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Abstract

The junctional sarcoplasmic reticulum (jSR) is an important and unique ER subdomain in the 

adult myocyte that concentrates resident proteins to regulate Ca2+ release. To investigate cellular 

mechanisms for sorting and trafficking proteins to jSR, we overexpressed canine forms of junctin 

(JCT) or triadin (TRD) in adult rat cardiomyocytes. Protein accumulation over time was visualized 

by confocal fluorescence microscopy using species-specific antibodies. Newly synthesized JCTdog 

and TRDdog appeared by 12-24 h as bright fluorescent puncta close to the nuclear surface, 

decreasing in intensity with increasing radial distance. With increasing time (24-48 h), fluorescent 

puncta appeared at further radial distances from the nuclear surface, eventually populating jSR 

similar to steady-state patterns. CSQ2-DsRed, a form of CSQ that polymerizes ectopically in 

rough ER, prevented anterograde traffic of newly made TRDdog and JCTdog, demonstrating 

common pathways of intracellular trafficking as well as in situ binding to CSQ2 in juxtanuclear 

rough ER. Reversal of CSQD-sRed interactions occurred when a form of TRDdog was used in 

which CSQ2-binding sites are removed (delTRD). With increasing levels of expression, CSQ2-

DsRed revealed a novel smooth ER network that surrounds nuclei and connects the nuclear axis. 

TRDdog was retained in smooth ER by binding to CSQ2-DsRed, but escaped to populate jSR 

puncta. TRDdog and del TRD were therefore able to elucidate areas of ER-SR transition. High 

levels of CSQ2-DsRed in the ER led to loss of jSR puncta labeling, suggesting a plasticity of ER-

SR transition sites. We propose a model of ER and SR protein traffic along microtubules, with 

prominent transverse/radial ER trafficking of JCT and TRD along Z-lines to populate jSR, and an 

abundant longitudinal/axial smooth ER between and encircling myonuclei, from which jSR 

proteins traffic.
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1. Introduction

The cardiac secretory pathway is a network of inner membranes that serves a range of 

functions through a continuous set of functional membrane subdomains. In the adult 

cardiomyocyte, the endoplasmic and sarcoplasmic reticulum (ER/SR) stretch across the 

sarcomeres of the myocyte forming critical subdomains that regulate Ca2+ homeostasis 

[1-5]. Many functional processes in the heart rely upon the orchestrated movements of Ca2+ 

and the resident proteins of multiple SR and sarcolemmal subcompartments. In all cells, 

resident ER/SR proteins are synthesized within a rough ER subdomain, then traffic to more 

distal sites either by diffusion or targeting, but these established biosynthetic steps remain 

poorly understood within the context of the myocyte.

Two major functional subdomains of the SR are recognized in cardiac myocytes [1, 6-9]. 

Ca2+ release is regulated by SR interactions with sarcolemma and transverse (T)-tubules. 

Junctional SR (jSR) concentrates a few prominent resident proteins, such as the Ca2+-release 

channel, ryanodine receptor (RYR2) [3, 8, 10, 11], calsequestrin (CSQ2) [8, 12], a luminal 

resident protein, and two small transmembrane proteins, triadin (TRD) [13-15] and junctin 

(JCT) [16], that bind CSQ2 in vitro [15].

The second major site of SR Ca2+-handling function is a subdomain more specialized to 

remove Ca2+ from the cytoplasm due to its high levels of the SR/ER Ca2+ -ATPase 

(SERCA2) [8, 17]. SERCA2 protein levels are high across the SR membrane system, but 

with relatively reduced levels close to jSR sites [8, 17]. SERCA2 localization may best be 

described morphologically as present everywhere except non-jSR, as opposed to residing in 

longitudinal SR [8, 17]. Thus, morphological relationships between these two cardiac 

domains are defined primarily by their functions, not by cell biological biogenesis and 

trafficking.

We previously reported that CSQ2, when fused to the fluorescent protein DsRed, 

polymerizes inside early compartments of cardiac ER/SR producing a bright red 

fluorescence around nuclei that co-localizes with rough ER markers [18]. Double labeling of 

the polymeric and monomeric forms of CSQ2-DsRed suggested that CSQ2 is selectively 

retained because of its polymerization state [18], consistent with the discrete localizations of 

CSQ1 and CSQ2 in nonmuscle cells [19, 20]. CSQ2 immunoreactivity elucidates well-

defined polygonal ER tubules characteristic of the organelle [19], while, CSQ1, because it 

does not polymerize in the ER, populates the “next” organelle (distally) – the ER-Golgi 

intermediate compartment (ERGIC) [20]. Trafficking of these ER tubules containing 

polymerized CSQs clearly occurs along microtubules (MTs), and MT disruption by 

nocodazole results in scattered patches of ER throughout the cytosol. In cultured 

cardiomyocytes, the jSR appears to is a dynamic structure in which resident proteins such as 

ryanodine receptor-containing ER exhibit ongoing ER movement that is sensitive to 

inhibition of MT motor proteins dynein and kinesin [21].

To reveal early trafficking steps of jSR proteins, we carried out immunofluorescence 

analyses of acutely expressed transmembrane proteins JCTdog and TRDdog. Junctional SR 

proteins were synthesized in rough ER juxtaposed to the nucleus, and with time filled ER 
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both axially and radially along MTs, although population of jSR was primarily along radial 

(transverse) ER tubules.

2. Materials and Methods

2.1 Heart cell preparation and culture

The investigation conforms to the Guide for the Care and Use of Laboratory Animals 

published by the US National Institutes of Health (NIH Publication No. 85-23, revised 

1996). Animal research was approved by the Wayne State University Animal Investigation 

Committee (protocol #A 04-02-13). Cells were prepared as previously described [22]. 

Briefly, hearts of male Sprague–Dawley rats were excised and perfused by Langendorff 

method. Enzymatic dissociation was carried in 5 mg Liberase Blendzyme (Roche) in Hank's 

buffer at 37 °C. Cells were resuspended in Medium 199 containing 2% bovine serum 

albumin, 2 mM carnitine, 5 mM creatine, 5 mM taurine, 2 mM L-glutamine, 2 mM 

Glutamax-1 (Invitrogen), ITS mixture (Sigma I3146), 100 units/ml penicillin G, 0.1 mg/ml 

streptomycin and 25 μM blebbistatin [22] were plated on laminin-coated dishes at 37 °C 

with 5% CO2.

