Georgia Tech - Then and Nov

Michael Bennett, Felix Chung, Ravi Lachhman, Alex Ya George Yim

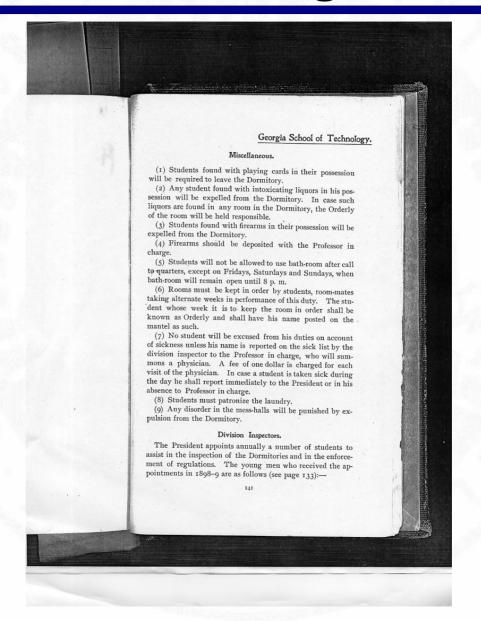
Need For The Institute

- The South was behind economically to the North.
- A way to educate southerners in the manufacturing ways of the North.
- Based of the WPI and MIT models.
- Created during Reconstruction.
- Do you think we succeeded?

Georgia Tech – Then and Now

Now

Then



Differences in Georgia Tech

- Possession of playing cards would lead to a students expulsion.
- A student would be allowed to leave his firearm with his professor before class.
- Dormitory bathrooms were only open until 8 pm on weekdays.
- Students were required to pay for their laundry to be done.
- Any of these do you find troubling?

Differences in Georgia Tech

Students in 1904 and Present

1904

- 42 graduating students
- Names were listed in the 1904 Faculty Minutes

Present

- About 18,000 undergraduate and graduate students
- Thousands of students graduate in each of the three semesters

1904 and Present Degrees

1904

- 5 degrees
 - Mechanical Engineering
 - Textile Engineering
 - Electrical Engineering
 - Engineering Chemistry
 - Civil Engineering

PRESENT

- 6 colleges (Architecture, Computing, Engineering, Management, Liberal Arts, and Sciences) with...
 - 9 certificates
 - 54 undergraduate degrees
 - 71 master's degrees
 - 30 doctoral degrees

Differences in ME Course of Study

- Mechanical engineering program initially had a shop-work component. The products of shop exercises were sold to generate income for the school (Drury 10).
- Introductory math classes were algebra, geometry, and trigonometry.

- English was taken every term.
- Chemistry was taken in eight out of twelve terms (Announcements 70-73).

Differences in ME Course of Study (cont.)

- The curricula no longer requires shop work.
 However, about forty percent of all mechanical engineering majors are involved with the Cooperative Program ("A Brief History" par. 4).
- Introductory math classes today are Calculus I, Calculus II, and Calculus III ("Degree Requirements").

- Only two English courses are required today.
 Students have the option of selecting English literature to fulfill the humanities requirement.
- The core curriculum requires one chemistry course but provides the freedom to schedule higher-level chemistry classes.

Course of Study in 1901

COURSE OF STUDY.

(Numbers following subjects indicate hours per week.)

MECHANICAL ENGINEERING.

Apprentice Year.

FIRST TERM.

Mathematics (5).—Elementary Algebra completed; Plane Geometry.

English (4).—U. S. History; Spelling; Readings; Essays.

Chemistry (3).—Inorganic Chemistry (2); Qualitative Laboratory (1).

Drawing (4).—Free-hand; Geometric; Linear; Perspective Sketching.

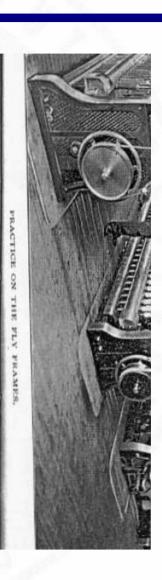
Shop-Work (12).

SECOND TERM.

Mathematics (5).—Plane and Solid Geometry completed.

English (4).—Rhetoric; Spelling; Readings; Essays.

Chemistry (3).—Inorganic Chemistry (2); Qualitative Laboratory (1).


Drawing (8).—Instrumental Linear; Descriptive Geometry Drawing.

Shop-Work (12).

THIRD TERM.

Mathematics (5).—Trigonometry completed.

Course of Study in 1901 (cont.)

Georgia School of Technology.

Junior Year

FIRST TERM.

Mathematics (5).—Higher Algebra completed; Trigonometry practice.

English (4).-Civics; Readings; Essays.

Chemistry (7).—Inorganic Chemistry (3); Qualitative Laboratory (4).

Drawing (4).—Descriptive Geometric Drawing. Physics (3).—Kinematics and Mechanics. Shop-Work (8).

SECOND TERM.

