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Abstract 

Objective: The purpose of this study was to determine whether resting 

myocardial deformation and rotation may be altered in diabetic patients with 

significant epicardial coronary artery disease (CAD) with normal left ventricular 

ejection fraction. 

Design: A prospective observational study. 

Setting: Diagnosis of epicardial CAD in diabetic patients. 

Patients and Methods: 84 diabetic patients suspected of epicardial CAD 

scheduled for cardiac catheterization had a resting echocardiogram performed 

prior to their procedure. Echocardiographic measurements were compared 

between patients with and without significant epicardial CAD as determined by 

cardiac catheterization. 

Main outcome measures: Measurement of longitudinal strain, strain rate, apical 

rotation and rotation rate, using speckle-tracking echocardiography. 

Results: 84 patients were studied, 39 (46.4%) of whom had significant epicardial 

CAD. Global peak systolic apical rotation was significantly increased (14.9±5.1 

versus 11.0±4.8 degrees, p<0.001) in patients with epicardial CAD along with 

faster peak systolic apical rotation rate (90.4±29 versus 68.1±22.2 degrees/sec, 

p<0.001). These findings were further confirmed through multivariate logistic 

regression analysis (global peak systolic apical rotation OR=1.17, p=0.004 and 

peak systolic apical rotation rate OR=1.05, p<0.001). 

Conclusions: In conclusion, diabetic patients with significant epicardial CAD and 

normal LVEF exhibit an increase in peak systolic apical counter-clockwise 
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rotation and rotation rate detected by echocardiography suggesting that 

significant epicardial CAD and its associated myocardial effects in patients with 

diabetes may be detected non-invasively at rest. 

 

Background  

 

Patients with diabetes are at increased risk of coronary artery disease and have 

a higher morbidity and mortality associated with initial presentation than patients 

without diabetes1,2. Early identification and treatment of patients with CAD is 

therefore critical in this patient population3.  

 

Advances in non-invasive imaging technology have allowed more sophisticated 

and accurate assessment of myocardial function in patients with CAD4. 

Measurement of strain, defined as the degree of deformation of myocardium over 

the heart cycle relative to its initial dimension, has been shown to be abnormal by 

magnetic resonance imaging in patients with CAD in the absence of previous 

myocardial infarction5. The authors hypothesized that this was related to the 

myocardial effects of coronary atherosclerotic plaque evolution in particular 

involving small vessel disease, distal micro-embolization and repetitive 

myocardial stunning. An alternative approach to measuring myocardial strain has 

been developed using 2-dimensional echocardiographic images and the tracking 

of the relative positions of localized ‘speckle’ patterns seen within the 

myocardium as acoustic markers of deformation6. The degree of cardiac twisting 
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or rotation can also be measured by tracking the speckle pattern over the heart 

cycle.  

 

Myocardial deformation is related to the fiber orientation between the different 

myocardial layers as well as the basal to apical levels of the heart7,8. Endocardial 

fibers are predominantly oriented in a longitudinal direction and in a right-handed 

helix causing left ventricular shortening predominantly9. Epicardial fibers are 

oriented in an opposing left-handed helix and exert a greater effect on myocardial 

twisting because of a larger radius of curvature resulting in counter-clockwise 

rotation at the LV apex10. The subendocardial layer and left ventricular apex is 

most vulnerable to the downstream effects of CAD remodeling, particularly in 

patients with diabetes prone to diffuse small vessel disease, microvascular 

obstruction, clinically silent myocardial ischemia and infarction11,12. We therefore 

hypothesized that rotation at the LV apex would be increased in the setting of 

significant CAD in patients with diabetes where the contributions from the 

subendocardial fibers may be compromised to a greater extent than would be the 

case for subepicardial fibers.  