2.2. Adenoviral-mediated expression

Adenoviruses encoding CSQ-DsRed (Ad.CSQ-DsRed) and TRDdog (Ad.TRD) were 

previously described [23, 24]. Ad.JCT was constructed from the canine cDNA [16, 25] As 

previously described [18], adenoviruses were added directly to dishes 2 h post-plating. 

Treatments were carried out for 12 or 16, 24, and 48 h before harvesting for biochemical 

analysis and fixing of coverslips for microscopy.

2.3. Antibodies

Monoclonal anti-JCTdog 5D8 (epitope: residues 156-154) and anti-TRDdog 8G5 (epitope: 

residues: 125-132) antibodies, raised towards purified canine JCT and canine TRD [14, 26], 

were generated by standard mouse monoclonal technology, and epitopes determined using 

Pepspot, JTP Peptide. Canine TRD-specific rabbit polyclonal antibodies raised to the C-

terminus of canine cardiac TRD were previously described [24]. Mouse anti-α-tubulin 

antibodies was Sigma T6074 and rabbit anti-βIII-tubulin was Abcam ab52901. Mouse 

monoclonal anti-rat TRD antibodies were from Thermo (MA3-927). Alexa Fluor 488 or 568 

conjugated goat anti-rabbit IgG, Alexa Fluor 488 or 568-conjugated goat anti-mouse IgG 

secondary antibodies were purchased from Invitrogen. Relative specificity/selectivity of the 

antibodies used towards dog or rat jSR proteins indicated by (+) or (−) are shown in Table I.

2.4. Immunoblotting

SDS-PAGE was carried out according to Laemmli [27] on 10% acrylamide gels or using 

Invitrogen 10% Bis-Tris MIDI gels as indicated. Gels were transferred to nitrocellulose 

membranes (0.45 μm, Bio-Rad Laboratories) and stained with Amido black (Sigma). 

Immunoblotting was carried out as previously described [22] using HRP-conjugated 

secondary antibodies (Jackson ImmunoResearch Laboratories) and enhanced 

chemiluminescence (Thermo Scientific), visualized by autoradiography (Amersham 
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Hyperfilm ECL film, GE Healthcare). Protein concentrations were determined according to 

Lowry [23].

2.5. Fluorescence microscopy

Preparation of slides for microscopy was as previously described [18]. Briefly, cells were 

fixed on coverslips with 4% paraformaldehyde in PBS for 15 min and then permeabilized 

for 10 min in 0.2% Tween-20. Coverslips were blocked in PBS with 0.2% Tween-20 (PBS/

Tween) and 2% goat serum at room temperature for 20 min. Cells were then incubated in 

PBS/Tween with primary antibody (1:100) overnight at 4°C, followed by washing in PBS/

Tween, and incubation with goat anti-rabbit IgG or goat anti-mouse IgG antibodies 

conjugated to Alexa Fluor dyes (1:100 dilution in PBS/Tween for 120 min). Cells were 

counterstained with NucBlue Fixed Cell ReadyProbes Reagent (Molecular probes R37606) 

for 30 min. rinsed, and mounted to microscope slides with ProLong Antifade Mounting Kit 

(Molecular Probes). Imaging was performed using a 63 ×/1.4 oil objective on a Leica 

Advanced Fluorescence system (AF6000). Confocal images were processed and optimized 

offline for publication using Photoshop (Adobe Systems Inc.). Fluorescence intensity 

quantification was performed using ImageJ (Wayne Rasband, National Institutes of Health). 

Images were obtained as a series of optical slices (Z-stack), and single confocal images were 

selected for quantitation. Transverse lines of approximately 100 pixels were used to select 

areas within confocal planes that extended from the edge of one nucleus to the cell edge. 

Channel values were standardized for plotting using Microsoft Excel. Fluorescence intensity 

analyses were performed on images taken using identical camera settings for a given 

antibody without offline adjustments.

3. Results

3.1 Specie-specific antibodies to jSR proteins

Immunoreactivities of antibodies were tested against canine and rat heart samples. Anti-

JCTdog and anti-TRDdog antibodies exhibited complete specificity to the canine forms 

(Table I and Fig. 1). These antibodies would therefore permit the specific detection of 

acutely expressed canine JCT and TRD above steady-state levels of the native rat heart 

protein forms. Meanwhile, rat forms JCTrat and TRDrat were detected using a second set of 

antibodies, although anti-JCTrat detected both forms. The anti-TRDrat antibody detected a 

single immunoreactive band of roughly 50 kDa (Fig. 1B). The reason for this aberrant 

mobility compared to the canine form was not further investigated.

3.2 Early accumulation of overexpressed JCTdog and TRDdog at juxtanuclear sites of jSR

To visualize intracellular sites of earliest JCTdog and TRDdog accumulation and early 

trafficking, we analyzed cultured rat cardiomyocytes after 12, 24, 30 and 48 h of expression. 

Confocal images of indirect immunofluorescence were generally acquired as a Z-stack 

covering the height of the cell in contiguous series of optical slices of 0.5 μM thickness, 

allowing us to most clearly identify the optical planes in which transverse ER/SR structures 

radiated outward from nuclei.
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JCTdog first appeared after 16-24 h of virus treatment, and its early distribution showed a 

restricted pattern of puncta that surrounded nuclei, when viewed in an optical plane through 

the center of a nucleus. The most intensely fluorescent puncta were those that most closely 

encircled the nucleus, starting approximately 1 μM from the nuclear surface (Fig. 2A,B). 

Additional puncta of lower intensity appeared to radiate away from the nuclear surface along 

transverse (Z-) lines towards the periphery of the cell. JCTdog immunofluorescence co-

localized with that of native JCTrat, validating its passage across, and concentration in jSR. 

With increasing incubation times, JCTdog accumulated in jSR at greater distances from the 

nuclear surface, suggesting a peripherally directed movement of protein across the cell. By 

36-48 h of incubation, the distribution of JCTdog was qualitatively similar to that of native 

JCTrat. Native JCTrat could be observed across jSR puncta using anti-JCTrat antibodies, but 

with only reduced detection of TRDdog. The co-localization of anti-JCTrat-positive and anti-

JCTdog-positive puncta across the cell width, independent of relative immunoreactive 

strengths, suggested that both were co-localized in the same jSR sites.

