
Combined therapeutic modalities for retinoblastoma 
have significantly reduced the mortality associated with this 
disease. Currently, close to 95% of children with retinoblas-
toma in the developed world are cured of their primary tumor 
[1]. Despite advances in treatment, significant morbidity 
associated with this cancer remains, including loss of vision 
or enucleation. New therapeutic options are therefore being 
investigated. In the clinic, there is a focus on novel delivery 
routes such as intravitreal and intraarterial chemotherapies 
[2-4], while preclinical scientists are developing targeted 
therapies [5-8]. Animal models are used to further understand 
retinoblastoma tumorigenesis, as well as monitor response to 
experimental treatments [9].

Of these animal models, transgenic mouse models can 
be used to test new therapeutics and study the developmental 

pathophysiology of retinoblastoma. One such transgenic 
model, the T-antigen retinoblastoma (TAg-RB) model [10], 
has a molecular and histological resemblance to human 
retinoblastoma tumors [11]. In human retinoblastoma, the 
retinoblastoma gene, RB1 (GeneID: 5925, OMIM: 614041), 
is almost always [12] inactivated by mutation, leading to loss 
of function of the retinoblastoma protein, pRB [13-15]. In 
TAg-RB mice, pRB is inactivated by retinal-specific expres-
sion of the Simian Virus 40 T-antigens [10]. The Simian 
Virus 40 large T antigen (TAg) provides a biochemical 
means of functionally knocking out pRB family members, 
along with p53 and other protein targets [16], and has been 
used to drive various mouse tumor models [17]. Similar to 
the human retinoblastoma, TAg-RB tumors contain Homer 
Wright rosettes and are the only murine retinoblastoma 
tumors reported to show Flexner-Wintersteiner rosettes [10]. 
The presence of both types of rosette is pathognomonic of 
human retinoblastoma [18]. Moreover, molecular analyses of 
TAg-RB tumors have indicated that these tumors recapitu-
late several of the gene expression changes documented in 
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Purpose: Retinoblastoma is the most common primary intraocular malignancy in children. Although significant ad-
vances in treatment have decreased mortality in recent years, morbidity continues to be associated with these therapies, 
and therefore, there is a pressing need for new therapeutic options. Transgenic mouse models are popular for testing new 
therapeutics as well as studying the pathophysiology of retinoblastoma. The T-antigen retinoblastoma (TAg-RB) model 
has close molecular and histological resemblance to human retinoblastoma tumors; these mice inactivate pRB by retinal-
specific expression of the Simian Virus 40 T-antigens. Here, we evaluated whether optical coherence tomography (OCT) 
imaging could be used to document tumor growth in the TAg-RB model from the earliest stages of tumor development.
Methods: The Micron III rodent imaging system was used to obtain fundus photographs and OCT images of both eyes of 
TAg-RB mice weekly from 2 to 12 weeks of age and at 16 and 20 weeks of age to document tumor development. Tumor 
morphology was confirmed with histological analysis.
Results: Before being visible on funduscopy, hyperreflective masses arising in the inner nuclear layer were evident at 
2 weeks of age with OCT imaging. After most of these hyperreflective cell clusters disappeared around 4 weeks of age, 
the first tumors became visible on OCT and funduscopy by 6 weeks. The masses grew into discrete, discoid tumors, 
preferentially in the periphery, that developed more irregular morphology over time, eventually merging and displacing 
the inner retinal layers into the vitreous.
Conclusions: OCT is a non-invasive imaging modality for tracking early TAg-RB tumor growth in vivo. Using OCT, 
we characterized TAg-positive cells as early as 2 weeks, corresponding to the earliest stages at which tumors are his-
tologically evident, and well before they are evident with funduscopy. Tracking tumor growth from its earliest stages 
will allow better analysis of the efficacy of novel therapeutics and genetic factors tested in this powerful mouse model.
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human retinoblastoma [11,19-22]. Because of these features, 
this model has been used extensively for preclinical testing 
of retinoblastoma therapies and studies of genetic modifiers 
of disease progression [23].

Histology is the standard method for quantitative studies 
of retinal morphology and pathology of rodent models [24]. 

A major shortcoming of this technique is that a large number 
of animals are needed for each study since animals must be 
euthanized at each time point required. Because each animal 
provides only a single data point, studying disease progres-
sion over time is challenging. Thus, novel methods of moni-
toring tumor growth in these models are required.