 

Methods 

Subjects:  

Consecutive patients with either type 1 or type 2 diabetes scheduled for 

diagnostic cardiac catheterization for suspected epicardial CAD as part of their 

clinical care were eligible to be enrolled in this study under a human studies 
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protocol approved by the Washington University Human Research Protection 

Office (HRPO). Diagnosis of diabetes was established by personal history and/or 

evidence from laboratory testing showing a random plasma glucose >200mg/dL, 

by fasting plasma glucose>126mg/dL, or by 2 hour oral glucose tolerance test 

plasma glucose >200mg/dL. Subjects were excluded from this study if they had a 

prior history of coronary intervention or evidence of acute or prior myocardial 

infarction by cardiac enzyme elevation (troponin-I ≥ 0.25 ng/ml, CK > 200 IU/L), 

electrocardiogram abnormality (significant Q waves, ST segment elevation or 

depression >1 mm in 2 contiguous leads unrelated to left ventricular hypertrophy 

or conduction abnormality). Patients were also excluded if resting left ventricular 

wall motion abnormalities were present on baseline echocardiographic 

examination. Other potential confounding conditions such as severe left 

ventricular hypertrophy defined as an end-diastolic left ventricular wall thickness 

>1.5 cm13 or severe hypertension defined as systolic and diastolic blood 

pressures greater than 200 mmHg and 110 mmHg, respectively or ventricular 

conduction abnormalities at the time of acquisition were also reasons for 

exclusion.  

 

Cardiac catheterization:  

An experienced angiographer blinded to the echocardiographic data interpreted 

the results of coronary angiographic studies.  The degree of stenosis was 

quantified by percent occlusion of the lumen as determined in two orthogonal 

views. For this study ≥50% of any major coronary artery indicated the presence 
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of significant CAD as defined by the American College of Cardiology consensus 

document on the performance of cardiac catheterization for evaluation of CAD14. 

This defined which patients with Diabetes were categorized as having significant 

CAD and which patients were in the control group with no evidence of obstructive 

CAD. 

Echocardiography:  

Transthoracic echocardiographic images were acquired using a GE Vivid 7TM 

imaging system (General Electric Medical Systems, Milwaukee, WI) immediately 

prior to coronary angiography. All images were obtained by an experienced 

sonographer and digitally archived for subsequent analyses and interpretation by 

a single cardiologist. Echocardiographic examination was performed which 

included Doppler assessment for valvular disease as well as apical four chamber 

(4CH), two chamber (2CH). long axis (APLAX) and parasternal short axis images 

of the apical region (SAX-AP). The SAX-AP was obtained by moving the 

transducer two intercostal spaces more caudal from the standard parasternal 

location. From this window an as-circular-as-possible short axis image of 

the LV apex was obtained just proximal to the level where end-systolic LV 

obliteration occurred15. The ejection time, based on the timing of aortic valve 

opening and closure, was determined by analysis of the spectral Doppler 

waveform obtained from a sample gate positioned in the left-ventricular outflow 

tract. These images were acquired for three consecutive heart cycles and 

downloaded to a GE EchoPacTM echocardiographic image analysis system 

(General Electric Medical Systems, Milwaukee, WI) for further analyses as 
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described below, including left ventricular ejection fraction. 

 

Measurements of Myocardial Strain, Strain Rate, and Apical Rotation:  

Myocardial strain (%), strain rate (s-1), apical rotation (degrees) and rotation rate 

(degrees/sec) were obtained, by analyzing images acquired at 50-70 

frames/second16, using the GE EchoPacTM analysis software by a trained 

investigator blinded to the patient’s clinical data. Myocardial borders were 

delineated using the automated algorithm available on the EchoPacTM system to 

track the myocardial thickness over the acquired heart cycles. Tracking of the 

myocardial borders was verified visually prior to approving the data for 

subsequent analysis. The systolic interval, based on the timing of aortic valve 

opening and closure, was determined by analysis of the spectral Doppler 

waveform obtained from a sample gate positioned in the left-ventricular outflow 

track.  