To quantitate the overt changes in JCTdog distribution near the myonuclei with increasing 

times in culture after virus treatment, we measured fluorescence intensities, beginning with 

the most juxtanuclear puncta. The measured changes were consistent with a continuous 

buildup of protein levels next to the nucleus, leading to a monotonic dissipation across the 

cell width over 48 h of expression. The time course of JCTdog accumulation observed in the 

microscope was validated by immunoblotting of harvested cells (Fig. 2D). JCTdog levels 

rose significantly between 24 and 48 h. TRDdog showed a pattern of accumulation that was 

similar to that of JCTdog, first appearing in cultured cardiomyocytes around 16-24 h in 

culture (Fig. 3). TRDdog and TRDrat immunofluorescence co-localized with similar 

distributions, suggesting a direct passage of newly made JCT and TRD across, and 

concentration in, jSR (Fig. 3B,C).

3.3 In-situ interaction of JCTdog and TRDdog with juxtanuclear CSQ2-DsRed in rough ER

Newly synthesized JCTdog or TRDdog formed puncta beginning a short distance (~ 1 μM) 

from the nuclear surface. Lower but detectable levels of protein were often observed closer 

to the nuclear surface at early times (cf. Fig. 4B, white arrowheads), suggesting that the 

initial highly fluorescent jSR puncta were yet distal to the actual sites of biosynthesis. To 

further investigate the sites of jSR protein biosynthesis, we compared early JCTdog and 

TRDdog sites of accumulation with the bright red DsRed fluorescence that accompanies 

accumulation and concentration of CSQ2-DsRed in rough ER [18, 28].

After only 24 h of co-expression with CSQ2-DsRed, both TRDdog and JCTdog showed their 

relatively typical perinuclear patterns of jSR filling (Fig. 5A). However, by 48 h, JCTdog and 

TRDdog had accumulated to very high relative levels in and around the nuclear envelope 

(Fig. 5A), co-localized with CSQ2-DsRed in juxtanuclear rough ER (Fig. 5B). The bright 

red fluorescence that occurs with formation of DsRed tetramers [29], was previously shown 

to correspond to the ectopic polymerization of CSQ2-DsRed in cardiac rough ER that 

prevents its normal anterograde trafficking [18].

To show that newly made TRDdog was binding to CSQ2 through its well-characterized 

interaction domain [15], we compared the effect of CSQ2-DsRed on trafficking of newly 
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accumulated delTRD, a deletion mutant of TRDdog absent the canonical CSQ2-binding site 

[24]. A very different picture emerged using delTRD, which showed little co-localization or 

restricted anterograde movement with CSQ2-DsRed (Fig. 5). These data suggested that 

CSQ2-DsRed, TRD, and JCT were synthesized at a common intracellular site of rough ER, 

likely in and near the nuclear envelope. These data also demonstrated that TRD stably bound 

to CSQ2 in situ. Based upon the known similarities in CSQ2-binding properties for JCT and 

TRD [16, 30, 31], and homologous CSQ2-binding sequences present in JCT [15], these data 

suggest that JCT was also binding specifically to CSQ2 in situ.

3.4 Morphological distinctions between smooth ER and jSR

We previously concluded that expression of CSQ2-DsRed produces a form of the protein 

that cannot properly traffic to endogenous jSR sites due to its ectopic polymerization near 

sites of biosynthesis [18]. This is consistent with the idea that retention of different forms of 

the CSQ protein CSQ (e.g. CSQ1, CSQ2, and CSQ2-DsRed) is uniquely determined by their 

polymerization, which is sensitive to levels of Ca2+ and ionic milieu [18, 20].

In the current study, we extended these previous observations to find that lower levels of 

CSQ2-DsRed fluorescence populated the secretory pathway beyond the nuclear envelope 

and juxtaposed cisternae, into ER tubules between the two myonuclei and extending well 

into the periphery of the cell (Fig. 6A). This CSQ2-DsRed-positive ER very often appeared 

as circular or polygonal tubules, presumably depending upon its orientation in optical slices. 

The underlying MT network in these regions suggested that these more extensive smooth 

ER components might lie along the dense, longitudinally directed MT network (Fig. 6B). 

Along a central axis between nuclei connecting the nuclei, CSQ2-DsRed further appeared as 

intertwined tubular and polygonal membranes (Fig. 6C,D). To compare the early pathway of 

TRDdog trafficking with the early ER subcompartments of CSQ2-DsRed, we co-

overexpressed TRDdog and CSQ2-DsRed. Comparisons of DsRed red fluorescence with 

green anti-TRDdog immunofluorescence showed that newly made TRDdog co-localized with 

CSQ2-DsRed around nuclei and even along the longitudinal ER tubules (Fig. 7A-C). The 

concentration in and around the nuclear envelopes was very marked, and contrasted with the 

pattern of early accumulation observed when TRDdog or JCTdog were expressed alone (cf. 

Fig. 2-4).

In addition to the majority of TRDdog that co-localized with CSQ2-DsRed, there was also a 

population of TRDdog molecules that concentrated in peripheral jSR puncta (Fig. 7C). These 

molecules were likely those synthesized prior to CSQ2-DsRed polymerization (at 24-30 h 

[18]). The resultant ER and jSR “double labeling” highlighted interesting differences in ER 

and jSR. After about 36 h, the smooth ER began filling with CSQ2-DsRed, and though it 

overlapped with jSR (Fig. 7D,E), it generated a non-punctate pool of ER, suggesting that 

smooth ER intersected with or overlapped jSR sites but was not obligated to concentrate 

protein there.

Another interesting feature of early jSR protein biosynthesis was an apparent segregation of 

newly biosynthesized jSR proteins within the rough ER itself Fig. 7D,E). Thus, within the 

nuclear envelope, bright fluorescent areas (large puncta) were typically seen that aligned 

with more distal markers of jSR puncta (Fig. 7E). This early sorting into sarcomeric patterns 
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suggested that ribosomes might adhere non-homogenously to rough ER subdomains as part 

of some wider structural biosynthetic structures.

