fragments lacking any modified (e.g., phosphorylated) versions in
the Scaffold files. If an XIC was detected and validated by MS/MS in either the WT or Kl
and a corresponding peak of the correct precursor mass and retention time window was
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detected in the other genotype without an associated MS/MS scan, this peak was used for
quantification. AUCs for each CaMKAP peptide were expressed as a ratio (KI/WT) and
normalized to the average KI/WT AUC ratio calculated from 9 unique XICs matching
CaMKIlla. Thus, the normalized ratio represents the relative abundance of specific tryptic
precursor ions in samples derived from the two genotypes.

Network Analyses

Statistics

CaMKAPs (Uniprot 1Ds) were analyzed using WebGestalt (http://bioinfo.vanderbilt.edu/
webgestalt/). Analyses for Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichments were performed and are provided either as tables or
interactive webpages. To identify known or predicted interactions between CaMKAPSs,
Uniprot IDs were input to the STRING database (http://www.string-db.org), which identifies
interactions based on direct and indirect evidence, including genomic context, high-
throughput experiments, co-expression, and previous knowledge.

Comparisons were made using a one-way or two-way ANOVA, as appropriate, followed by
Tukey’s post-hoc test to compare specific groups. A one-column t-test was used to compare
KI/WT ratios to a theoretical value of 1 (Fig 6).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification of in vitro CaMKIlla and CaMKIIB phosphorylation sites

A-C. Sequence coverage (red) and phosphorylation-site detection (blue, underlined) in
purified CaMKlla or CaMKIIB following either: A, a control incubation (Basal), B,
phosphorylation in the presence of Ca2*/calmodulin alone (Ca2*/CaM), or C, sequential
phosphorylation in the presence of Ca2*/calmodulin and then EGTA (Ca2*/CaM then
EGTA) (see Methods). D, E. The AUCs of XICs were used to compare relative levels of
phosphorylation of CaMKIla at 16 different phosphorylation sites (D) or CaMKIIf at 15
different phosphorylation sites (E) in each sample.
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Figure 2. Identification of phosphorylation sites in mouse forebrain CaMKIlla and CaMKIIf
A. Cytosolic (S1), membrane (S2), and synaptic (S3) fractions were immunoprecipitated

using control or anti-CaMKII 1gG, and immune complexes were analyzed by SDS-PAGE
followed by staining with Sypro Ruby. B. Semi-quantitative analysis of relative levels of
CaMKIlla phosphorylation at 6 different sites in each fraction normalized to the highest
level for each site. The synaptic fraction was selectively enriched for Thr286
phosphorylation, whereas the cytosolic fraction was selectively enriched for Thr306
phosphorylation. C. Immunoblot analysis of subcellular fractions confirms that the synaptic
(S3) fraction is significantly enriched in Thr286 phosphorylated CaMKIlla. D. Semi-
quantitative analysis of relative levels of CaMKIIB phosphorylation at 6 different sites in
each fraction normalized to the highest level for each site. The cytosolic fraction was
selectively enriched for phosphorylation at Ser315 and Thr320/1. *p<0.05; ***p<0.001;
****p<0.0001; in comparison to the highest level at that site. E. Summary of CaMKI|I
phosphorylation sites. Horizontal bars indicate aligned domain structures of the canonical
CaMKIlla and CaMKII isoforms based on a sequence alignment (accession numbers:
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P11798 and P28652, respectively). Sequence alignments of selected regions are indicated
above the bars, whereas CaMKIIB-specific sequences of the actin-binding domain (ABD)
are indicated below. All phosphorylation sites detected in this study (in vitro or in vivo) are
indicated by red dots adjacent to amino acid sequences or by residues in red font adjacent to
the domain bars. Black dots and fonts indicate additional residues detected in prior global
phospho-proteomics studies.36-41 Yellow highlighted labels indicate phosphorylation sites
identified in only one study.
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Figure 3. Effect of T286A-KI mutation on CaMKIlla and CaMKIIB phosphorylation at other
sites

Levels of phosphorylation of CaMKIlla (A-E) and CaMKIIB (F-K) at the indicated sites
were compared across subcellular fractions isolated in parallel from WT and T286A-KI
mice. Data are the mean from 4 (A-E) or 3 (F-K) biological replicates after normalization to
the estimated level in the WT S1 fraction within each replicate. A 2-way ANOVA revealed
a significant genotype effect on phosphorylation of CaMKIla at Ser275 (A; F(1,15) = 157.8;
p<0.0001) and Ser314 (C; F(1,15) = 22.42; p=0.0003) and a significant fractionation effect
on Thr306 phosphorylation (B; F(2,15) = 35.41; p<0.0001). For CaMKIIp there were
significant fractionation and genotype effects and an interaction effect on the
phosphorylation at Ser315 (E; Fractionation effect (F(2,9) = 153.8, p<0.0001), Genotype
effect (F(1,9) = 49.4, p<0.0001), Interaction (F(2,9) = 33.55, p<0.0001) and Thr320/
Thr321(F; Fractionation effect (F(2,9) = 58.31, p<0.0001), Genotype effect (F(1,9) = 9.115,

Phosphorylation
(Normalized Ratio)
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p=0.0145), Interaction (F(2,9) = 6.159, p=0.0206). Significant differences revealed by post-
hoc analyses are coded as follows: *, compared to S1 WT. $, compared to S2 WT. @,
compared to S3 WT. #, compared to S1 KI. Single, double, triple and quadruple symbols
indicate p<0.05, p<0.01, p<0.001, and p<0.0001, respectively.
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Figure 4. Comparative levels of CaMKII and CaMKAPs in WT S2 and S3 fractions
A. Fewer total spectral counts derived from all CaMKII isoforms were detected in the S3

fraction compared to S2 fraction. B. The total number of spectral counts derived from
proteins other than CaMKII was larger in the S3 fraction that in the S2 fraction. C. More
proteins other than CaMKII were detected in S3 complexes compared to S2 complexes.
These data are derived from project A; relative differences between fractions are
representative of two other independent biological replicates (see Figure S4).
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Figure 5. A CaMKAP interaction map
The STRING-db identifies interactions utilizing genomic context, high-throughput

experiments, co-expression, and previous knowledge. Default parameters were used to
generate this map. Associations from multiple sources and/or contexts have thicker lines.
Proteins were arbitrarily assigned to 14 different groups based on protein function and
interaction data.
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Figure 6. Effect of T286A-KI mutation of CaMKIla, on the association of selected CaMKAPS
with CaMKII holoenzymes in the S3 fraction

Relative levels of each CaMKAP in WT and T286A-KI samples were estimated from the
AUC of XICs for multiple peptides, normalized to the relative levels of CaMKlla (similarly
estimated from AUCs for 9 peptides) and then expressed as a ratio (KI/WT). Data from 1 or
2 independent biological replicates (“projects”) are shown. Each data point is the ratio
calculated for a single CaMKAP derived peptide, with the mean and S.E.M indicated. A.
GIuN2B, B. GIuN1, C. Shank3, D. PSD-95, E. SAPAPL, F. SAPAP2, G. EIF4A, H.
BAIAP2, 1. Myosin Va. Data for each project were compared to a theoretical value of 1 (no
difference; dashed line) using a one-column t-test. *p<0.05, **p<0.01, ***p<0.001.
****<0.0001.
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