 

Global and segmental longitudinal strain and strain rate data curves over the 

heart cycle were automatically measured for each apical 4CH, 2CH and APLAX 

echocardiographic view. The peak values for each of the global longitudinal 

strain (GLS) and strain rate curves (GLSr), for each of the segments in each 

apical view, were obtained and averaged.  Also global apical rotation (GAR) and 

rotation rate (GARr) curves, representing the mean of the measured segments in 

the SAX-AP view, were generated (Figure 1).   
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Statistical Analysis:  

Univariate analysis, using t-tests for independent groups, was conducted for 

echocardiographic variables comparing patients with significant CAD to those 

without. Significant CAD was defined as any stenosis ≥50% as determined by 

cardiac catheterization. For each echocardiographic measure a logistic 

regression model was built with the presence or absence of significant CAD as 

the dependent variable. Independent variables included the echocardiographic 

measurement along with covariates associated with significant CAD. To help 

identify covariates, the relationship between available demographic and clinical 

variables and significant CAD were examined through univariate analyses.  

Categorical variables were evaluated with chi-square tests (or Fisher’s exact test 

in the case of small sample size cell counts).  Continuous variables were 

evaluated with t-tests.  Variables with p-values<0.10 were included as model 

covariates. Odds ratios and 95% confidence intervals were reported from the 

multivariate logistic regression analysis with one model built for each 

measurement. A Bonferroni correction was performed to limit the effect of 

multiple comparisons and type I error. Therefore, since eight variables were 

evaluated, echocardiographic measures were found to be significantly associated 

with CAD when the p-value fell below 0.05/8=0.006.  

 

After multivariate analysis, those echocardiographic measurements that 

remained significant were tested for ability to identify patients with CAD, using 

receiver operating characteristics (ROC) analysis and the area under the curve 
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(AUC). The Youden index was used to identify the optimal cut-point for sensitivity 

and specificity17. Reproducibility was assessed by inter-observer and intra-

observer reliability using the intra-class correlation coefficient (ICC) as well as 

measurement of the coefficient of variation (CV)18. All statistical analyses were 

conducted using SAS® 9.2 (SAS Institute Inc., Cary, North Carolina). 

 

Results  

Demographic Data:  

A total of 123 patients were screened for eligibility. 28 patients were excluded as 

they did not have diabetes based on study criteria, 3 patients did not have left 

heart catheterization and 3 patients had reduced LV systolic function. 89 subjects 

were therefore enrolled of which 84 (37 male, 47 female) ranging in age from 35 

to 82 years were eligible.  Poor echocardiographic windows disqualified five of 

the study participants. Indication for cardiac catheterization was an abnormal 

cardiac stress test in 89% of patients with the remainder evaluated for anginal 

symptoms without preceding cardiac stress testing. Table 1 provides the clinical 

characteristics and conventional echocardiographic measurements of the study 

population. Resting heart rate tended to be lower in patients with significant CAD 

compared to those without significant CAD (7113 versus 7712 beats/minute, 

p=0.039) likely secondary to increased beta-blocker use (44% versus 31%, 

p=0.020). All other variables were similar between both groups including septal 

wall thickness (p=0.776) and LVEF (p=0.089). Variables with a p value <0.1 were 

used as covariates in subsequent multivariate logistic models.  
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Cardiac Catheterization Results: 

39 (46%) patients had evidence of significant epicardial CAD by cardiac 

catheterization. The vascular distribution of significant lesions for the study 

population is shown in Figure 2a, with 19% having multi-vessel disease. The 

distribution of stenosis severity is shown in Figure 2b.  

 

Apical Rotation and Rotation Rate:  

Global apical rotation (GAR) was greater (14.9 versus 11.0 degrees) and its rate 

(GARr-S) was faster (90.4 versus 68.1 degrees/second) in diabetic patients with 

significant epicardial CAD versus those without significant epicardial CAD. After 

multivariate analysis controlling for systolic blood pressure, heart rate, left 

ventricular ejection fraction and beta-blocker use, both echocardiographic indices 

remained significant (Table 2). GAR had an odds ratio of 1.17 (p=0.004) and 

GARr-S had an odds ratio of 1.05 (p<0.001).  .  