To further investigate the interface between the longitudinal smooth ER (of CSQ2-DsRed) 

and early jSR puncta of newly synthesized TRDdog, we used del TRD to circumvent its in 

situ interaction with CSQ2- DsRed. Expressed alone, delTRD produced a time-dependent 

change in fluorescent puncta that was similar to that of wild type TRDdog and JCTdog 

proteins (data not shown). When co-expressed with CSQ2-DsRed for 48 h, delTRD 

immunofluorescence labeled ER/SR subcompartments that were morphologically distinct 

from the CSQ2-DsRed-labeled ER subcompartment (Fig. 8). CSQ2-DsRed was localized to 

the nuclear envelope and smooth longitudinal ER, while delTRD immunofluorescence was 

relatively low in CSQ2-DsRed-containing smooth ER, concentrating instead in puncta 

outside the boundaries of the most intense areas of red fluorescence. At incubation times of 

24-36 h, one could more readily observe transitions from red-to-green ER tubules close to 

the nuclear surfaces (Fig. 8D), longer incubation times of 36-48 h led to an increased CSQ2-

DsRed accumulation, increased DsRed fluorescence, and an apparent swelling of the smooth 

ER (Fig. 8A,E). Interestingly, even under the circumstances of ER proliferation, jSR sites 

marked by delTRD immunofluorescence still maintained a distinct separation from DsRed 

fluorescence (Fig. 8A,E).

Clear areas of transition could be discerned where longitudinally oriented CSQ2-DsRed-

positive ER gave way to transversely aligned puncta delTRD-containing 

immunofluorescence (white arrows, Fig. 8, panels B2, C2). These areas of apparent ER-to-

SR transition occurred over a radial distance of only a few hundred nanometers. On the 

proximal side of this transition, delTRD was retained at lower levels, appeared non-punctate, 

and co-localized with CSQ2-DsRed. On the distal side of the transition, delTRD was more 

punctate and co-localized with jSR. Thus, smooth plus rough ER compartments (CSQ2-

DsRed-postive) are distinguished both by the fact that CSQ2-DsRed appears unable to exit, 

and that TRD (delTRD) fails to accumulate. JSR, on the other hand, is obviously marked by 

the beginning of the formation of concentrated puncta from smooth ER protein traffic. It is 

interesting to note that punctate localization of delTRD presumably did not require binding 

to CSQ2 for concentrating in jSR.

3.5 Inhibition of anterograde trafficking of JCT and TRD by nocodazole

If trafficking of JCTdog and TRDdog away from the nuclear envelope and smooth ER 

towards jSR along longitudinal and transverse pathways occurred, we would predict that a 

MT platform exists from which molecular motors could carry the jSR cargo. To determine 

the effects of MT disruption on early accumulation and initial trafficking steps of JCT and 

TRD, we used nocodazole [32]. To ascertain possible effects of MT disruption on JCTdog 

and TRDdog trafficking, we allowed newly synthesized JCTdog and TRDdog to accumulate 

for 36 h in the presence of drug. Nocodazole treatment resulted in bright fluorescent rings of 

juxtanuclear ER, representing JCTdog and TRDdog that were prevented from trafficking 

away from their sites of synthesis (Fig. 9A,B). These data show an involvement of MT at the 

earliest sites of exit from the rough ER, and corroborate the view that juxtanuclear ER is the 

common site of jSR biosynthesis.
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Nocodazole treatments led to diminished MT staining throughout the cells (Fig. 9C). 

Differences in MT staining were apparent when comparing anti-alpha tubulin and anti-beta 

tubulin, as was previously reported in mouse skeletal muscle immunostaining [33], 

suggesting that cardiac muscle might also contain immunologically distinct pools of MTs 

for transverse (radial) versus longitudinal (axial) ER/SR traffic. Protein levels of JCT and 

TRD detected by immunoblotting remained similar in nocodazole treated and untreated cells 

(data not shown).

4. Discussion

Studies of jSR structure have outpaced our understanding of cardiomyocyte cell biology, 

leading to knowledge of changes in jSR structure in chronic disease with little context for 

understanding its mechanisms. In this study, we have characterized the changes in 

localization of newly made JCTdog and TRDdog over the initial 48 h of expression. The 

results of these studies serve as a basis for understanding the cellular physiology that 

accompanies co-translational and posttranslational features of jSR proteins. Biochemical 

changes that occur within early subdomains of the cardiac secretory pathway include: 

trimming of the CSQ2 glycan in heart to very low levels of mannose (Man1-5) [34], 

replacement of CSQ2 in normal heart tissue with less trimmed CSQ2 glycoproteins in failed 

canine tissue [35, 36], regulation by TRD glycosylation of its breakdown by the proteasome 

[37], and phosphorylation of CSQ2 by protein kinase CK2 which is thought to occur in 

rough ER [23, 38].

4.1 Sites of JCT and TRD biosynthesis and earliest accumulation in adult cardiomyocytes

JCTdog and TRDdog were initially detected as fluorescent puncta near the edge of nuclei, 

indicating a close proximity to rough ER. Junctional SR sites in close proximity to nuclei 

have been previously described [39]. When TRDdog was co-expressed with CSQ2-DsRed, 

the majority of TRDdog did not form jSR puncta but instead localized to juxtanuclear ER, 

consistent with an ER to jSR transition that no longer occurred for TRDdog. The TRDdog 

that was not bound to CSQ2-DsRed trafficked normally to jSR (Fig. 7), and likely 

represented TRDdog that was translated prior to accumulation of the high levels of CSQ2-

DsRed needed to polymerize and exhibit red fluorescence [18, 29].

Fusion of the fluorophore DsRed with CSQ2 produces a unique protein marker of cardiac 

rough ER that, once formed, restricts its anterograde trafficking [18]. Rough ER-localized 

CSQ-DsRed was able to form a veritable net that bound to JCT dog and TRDdog, preventing 

their anterograde trafficking and retaining them within juxtanuclear cisternae that did not 

form puncta. Binding to CSQ2-DsRed was reversed when the CSQ2 binding site in TRD 

was deleted. The sequence-specific binding to CSQ2-DsRed in situ indicate that changes in 

TRDdog accumulation reflected differences in protein trafficking and not differences due to 

mRNA transport mRNA [40] or differential use of ribosomes among a multiple rough ER 

sites identified in electron microscope studies [41]. Thus, the data suggests that the 

accumulation of JCTdog and TRDdog in juxtanuclear jSR puncta after as soon as 12 h after 

virus treatment represents actual protein traffic and not the appearance of new sites of 

biosynthesis. Loss of CSQ2 (-DsRed) binding by delTRD prevented its retention in or near 
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the nuclear envelope, but did not prevent its formation of jSR puncta, demonstrating that the 

KEKE-motif in TRD (and presumably JCT) [15] is not necessary for its concentration in 

jSR.