Figure 1. Earliest areas of T-antigen positive cells evident in TAg-RB retinas with OCT. At 2 (A, B) and 3 (D, E) weeks of age, hyperreflec-
tive clusters are seen in the inner nuclear layer of T-antigen retinoblastoma (TAg-RB) but not (C, F) wild-type eyes with optical coherence 
tomography (OCT) (bottom). All fundi appear normal at this age (top). OCT scale bars=100 µm.
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Ocular optical coherence tomography (OCT) is one 
such method. It has taken on an important role in human 
ophthalmic practice, including retinoblastoma management. 
In particular, in the clinic, OCT has enabled precise anatomic 
findings, such as demarcating intratumoral cysts [25], 
viewing of the macula behind vitreous seeds [26], and identi-
fying small tumors and documenting the middle-retinal layer 
origin of these lesions [27]. By assessing retinal morphology, 
OCT also helps determine reasons for visual loss post-
treatment [28] and prognostication of visual potential after 
treatment [29]. OCT is especially effective for documenting 
response to therapy [30].

OCT has also been used in animal retinoblastoma 
models. We have used OCT for rapid, non-invasive, in vivo 
ascertainment of retinoblastoma xenografts in the newborn 

rat model [31]. OCT has been used to detect tumors in utero 
in the Pax6-SV40 TAg mouse model [32], and has previously 
been applied to characterize TAg-RB tumors. First, a single 
tumor was imaged, and its volume estimated in a 9-week-old 
TAg-RB mouse [33]; then this approach was expanded to 
quantify growth over time in 10- to 14-week-old mice [34]. 
Using an automated segmentation algorithm, response to an 
antiangiogenic treatment in this model was monitored with 
OCT [35,36]. However, these prior studies did not follow 
tumor growth over an extended time period.

Here, we evaluated whether OCT imaging could be used 
to document tumor growth in the TAg-RB model from the 
earliest stages of tumor development up to vitreous-filling 
tumors (a 5-month period). Although blockade of tumor initi-
ation in a patient predisposed to retinoblastoma is a potential 

Figure 2. Longitudinal imaging of a TAg-RB tumor with OCT. A single, representative eye imaged weekly from 2 to 12 weeks of age 
as indicated shows early clusters of presumptive T-antigen (TAg)-positive cells decreasing around 4 weeks, as previously observed with 
immunohistochemistry. Then, a distinct tumor mass is first evident at 5 weeks and grows over subsequent weeks. Retinal blood vessels 
(seen by their shadow) sit adjacent to this small tumor during weeks 6–7 and atop the tumor from week 8. Optical coherence tomography 
(OCT) scale bars=100 µm.
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Figure 3. Histology validates OCT findings. Examples of a 12-week and two 20-week T-antigen retinoblastoma (TAg-RB) eyes analyzed 
with funduscopy (A, E, I); optical coherence tomography (OCT) (B, F, J), OCT scale bars=100 µm; high-magnification hematoxylin and 
eosin (H&E; C, G, K); and low-magnification H&E (D, H, L), scale bars=200 µm. The lens is indicated with an asterisk (*).
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point of therapeutic intervention, in vivo imaging of the first 
weeks of tumor growth in a retinoblastoma animal model 
has not been performed previously. By using OCT for in vivo 
monitoring of tumor growth, we add to the understanding of 
retinoblastoma tumorigenesis in this model, as well as open 
up new avenues for investigating potential treatments.

METHODS

Animals: All animal experiments were approved by the 
Indiana University School of Medicine Institutional Animal 
Care and Use Committee (Protocol 10521) and adhered to 
all standards set forth in the ARVO Statement for the Use of 
Animals in Ophthalmic and Visual Research. TAg-RB mice 
on a C57BL/6 background (formally, CB6-Tg(TagRb)1Plm/
Mmjax) were obtained from the Mutant Mouse Regional 
Resource Center at the Jackson Laboratory (Bar Harbor, ME; 
catalog number 032031) and bred in-house. Transgenic mice 
were bred with wild-type littermates to ensure hemizygosity. 
Mice were housed on a 12 h:12 h light-dark cycle (lights on 
at 0700) with access to food and water ad libitum. Pups were 
weaned at 3–4 weeks of age.

Genotyping: Ear punches were taken at time of weaning 
and processed for genotyping with the REDExtract-N-Amp 
Tissue kit (Sigma, St. Louis, MO) according to the manufac-
turer’s instructions, with primer concentrations of 250 nM 
each and annealing at 58 °C. The primers used were TAg 
transgene [37], forward 5ʹ-GAC TTT GGA GGC TTC TGG 
GAT GCA ACT GAG-3ʹ and reverse 5ʹ-GGC ATT CCA CCA 
CTG CTC CCA TTC ATC AGT-3 ;́ and internal control Fabpi 
(PCR Genotyping Primer Pairs), forward 5ʹ-TGG ACA GGA 
CTG GAC CTC TGC TTT CCT AGA-3ʹ and reverse 5ʹ-TAG 
AGC TTT GCC ACA TCA CAG GTC ATT CAG-3 .́

Imaging: Imaging of the animals began at 2 weeks of age, by 
which time mouse eyes have naturally opened. All animals 
were then imaged on a weekly basis, for at least 12 and up 
to 20 weeks, at which point large tumors caused protrusion 
of the eye, necessitating euthanasia. Image-guided OCT and 
bright-field imaging using a Micron III intraocular imager 
(Phoenix Research Labs; Pleasanton, CA) was performed as 
described [31], with the following modification: Anesthesia 
was induced with a mixture of dexmedetomidine (0.5 mg/kg) 
and ketamine (50 mg/kg), with atipamezole reversal (5 mg/
kg).