 

Longitudinal Strain and Strain Rate:  

Longitudinal strain and strain rate were not significantly different between the two 

groups (Table 2).  

 

ROC Analysis 

FIGURE 3 shows ROC analyses for GAR and GARr-S. Accuracies of these 

parameters to detect significant CAD in the study population were assessed by 

measurement of the AUC; for GAR it was 0.72 (CI=0.60-0.83) and for GARr-S 



 11

was 0.74 (CI=0.63-0.85). The optimal cut-point for peak GAR was 11.7 degrees 

providing a sensitivity and specificity of 80.6% and 64.4% respectively. For 

GARr-S 71.7 seconds-1 provided a sensitivity and specificity of 77.8% and 64.4% 

respectively.   

 

Reproducibility of Strain and Rotation Measurements: 

Re-analysis of echocardiographic images from 10 patients was performed to 

assess inter- and intra-observer reproducibility of measurements.  GAR and GLS 

were examined for reproducibility.  Both showed good agreement with ICC 

values near 1.  For GAR, the inter-observer and intra-observer ICC values were 

0.95 (95% CI = (0.84, 0.99)) and 0.97 (95% CI = (0.9, 0.99)), respectively.  For 

4CH GLS, ICC = 0.97 (95% CI = (0.88, 0.99)) for inter-observer and ICC = 0.97 

(95% CI = (0.89, 0.99)) for intra-observer. For inter-observer variability, the 

coefficient of variation (CV) for GAR is 10.0% and -3.2% for GLS.  For 

intra-observer variability, the CV for GAR is 7.4% and -3.9% for GLS.   

 

Discussion: 

Results of our study demonstrate that resting myocardial deformation, expressed 

as apical rotation is increased in diabetic patients with significant CAD. These 

changes were detected by analysis of standard echocardiographic images.  

 

Although LVEF remains the most commonly used measurement of LV systolic 

function, and is a strong predictor of prognosis in patients with CAD and heart 
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failure19, this parameter depends on endocardial radial thickening and LV 

geometry and is insensitive to changes related to other directions of 

deformation20. Using cardiac magnetic resonance imaging, resting myocardial 

function has been previously shown to be abnormal in patients with sub-clinical 

CAD and no documented history of myocardial infarction or reduction in left 

ventricular ejection fraction. These studies demonstrated that patients with 

increased coronary artery calcification scores and carotid intimal thickness, had 

regional alterations in myocardial deformation and increased risk of morbidity and 

mortality5,21,22. In our study despite a trend for LVEF to be lower in patients with 

significant CAD (p=0.09) it was still within normal limits.  

 

Alteration of apical rotation with significant CAD  

 

Apical myocardial rotation and its rate were significantly increased in patients 

with significant epicardial CAD in our study. Patients with coronary stenosis of ≥ 

50% had a mean GAR of 14.9 versus 11.0 degrees and GARr-S of 90.4 versus 

68.1 degrees/second. Apical rotation in animal and human models of ischemia 

has been shown to transiently increase and then reduce with prolonged ischemia 

although the time course of these events remains unclear23-25. In the setting of 

myocardial infarction Bertini et al. demonstrated an incremental effect on 

subendocardial and subepicardial layers resulting in reduction of apical rotation 

based on the size and clinical severity of myocardial damage26. In patients with 

small infarctions compared to normal controls, subendocardial rotation was 
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reduced (12.6±5.2 versus 15.3±2.7 degrees) while subepicardial rotation was 

increased (9.6±3.6 versus 8.9±1.9 degrees). The overall effect on apical rotation 

specifically was not reported. There have been no studies evaluating the effects 

of repetitive ischemia without infarction (such as occurs with angina) on left 

ventricular rotation.   