4.2 JSR protein trafficking away from the nuclear envelope

The classic depiction of jSR is that of a longitudinal array of ER/SR tubules that terminate 

as SR/SL junctions near Z-lines. This depiction has not been scrutinized in terms of its 

relevance to protein trafficking towards and away from these SR junctions, reportedly an 

ongoing dynamic process [21]. JCTdog and TRDdog molecules accumulated at ever-

increasing distances from the nucleus, mapping out an apparent transverse trafficking 

aligned near Z-lines of corresponding sarcomeres. The strongest indication of a transverse-

oriented trafficking was the fluorescent tracks of newly-made JCTdog and TRDdog that 

radiated away from individual nuclei over the first 24 h of expression (Figs. 3,4). Transport 

from rough ER to jSR along such radial tracks from areas around individual nuclei provided 

for immediate jSR filling by newly synthesized proteins.

Using scanning electron microscopy, Ogata and Yamasaki [42] described a prominent set of 

ER tubules in the adult rat cardiomyocyte that are appropriately oriented to function as the 

anterograde protein trafficking pathway observed in this study. These Z-tubules (50-80 nm 

diameter) run parallel to sarcolemmal T-tubules (70-100 nm). Abundant tiny projections 

visible by SEM were interpreted as jSR protein complexes, consistent with a transverse 

network of tubules that intermittently interact with T-tubules to form jSR sites. Cardiac ER 

tubules capable of the transverse/radial trafficking are also evident in data from other 

laboratories [43-45]. Cardiac jSR cisternae receive input from multiple anastomosing ER 

tubules [46-48], so the radial protein traffic seen in our studies need not correspond to a 

single ER tubule.

In addition to transverse trafficking of JCTdog and TRDdog, it was apparent from the data 

that jSR puncta could also be populated by ER aligned along the axial length of the 

myocyte. Nowhere was this more prominent than in areas between the two nuclei (cf. Figs. 

6,7). Strands of polygonal ER, visualized by CSQ2-DsRed fluorescence, served as sites 

from which transverse jSR could be generated between the nuclei. This longitudinal ER was 

strongly labeled by CSQ2-DsRed (cf. Fig. 6A) but was also populated by newly made 

TRDdog and JCTdog, resulting in binding to and co-localization with CSQ2-DsRed (Fig. 7). 

Longitudinal/axial trafficking of jSR proteins was also apparent at early time points of 

TRDdog and JCTdog expression, beginning only after transverse/radial trafficking away from 

juxtanuclear sites had occurred. Visible accumulations in ER along longitudinal 

microtubules were only occasionally seen (e.g., see Fig. 8D). The actual transitions of 

longitudinal to transverse trafficking were likely to be very rapid once proteins reached 

intracellular sites of ER to jSR transition. Prior to the development of longitudinal 

trafficking, jSR protein accumulations were restricted to two isolated juxtanuclear sites (cf. 

24 h time points, Figs. 2,3).

Significant ultrastructural evidence exists for axial connections of jSR sites, although the 

origin of the axial tubules is not certain [39, 49]. Vega et al. [21] examined motile corbular 

SR boutons in the SR of adult ventricular myocytes labeled by adenoviral expression of red 
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fluorescent protein fused to the well-known ER-retrieval tetrapeptide (RFP-KDEL). Their 

data show that RFP-KDEL fluorescence labels the nuclear envelope to high levels, and 

along transverse membrane ribbons. Live cell imaging of motile (corbular) SR boutons in 

the cell periphery that contain ryanodine receptor showed longitudinal movements across Z-

line boundaries over the course of several minutes in neonatal cells, whereas adult 

cardiomyocytes exhibited measurable fluctuations about the Z-line, evidence of continual 

longitudinal trafficking once jSR proteins have populated sites in the cell periphery.

4.3 Cardiac smooth ER and transitions to jSR

Beyond the more-centrally localized internuclear strands of ER, a wide expanse of 

concentric layers of CSQ2-DsRed-containing ER could be seen stretching longitudinally 

across the entire cell (cf. Figs. 6-8). CSQ2-DsRed is an imperfect marker for smooth ER 

because it generates brighter fluorescence closer to sites of biosynthesis that diminishes with 

distance. Visualized in optical planes through the center of nuclei, CQ2-DsRed-positive 

cardiac ER often appeared as longitudinal bands connected by polygonal tubules (cf. Fig. 

6A). It seems reasonable to assume that this primarily axial component of cardiac ER 

corresponds to tubules that have been historically characterized as “longitudinal” or “free” 

SR in the electron microscope [1, 2, 50], but again, fluorescence intensity favors the more 

proximal lumens where CSQ2-DsRed levels first elevate.

A second subcompartment of the smooth ER could also be distinguished. A distinct 

convoluted set of innermost tubules lay between the nuclei and as pyramidal peaks at the 

outer ends of the cell. This central smooth ER was not sarcomeric in distribution and did not 

appear to result in SR puncta of CSQ2-DsRed (cf. Fig. 6D). This central core of ER 

accumulated relatively high concentrations of CSQ2-DsRed, but only low levels of the 

JCTdog and TRDdog. The localized nature of this subcompartment suggested that these 

membranes could play a role in other ER-based processes and less directed at ER protein 

traffic and jSR filling. We were not able to demonstrate that this region was enriched in 

more distal components of the secretory pathway (e.g., ERGIC or Golgi) using antibodies to 

presumed marker proteins (N. Sleiman and S. Cala, personal observations). Our findings 

here are in overall agreement with a diverse set of findings from past studies of adult 

skeletal muscle myocyte ER/SR biology [32, 51, 52], most of which were carried out using 

microscopy of native (steady-state) markers.