Mathematics (5).—Analytic Geometry.
English (3).—English Literature; Mythology; Readings;
Essays.
Chemistry (8).—Laboratory Work.
Drawing (4).—Machine Drawing to Scale.

Physics (3).—Sound and Light. Shop-Work (8).

THIRD TERM.

Mathematics (5).—Analytic Geometry completed.
English (3).—History of England; Readings; Essays.
Chemistry (6).—Qualitative Laboratory.
Drawing (4).—Machine Drawing to Scale.
Physics (3).—Light and Heat.
Surveying (4).—Use of Level, Compass and Transit.
Shop-Work (8).

Middle Year.

FIRST TERM.

Mathematics (5).—Calculus.

English (3).—Political Economy; Readings; Essays.

Drawing (4).—Spur, Bevel and Worm Gearing.

Engineering (3).—Kinematics and Mechanism.

Physics (4).—Electricity and Magnetism.

Shop-Work (8).

71

Course of Study in 2007

FIRST YEAR-FALL	HRS
MATH 1501 CALCULUS I	4
ENGL 1101 ENGLISH COMPOSITION I	3
CHEM 1310 GENERAL CHEMISTRY	4
HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200	3
WELLNESS	2
TOTAL SEMESTER HOURS =	16

FIRST YEAR-SPRING	HRS
MATH 1502 CALCULUS II	4
ENGL 1102 ENGLISH COMPOSITION II	3
PHYS 2211 INTRODUCTORY PHYSICS I	4
CS 1371 COMPUTING FOR ENGINEERS	3
ME 1770 ENGINEERING GRAPHICS & VISUALIZATION	3
TOTAL SEMESTER HOURS =	17

SECOND YEAR-FALL	HRS
MATH 2401 CALCULUS III	4
PHYS 2212 INTRODUCTORY PHYSICS II	4
MSE 2001 PRINCIPLES & APPLICATIONS OF ENGINEERING MATERIALS	3
ME 2016 COMPUTING TECHNIQUES	3
COE 2001 STATICS	2
TOTAL SEMESTER HOURS =	16

SECOND YEAR-SPRING	HRS
MATH 2403 DIFFERENTIAL EQUATIONS	4

SECOND YEAR-SPRING	HRS
MATH 2403 DIFFERENTIAL EQUATIONS	4
ME 2202 DYNAMICS OF RIGID BODIES	3
ME 2110 CREATIVE DECISIONS AND DESIGN	3
LAB SCIENCE (BIOL, CHEM, EAS, PHYS)	3
ECE 3710 CIRCUITS & ELECTRONICS	2
TOTAL SEMESTER HOURS =	15

THIRD YEAR-FALL	HRS
ME 3322 THERMODYNAMICS	3
ME 3340 FLUID MECHANICS	3
COE 3001 MECHANICS OF DEFORMABLE BODIES	3
ECON 2100 or 2105 or 2106	3
ECE 3741 INSTRUMENTATION & ELECTRONICS LAB	
SOCIAL SCIENCE ELECTIVE(S)	3
TOTAL SEMESTER HOURS =	16

THIRD YEAR-SPRING	HRS
ME 3015 SYSTEM DYNAMICS & CONTROL	4
ME 3345 HEAT TRANSFER	3
ENGINEERING ETHICS ELECTIVE(S)	3
CEE / MATH / ISYE 3770 STATISTICS & APPLICATIONS	3
ISYE 3025 ESSENTIALS OF ENGINEERING ECONOMY	1
HUMANITIES ELECTIVE(S)	3
TOTAL SEMESTER HOURS =	17

FOURTH YEAR-FALL	HRS
ME 3057 EXPERIMENTAL METHODOLOGY & TECHNICAL WRITING	3
ME 3180 Machine Design or ME 4315 Energy Systems Analysis and Design	3
ME 4210 MANUFACTURING PROCESSES & ENGINEERING	3
MECHANICAL ENGINEERING ELECTIVE(S)	3
FREE ELECTIVE(S)	3

Questions?

- Take a ~5 year snapshot of your major, are there any differences in the requirements now than 5 years ago?
- What have been some new rules that have changed in the last 5 years?
- Does Georgia Tech have any current rules or regulations you find absurd?
- How do you see Georgia Tech changing in the Future?

Sources

- Drury III, Warren E. <u>The Architectural Development of Georgia Tech.</u> M.A. Thesis, Georgia Institute of Technology, June 1984.
- Announcements. Georgia Institute of Technology Archives.
 Altanta, GA. 1900-1901.
- "A Brief History of Georgia Tech and the Woodruff School." <u>Georgia Institute of Technology</u>. 25 October 2007. http://www.me.gatech.edu/about/history.shtml
- "Degree Requirements." <u>Georgia Institute of Technology</u>. 25
 October 2007.
 http://www.catalog.gatech.edu/colleges/coe/me/ugrad/bsm
 - http://www.catalog.gatech.edu/colleges/coe/me/ugrad/bsme/bsme.php