 

Interestingly, patients with diabetes without CAD have increased left ventricular 

apical rotation when compared to normal controls.. Fonseca et al. found a 17% 

increase in torsion and 20% increase in torsion rate in patients with diabetes 

compared to controls using cardiac MR27. Shivu et al. demonstrated a reduction 

in myocardial perfusion reserve index (MPRI) using cardiac MR in the setting of 

increased ventricular torsion in patients with diabetes proposing that this 

alteration in myocardial mechanics is related to coronary microangiopathy29.  A 

reduction in MPRI has been also been demonstrated to be an accurate non-

invasive measure for the presence of significant CAD30. Our results extend these 

findings suggesting that in diabetic patients with significant epicaridial CAD 

resting apical rotation and rotation rate detected by echocardiography are further 

increased.  

 

The mechanism that underpins the observed increase in apical rotation and rate 

cannot be ascertained by our study. It is unlikely that these findings are related to 

resting myocardial ischemia with the majority of patients with significant CAD 

(59%) having stenoses between 50 and 90%, a severity that is unlikely to alter 
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resting myocardial blood flow31. We also did not find a significant difference in 

GLS and GLSr between those diabetic patients with significant epicardial CAD 

and those who did not (-18.5%+/-4 versus -18%+/-2.5, p=0.65). The reason for 

this finding is unclear. It is possible that GLS, reflecting an average of longitudinal 

systolic strain in the 17 segments of the heart, may not accurately reflect regional 

influences affecting apical rotation. Conversely the use of cardiac catheterization 

evaluating for obstructive disease is blind to atherosclerosis in the vessel wall. 

Scholte et al. in a study of 234 asymptomatic type 2 diabetic patients (57% male, 

42% on insulin) demonstrated that patients with a coronary calcium score (CAC) 

of >0 had a significantly lower GLS (-16.3%) compared to those with a score=0 

(GLS-18%)32. It is possible that patients with non-obstructive CAD may also have 

evidence of occult LV dysfunction. This in combination with diabetic 

cardiomyopathy and the propensity for small vessel CAD in our population where 

the majority of participants were female (57%) may have reduced the differences 

in mean GLS within our study population.  

 

We hypothesized that patients with diabetes related cardiomyopathy develop a 

compensatory increase in subepicardial function when significant epicardial CAD 

is present secondary to repetitive myocardial ischemia, vessel remodeling and 

distal micro-embolization33-35. Others have also proposed this increase in the 

counter-balancing sub-epicardial function as a mechanism for increased apical 

rotation36,37. A recent study evaluating changes in myocardial mechanics in 

normotensive patients with type 2 Diabetes showed reduction in all vectors of 
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myocardial deformation except LV torsion. The authors concluded that increased 

torsion may provide a mechanism for preservation of LVEF despite reduction in 

myocardial strain38.  As reported by a model created by Beyar et al. an increase 

in left ventricular rotation may provide a mechanism to reduce transmural 

myocardial energy requirements in the setting of reduced longitudinal 

deformation and sub-clinical cardiomyopathy11.  

 

Our findings however suggest that other mechanisms may account for an 

increase in apical rotation in diabetic patients with significant CAD unrelated to a 

reduction in sub-endocardial longitudinal deformation. Chung et. al. using tagged 

cardiac magnetic resonance imaging also found altered apical rotation when 

longitudinal shortening was unchanged in a population of type 1 diabetic patients 

with tight glycemic control when compared to non-diabetic patients28. In 

demonstrating normal LVEF in these patients they proposed that alteration in 

rotational mechanics was one of the earliest manifestations of LV dysfunction in 

diabetes related cardiomyopathy. They however did not assess for the presence 

of CAD. Our findings would suggest that the presence of CAD might also have a 

more significant influence on apical rotation than longitudinal deformation. A 

future longitudinal experiment measuring these parameters in diabetic patients 

as they develop CAD would help define the time-course of these changes. Park 

and co-workers demonstrated in patients with normal LVEF and different grades 

of diastolic dysfunction an increase in left ventricular torsion in patients with 

impaired myocardial relaxation compared to normal controls and those patients 
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with more severe diastolic dysfunction39. Their findings were principally related to 

an increase in apical rotation which they proposed was a compensatory 

mechanism along with increased untwisting to effect increased diastolic suction 

in patients with impaired myocardial relaxation. Increased LV filling pressures in 

advanced diastolic dysfunction appeared to counteract this change. In our study 

we did not grade the severity or influence of diastolic function on apical rotation. 