In nonmuscle cells, sorting and trafficking of newly synthesized resident ER proteins 

requires specializations of the ER such as transitional ER, ERGIC, and Golgi. ER exit 

requires the binding of a protein complex to the ER that packages cargo proteins in COPII 

transport vesicles (see [53] for review). COPII coat proteins such as sec23 are commonly 

used as markers of ER exit sites. In cultured cardiomyocytes, the COPII marker sec23 was 

previously shown to be present along Z-lines although seemingly not co-localized to jSR 

puncta [18], in agreement with findings in skeletal muscle myocytes [51]. Studies by Kaisto 

and Metsikko [51] suggested that trafficking in cultured skeletal myofibrils of the vesicular 

stomatitis virus G-protein was sorted into distinct ER/SR pathways depending upon its 

secretory status. Studies of other protein pathways (e.g. longitudinal SR, secretion) are 

needed to elucidate more distal pathways in the cardiomyocyte.
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Our data distinguished between ER subcompartments that concentrate CSQ2-DsRed and ER 

subcompartments that do not, but instead concentrate JCTdog and TRDdog. This, we 

hypothesize, marks a biological distinction between ER and SR (Fig. 10). In the absence of 

CSQ2-DsRed, ER-to-jSR transitions were visualized in areas close to the nuclear surface, 

and across MT-based longitudinal smooth ER between the two nuclei. Following expression 

of CSQ2-DsRed, a striking shift occurred in these transitional areas towards greater 

distances from the nucleus. CSQ2-DsRed-containing ER appeared to expand, while jSR 

puncta were no longer present close to nuclei (Fig. 8,10). This shift in the ER-to-SR 

transition was consistently observed by 48 h of CSQ2-DsRed expression. It is interesting to 

speculate that changes in ER-jSR transition are driven by the same changes in intraluminal 

Ca2+ that were shown to generate spontaneous ryanodine receptor-dependent Ca2+ release in 

cultured cardiomyocytes [28].

CSQ2 obtained from control and failed heart tissues suggest that considerable change occurs 

in ER versus SR trafficking with heart failure [35, 36]. A sizable pool of a putative non-

muscle ER form (Man9,8) of CSQ2 accumulates to roughly a third of total CSQ2, and CSQ2 

appears to undergo more rapid turnover in failed canine heart (more mRNA but lower 

overall protein levels) [36]. The facility with which CSQ2-DsRed was able to transform ER-

SR transitions in the current study introduces a possible mechanism by which CSQ2 changes 

in cardiomyopathy might occur.

4.4 MT based ER and SR traffic

Upon 36 h of treatment with the MT disrupting agent nocodazole, newly synthesized 

TRDdog and JCTdog failed to traffic beyond the rough ER. Perinuclear tubules containing 

JCTdog and TRDdog seen following nocodazole treatment might correspond to partial filling 

of an early ER subcompartment. Effects of nocodazole on translocon complex localization 

might also have occurred [54]. Sorting of translocons (e.g. Fig. 7E) might reflect an 

alignment of translocons with sarcomeric lengths in the untreated cells.

The co-localization of newly-made JCTdog and TRDdog (Fig. 4) suggest that jSR proteins 

may traffic as common cargo within large ER vesicles and tubules that interact with both 

dynein and kinesin [55]. ER membrane trafficking and organization is linked to MT 

organization through organelle-associated scaffolding proteins that interact with motor 

proteins of the dynein and kinesin families [56-58]. Both kinesin and dynein can exist in a 

given segment of trafficking ER [59], and there is evidence for both motors at work along 

MTs between corbular and jSR in adult cardiomyocytes [21]. With both dynein and kinesin 

motors present in cardiac ER, the direction of ER trafficking could be regulated by 

regulation of the motor proteins themselves or by associated scaffolding complexes [56]. For 

example, radial JCTdog and TRDdog traffic may be regulated differently from axial ER 

traffic. MT organizing centers (MTOC) in cardiomyocyte exist in both the nuclear envelope 

[60], and in multiple static Golgi complexes that extend dynamically across the cell in either 

direction [32].

Zhang et al. [61] showed that an increased density of MTs was responsible for redistribution 

of junctophilin-2 (JP2), another transmembrane jSR protein, in pressure overload-induced 

remodeling of heart. They reported that JP2 protein levels were not diminished but the 
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protein was mis-trafficked to ER sites in or near the plasma membrane. More recently these 

authors showed that JP2 overexpression in transgenic mice does not affect basal Ca2+ 

homeostasis but protects from pathological changes due to pressure overload [62]. These 

findings may suggest a role for JP2 that depends more on successful flux across ER and SR 

compartments than on its steady-state levels.

In summary, we propose a new model of junctional SR formation that involves transverse 

trafficking along an ER subcompartment that is distinct from that of the abundant smooth 

ER, and likely becomes the so-called longitudinal SR. An important caveat of these studies 

is a reliance on overexpression at levels sufficient to permit early detection of jSR protein 

markers. While this model may provide new insights into myocardial disease processes, 

further research will be needed to establish these pathways and mechanisms.
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Abbreviations

JCTdog canine junctin

TRDdog canine cardiac triadin

CSQ2 calsequestrin-2

jSR junctional sarcoplasmic reticulum

ER endoplasmic reticulum

MTs microtubules

Ad.CSQ2-DsRed calsequestrin-DsRed adenoviral vector

Ad.CSQ2 calsequestrin adenoviral vector

T-tubules transverse tubules

RyR2 ryanodine receptor-2

SERCA SR/ER Ca2+-ATPase

JP2 junctophilin-2
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Highlights

• Junctional SR protein synthesis occurs next to the nucleus in adult 

cardiomyocytes.

• ER membrane containing triadin and junctin traffics directly to jSR aligned with 

Z---lines/T---tubules.

• Longitudinal SR is actually smooth ER that extends from juxtanuclear rough 

ER, and marked by CSQ2---DsRed polymers

• Longitudinal SR/smooth ER does not generate jSR puncta

• High levels of localized CSQ2---DsRed lead to smooth ER expansion and 

reduced creation of jSR
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Fig. 1. Specificity of anti-TRD and anti-JCT antibodies
Samples (50 μg) of canine heart microsomes (MVc), rat heart microsomes (MVr) and 

primary rat cardiomyocytes (HCr) were analyzed by SDS-PAGE (10% acrylamide) and 

transferred to nitrocellulose. (A) Amido black stained nitrocellulose, molecular weight 

markers in kDa. (B) Immunoblotting with antibodies anti-TRDrat and anti-JCTdog. (C) 
Immunoblotting with anti-JCTdog and anti-JCTrat.
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Fig 2. Initial JCTdog accumulation at juxtanuclear sites
Coverslips containing cardiomyocytes were untreated (−) or treated with JCT (JCTdog) 

adenovirus for 16, 24, and 30 h, then fixed, and remaining cells harvested for 

immunoblotting. Cells were double-labeled with anti-JCTdog (green) and anti-JCTrat (red) at 

each time point. Nuclei are blue. Fluorescence images for cells were acquired using identical 

settings and processed offline at the same time, to permit direct comparisons. (A) 
Representative cells are shown for time points as indicated, either for the green channel 