Our patient population however had no prior history of CAD or diastolic heart 

failure. Bonow and co-workers demonstrated that LV myocardial relaxation is 

abnormal in the presence of significant CAD despite normal LVEF and it is 

conceivable that this may also account for our findings of increase in apical 

rotation noted in diabetic patients with significant CAD without a reduction in 

GLS40.  

 

Developing an understanding of how myocardial mechanics change with the 

development of CAD is especially important in diabetic patients where the effects 

of significant epicardial CAD may further affect already impaired myocardial 

energetics41. Patients with diabetes are not only at increased likelihood of 

developing epicardial CAD they importantly have a poorer prognosis with 

first presentation of myocardial infarction with a higher incidence of heart 

failure and death. Our findings demonstrate that despite normal LVEF and 

wall motion, altered rotational mechanics exists in Diabetic patients with 

significant CAD. Future studies are required to further characterize the 

prognostic significance of altered LV rotational mechanics and the 
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development of CAD related sequelae. 

 

Limitations  

In this prospective study of patients with diabetes presenting for cardiac 

catheterization we utilized standard resting echocardiographic images acquired 

in a clinical setting to derive strain measurements. The relatively small study 

population may have affected statistical power to detect differences in the 

variables tested. To limit type 1 error pre-specified echocardiographic variables 

most likely to answer the study hypothesis were selected. This however meant 

other vectors of deformation such as circumferential and radial strain as well as 

Doppler parameters of diastolic function were not studied. A normal age and 

gender matched control group was also not studied to ensure that alterations in 

the echocardiographic variables tested were related to the presence of CAD.  

Comprehensive data on diabetes control was not available in our population 

however in the study by Chung et al. diabetes control and duration did not 

appear to affect the finding of increased resting torsion28. Finally neither 

quantitative angiography, intravascular ultrasound nor assessment of coronary 

flow reserve was performed to confirm lesion hemodynamic significance or the 

presence of significant negative remodeling of the artery, raising the possibility of 

misclassification of study participants. However, recognizing the pitfalls in 

accuracy of visual estimation of coronary stenosis, this study was designed to 

reflect current cardiology practice and data used for decision management.  
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Conclusions  

 

In diabetic patients with significant epicardial CAD and normal left ventricular 

ejection fraction, myocardial function was characterized by an increase in LV 

apical counter-clockwise systolic rotation and rotation rate, suggesting that 

myocardial mechanics are altered with the coexistence of epicardial CAD in 

diabetes. These findings may have prognostic implications for the development 

of CAD related sequelae in Diabetic patients with ischemic heart disease. Further 

studies are needed to better define the mechanisms responsible for these 

changes, and to evaluate their potential diagnostic applicability and accuracy in a 

broader patient population. 
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Figure 1. Global longitudinal strain from three apical views (Panel A, B, C). 

Global apical rotation was measured from a short axis view at the apex of the 

heart (Panel D). 

Figure 2. (a) Coronary distribution of significant stenosis as determined by 

cardiac catheterization and (b) Coronary Stenosis Frequency Table. 

Figure 3. ROC analysis of model based on echocardiographic parameters used 

for detection of significant CAD in study population. 
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Tables 
 
Table 1. Clinical and echocardiographic characteristics of the study population. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

  
 
            

  
  
  
  
  
  
  
  
  
  

 No Significant CAD Significant CAD  

 N 
Mean (± std. dev) or 

Count 
N 

Mean (± std. dev) or 
Count 

p-value 

Demographics      
    Age (years) 45 58.6 (±9.3) 39 62.2(±10.6) 0.103 
    Male 45 19 39 18 0.717 
    Caucasian 45 32 39 28 1.000 
Vital signs  
    BMI (kg/m2) 41 36.5 (±12.3) 37 34.2 (10.1) 0.373 
    Height (cm) 41 168.3 (±14.9) 37 168.9 (15.4) 0.860 
    SBP (mmHg) 45 136 (18) 39 143 (17) 0.077 
    DBP (mmHg) 45 77 (11) 39 78 (12) 0.574 
    HR (beats/minute) 44 77 (12) 39 71 (±13) 0.039* 
Risk factors  
    Dyslipidemia 45 33 39 32 0.341 
    Smoking-current 45 11 39 9 0.960 
    Hypertension 45 42 39 32 0.176 
    Family History of CAD 44 13 39 18 0.119 
Laboratory Values  
    Glucose (mg/dL) 45 164.8 (±70.3) 39 185.3 (±87.3) 0.238 
    HgbA1c (%) 31 7.4 (±1.6) 29 8.2 (±2.7) 0.186 
    Creatinine (mg/dL) 44 1.13 (±1.33) 39 0.96 (±0.30) 0.436 
Echocardiogram      
    LVEDV (mL) 45 103.6 (±32.0) 39 100.8 (±28.7) 0.673 
    LVESV (mL) 45 37.4 (±13.4) 39 38.3 (±12.2) 0.754 
    Septum (mm) 45 1.0 (±0.1) 39 1.0 ( ±0.1) 0.776 
    LVEF (%) 45 64 (±5) 39 62 (±5) 0.089 
Current Medications  
    Beta-Blocker 45 14 39 22 0.020* 
    Calcium Channel        
    Blocker 

45 
17 39 11 0.353 

    Angiotensin Converting   
    Enzyme inhibitor 

45 
32 39 24 0.353 

    Oral Hypoglycemic 45 34 39 30 0.883 
    Insulin 45 14 39 13 0.828 

	
	
	
	
	
	
	
	

Table 2. Univariate and Multivariate analysis 
 Univariate Multivariate model  

(for having CAD)  No CAD Significant CAD
Variable N Value±SD N Value±SD Odds Ratio P value 95% CI† 
GAR 45 11.0±4.8 36 14.9±5.1 1.17 0.004* 1.01-1.35 
GARr-S 45 68.1±22.2 36 90.4±29.0 1.05 <0.001* 1.01-1.10 
GARr-E 45 -77.8±35.0 36 -89.4±39.0 0.99 0.164 0.97-1.01 
GARr-A 45 -39.6±19.7 36 -50.6±33.9 0.10 0.036 0.95-1.01 
GLS 45 -18.5±4.0 39 -18.0±2.5 0.97 0.647 0.78-1.19 
GLSr-S 45 -1.0±0.2 39 -0.9±0.2 0.76 0.100 0.49-1.20 
GLSr-E 45 1.1±0.4 39 1.0±0.2 0.96 0.616 0.77-1.20 
GLSr-A 45 0.9±0.2 38 1.0±0.3 1.40 0.021 0.94-2.08 
GAR=peak systolic global apical rotation, GARr-S=peak systolic global apical rotation rate, GARr-E, peak early diastolic 
global apical rotation rate, GARr-A=peak late diastolic global apical rotation rate, GLS=peak systolic global longitudinal 
strain, GLSr-S=peak systolic global longitudinal strain rate, GLSr-E= peak early diastolic global longitudinal strain rate, 
GLSr-A=peak late diastolic global longitudinal strain rate 
* Significant at .05/8=0.006 
† Confidence intervals calculated with Bonferroni correction 
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Figure 2. (a) Coronary distribution of significant stenosis as determined by cardiac catheterization and (b) Coronary Stenosis 
Frequency Table.
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GAR=0.72 GARr-S=0.74

Figure 3. ROC curves for GAR and GARr-S