(anti-JCTdog, panels a-e) or merged with red (anti-JCTrat, panels fg). Scale bar, 10 μm. (B) 
Magnification of outlined box (panel f) showing JCTdog (anti-JCTdog immunofluorescence) 

appearing initially at juxtanuclear sites. In contrast, anti-JCTrat appears to react more 

strongly with JCTrat than JCTdog (also see Table I), leading to a more dispersed pattern 

across the cell width, but with many distinct puncta showing co-localization of opposing 

relative immunoreactivities (arrows). Scale bar, 2 μm. (C) Anti-JCTdog immunofluorescence 

was quantified for confocal images in the plane of the nucleus for 15 cells at each of four 

incubation times. Mean levels of fluorescence (±SD) were integrated across contiguous 

transverse distances of 0.3 μM, using a 5 μM scan width sufficient to include three Z-lines 

(NIH ImageJ), starting with the most juxtanuclear fluorescence (puncta). Identical 

microscope and camera settings used for all images were adjusted to obtain suitable 
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fluorescence for the 16 h time point, and used for all coverslips without further offline 

adjustments. Mean fluorescence intensities calculated at increasing distances from the 

nuclear edge generally represented values from less cells, as sarcomeric widths varied 

among cells. (D) Immunoblot analysis of the time course of JCTdog expression, visualized 

with anti-JCTrat (detecting both endogenous and exogenous forms) and anti-JCTdog 

(detecting only the exogenous form of JCT). Molecular weight marker on left is 31 kDa 

(10% Laemmli gel).
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Fig. 3. TRDdog
accumulation at juxtanuclear sites Coverslips containing cardiomyocytes were untreated 

(−), or treated with TRDdog adenovirus for 16, 24, 30, or 48 h, then fixed, and remaining 

cells harvested for immunoblotting. Cells were double-labeled with anti-TRDdog (green) and 

anti-TRDrat (red) at each time point. Nuclei are blue. Fluorescence images for cells were 

acquired using identical settings and processed offline at the same time, to permit direct 

comparisons. (A) Representative cells are shown for time points as indicated for anti-

TRDdog alone. (B) Immunofluorescence for native TRD (anti-TRDrat) for the16 h time 

point. (C) Magnification of outlined box (panel A, 16 h) showing TRDdog appearing first at 

juxtanuclear sites. Scale bar 2 μm. (D) Immunoblot analysis of cardiomyocyte extracts 

showing TRDdog and TRDrat with increasing times of TRDdog expression, as indicated. The 

TRDdog immunoblot was counter-stained with anti-TRDrat to show differences in their 

respective mobilities. Molecular weight markers are shown in kDa on the left.
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Fig 4. TRD and JCT traverse a common path to populate jSR
Cardiomyocytes were untreated (−), or co-treated with TRDdog and JCTdog adenoviruses for 

16, 24, or 48 h, then fixed for immunostaining, and remaining cells harvested for 

immunoblotting. (A) Immunostaining with both anti-TRDdog (green) and anti-JCTdog (red); 

nuclei are blue. Scale bar, 10 μm. (B) Magnification of outlined box (panel A, 48 h). Faint 

TRDdog immunoreactivity can be seen in closer proximity to the nuclear surface than even 

the initial bright puncta (white arrowheads). Scale bar, 2 μM. (C) Upper Stained 

nitrocellulose transfer of protein extracts from untreated and treated cells at various time 

points as indicated. Lower Autoradiogram from immunoblot combining anti-TRDdog and 

anti-JCTdog antibodies. Molecular weight markers are indicated on the left.
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Fig 5. In situ interaction of JCT and TRD with CSQ2-DsRed in the rough ER
Co-expression of CSQ2-DsRed was carried out with either JCTdog or TRDdog for the times 

indicated, then cells were fixed for immunostaining and remaining cells harvested for 

immunoblotting. (A) Cardiomyocytes co-expressing CSQ2-DsRed and either JCT, TRDdog, 

or delTRD (green), for 24 or 48 h. After 24 h, little or no CSQ2-DsRed has polymerized, but 

by 48 h, a bright red fluorescence produces a yellow or orange area representative of co-

localized JCT and TRD. Meanwhile, delTRD does not form the co-localized juxtanuclear 

pattern. Scale bar, 10 μM. (B) Red channel only (of panel A) showing CSQ2-DsRed 

fluorescence. The panel is reduced in dimensions and trimmed to limit size. (C) Immunoblot 

data for time course (h) of JCTdog and CSQ2-DsRed co-expression, using a mixture of anti-

CSQ2 and anti-JCTdog antibodies. DsRed, CSQ2-DsRed; CSQ2, native rat CSQ2; lane 1 (−) 

shows cells before virus addition (D) Immunoblot data for cells after 48 h of no virus 

treatment (lane 1), and CSQ2-DsRed with either TRDdog (lane 2) or delTRD (lane 3) co-

expression, using a mixture of anti-CSQ2 and anti-TRDdog antibodies. An apparent 

nonspecific band that appears in all lanes near 40 kDa (asterisk,* ) was not seen in other 

experiments. (E) (Upper panel) Anti-TRDdog immunofluorescence and CSQ2-DsRed 

fluorescence were quantified for confocal images in the plane of the nucleus. Relative levels 

of TRDdog or del TRD immunofluorescence was determined as a function of distance from 

the nuclear edge in 15 cells each, whereas all 30 of these co-treated cells were used to 

determine average levels of red CSQ2-DsRed fluorescence over the same distances. Each 

data point represents the average levels of fluorescence within contiguous lengths of roughly 

0.12 μM, and widths sufficient to include three Z-lines (5 μM). Quantification started with 

the most juxtanuclear fluorescent puncta, progressing transversely, regardless of the cell 
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width. Fluorescence is plotted as the fractional deviation from the average intensity for each 

channel (±SE), normalized to 1.0 (values for proximal distances shown are mostly >1.0). 

(Lower panel) Large differences in ratios of TRDdog or del TRD immunofluorescence to 

CSQ2-DsRed fluorescence (values taken from upper panel) transversely across cell widths 

(*, p=0.001, two-way repeated measures ANOVA) reflect the highly divergent paths of the 

two forms of TRD in the presence of CSQ2-DsRed.
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Fig. 6. CSQ2-DsRed-containing ER traffics between myonuclei in line with MTs
Cardiomyocytes were cultured for 48 h with CSQ2-DsRed adenovirus, and fixed before 

immunostaining with anti-alpha tubulin (green). (A) CSQ2-DsRed fluorescence shows high 

levels of accumulation in juxtanuclear ER cisternae, but also within longitudinal tubules of 

ER extending between the two nuclei. (B) Double labeling of CSQ2-DsRed (red) and alpha 

tubulin immunofluorescence shows abundant MTs extending between nuclei. Anti-tubulin 

immunofluorescence (C) of the panel B inset shows a complex scaffold that might support 

ER tubules containing CSQ2-DsRed (D). Scale bar, 10 μM, A, B; 5 μM, D.
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Fig. 7. TRDdog labels jSR sites early, but later becomes retained in ER by binding to 
polymerized CSQ2-DsRed
Cardiomyocytes were cultured with adenoviruses encoding CSQ2-DsRed and TRDdog for 

36-48 h, which led to co-localized protein accumulation around and between myonuclei. (A) 
Red polymerized CSQ2-DsRed serves as a marker for early ER; TRDdog is retained within 

this series of smooth ER membranes, depending upon the rates of TRDdog synthesis and 

trafficking. Although uncommon, some cells appeared to contain jSR puncta that contained 

CSQ2-DsRed and TRDdog (arrows). (B, C) Individual color channels for CSQ2-DsRed (red 

channel) or TRDdog (green channel) are shown in black and white. (D) At 36 h of 

expression, CSQ2-DsRed was localized in rough ER and in longitudinal tracks of ER 

encircling the cell (white lines in inset). JSR puncta (green) aligned along the same smooth 

ER tracts, but CSQ2-DsRed remained a non-punctate ER marker (inset). This suggests that 

longitudinal ER traffic is not obligated to become jSR. (E) CSQ2-DsRed also formed bright 

puncta in rough ER that projected smoothly in a transverse direction without entering jSR 

(green). Scale bar, 10 μM, A-C; 5 μM, D, E.
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Fig. 8. delTRD labels jSR, and highlights the transition from CSQ2-DsRed containing smooth 
ER
Cardiomyocytes were cultured with adenoviruses encoding CSQ2-DsRed and delTRD for 48 

h. (A) CSQ2-DsRed fluorescence surrounds each myonuclei, but little overlap is seen with 

green anti-TRD immunofluorescence (delTRD). (B and C) Enlargements of highlighted 

areas of the two perinuclear regions are shown as individual channels for CSQ2-DsRed 

and delTRD (panels B1, B2 and C1, C2). CSQ2-DsRed was highly enriched in areas around 

and between nuclei, and greatly reduced in more distal ER/SR compartments (panels B1 and 

C1). TRDdog immunofluorescence (panels B2 and C2) shows the opposite effect: reduced 

immunofluorescence in CSQ2-DsRed compartments (smooth ER), with concentrated jSR 

puncta originating in tubules outside of the perimeter of ER defined by CSQ2-DsRed. 

Arrows indicate ER-SR transition areas. (D) TRDdog after 36 h expression is present in the 

smooth ER compartments as it develops its jSR enrichment. (E) By 48 h, smooth ER 

becomes expanded by CSQ2-DsRed and the transition to jSR puncta moves further away 

from the nucleus.
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Fig. 9. Nocodazole treatment prevents anterograde movement of jSR proteins
Immunofluorescence of cardiomyocytes untreated (−) or treated (+) with nocodazole (20 

μM) for 36 h. Nocodazole was added 16 h after plating and virus additions. (A) Cells were 

treated with Ad.TRDdog and stained with anti-TRDdog (green); or, treated with Ad.JCTdog 

and stained with anti-JCTdog (green), or treated with both viruses. (B) Amido black-stained 

nitrocellulose (upper half) and immunoblot data for anti-TRDdog or anti-JCTdog 

immunoreactivity after 48 h of culture in the absence (−) or presence of nocodazole (20 μM) 

for 36 h. Molecular weight markers (in kDa) are indicated on the left. (C) Magnification of 

outlined box from panel A showing juxtanuclear accumulations of TRDdog caused by 

nocodazole treatment. (D) Effect of nocodazole treatment on MTs visualized using 

antibodies against either alpha-tubulin (green) or beta-tubulin (red). Scale bar, 10 μM in 

panels A and C; 2 μM in B.
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Fig. 10. Model of trafficking of newly-made jSR proteins from cardiac rough ER and smooth ER
Left panel, protein translation of JCT or TRD in cultured primary adult normal 

cardiomyocytes occurs in the nuclear envelope (NE). Areas exist within the NE (green 

ellipses) in which translocon complexes are aligned with sarcomeres to transport ER 

containing JCT and TRD proteins transversely (radially) along a set of Z-tubules 

(Transverse trafficking, vertical blue arrows) directly to jSR (Junct SR, pink circles). Rough 

ER becomes tubules of longitudinally (axially) aligned smooth ER (Longitudinal trafficking, 

curved and longitudinal turquoise arrows) that can generate additional sites of transverse 

trafficking to jSR, and might also directly populate jSR puncta. Convoluted sets of ER 

tubules occupy an axis between nuclei (asterisk,*). Right panel, following high levels of 

CSQ2-DsRed expression and its accumulation in smooth ER, transitions to jSR sites no 

longer occur effectively, leading to a changes in ER and SR membrane partitioning (central 

gray fill). Solid blue and turquoise arrows are schematic only, representing membrane traffic 

across multiple tubules and/or vesicles of ER. All ER organnelar traffic is thought to occur 

along MTs (not shown).
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Table I

Relative selectivity of jSR protein antibodies for dog or rat forms.

Species Reactivity

Protein Target Antibody Dog Rat

TRD anti-TRDdog + - polyclonal

anti-TRDrat - + monoclonal

JCT anti-JCTdog ++ - monoclonal

anti-JCTrat + ++ polyclonal
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