Histopathology: After the imaging protocols were completed 
at 12 and 20 weeks, the animals were overdosed with inhaled 
isoflurane and underwent cervical dislocation, and the eyes 
were removed for preservation. Each eye was fixed in 4% 
paraformaldehyde overnight and then transferred to a 70% 
ethanol solution. Whole eyes were embedded in paraffin, 

and 5- to 7-µm sections were obtained using a microtome. 
Mayer’s hematoxylin and eosin staining was performed as 
described [31]. Bright-field micrographs were taken with an 
EVOS-fl digital microscope (AMG, Mill Creek, WA).

Statistical analysis: The distribution of intraretinal lesions 
between TAg-RB and wild-type animals was analyzed with 
Fisher’s exact test, with a two-tailed p value <0.05 deemed 
significant.

RESULTS AND DISCUSSION

Earliest imaging of neoplasia in TAg-RB retinas: To profile 
the initiation of tumors in the TAg-RB model, we performed 
OCT and funduscopy at 2 and 3 weeks of age (Figure 1). 
At these time points, multiple small lesions were evident 
throughout the inner nuclear layer of both eyes of all 
TAg-RB mice (10/10 animals; 20/20 eyes). No lesions were 
present in the eyes of the wild-type mice (0/10; p=0.00001, 
Fisher’s exact test). The fundi of all mice appeared normal. 
The hyperreflective clusters of cells visible on OCT in the 
transgenic mice likely correspond to the earliest TAg-positive 
cells we previously observed by immunofluorescence [11]. 
Such cells are first evident as single cells in the inner nuclear 
layer at P8, and form distinct clumps of TAg-positive cells 
by P13 that enlarge through to P21. It would be valuable to 
assess the retinas of TAg-RB mice with OCT at P8 to seek the 
individual TAg-positive cells, but this would require surgical 
opening of the eyelids, which could confound normal ocular 
development [31].

Longitudinal study of TAg-RB tumors: To document the 
growth of individual tumors, we imaged the eyes of these 
same mice weekly up to 12 weeks of age (Figure 2). The 
small, hyperreflective lesions seen throughout the retina at 
weeks 2 and 3 regressed between weeks 4 and 5. This is in 
keeping with our previous immunohistochemical findings 
indicating that a wave of apoptosis kills off most TAg-positive 
cells around 4 weeks of age [11]. By week 6, the first solid 
individual tumors were detectible with OCT and funduscopy. 
On OCT, these tumors began as ellipsoid, hyperreflective 
masses within the inner nuclear layer and were occasionally 
shadowed by overlying retinal blood vessels. Presumably, 
these tumors grew from isolated, early hyperreflective lesions 
as seen at weeks 2–3 that survived apoptosis between weeks 
4–5. Funduscopic examination of these tumors revealed a 
pale circular mass that obscured the underlying pigmented 
choroid but was overlaid with retinal blood vessels, which 
is consistent with our OCT findings. Tumors were light-
colored, remained intraretinal, and grew preferentially in the 
periphery.
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Tumor burden at this stage ranged from one to four 
individual tumors per TAg-RB eye, but tumors in the far 
periphery may have been missed on exam due to the limita-
tions of the OCT and fundus camera optics. Since TAg-RB 
tumors preferentially form in the periphery [38], this repre-
sents one weakness of analysis of this particular tumor model 
with OCT.

The tumors continued to increase in size at each weekly 
imaging session, and developed more irregular morphology 
over time. At 12 weeks, the tumors remained discrete ellip-
soids (Figure 2 and Figure 3A, B). By 20 weeks, however, 
in many cases, the tumors had grown together, filling the 
vitreous by distorting the inner retina all the way to the 
posterior aspect of the lens (Figure 3E,F,I,J). Since proptosis 
was observed at this stage, the animals were euthanized for 
humane considerations.

Given the modest number of tumors per eye and clear 
vascular “landmarks” in the fundus images, finding each 
individual tumor at each imaging session for longitudinal, 
image-guided OCT analysis was relatively straightforward 
(Figure 2). Previously, an elaborate gimbal system was 
designed for reproducible positioning of animals for OCT 
[34]; we did not find such a system necessary to identify 
each tumor over multiple sessions. Further development of 
segmentation algorithms [36] for tumor volume estimation 
and automated three-dimensional (3D) scans will enable 
rapid, in vivo quantification of individual tumor growth in 
future.

Comparison of OCT with histopathologic morphology: To 
validate our OCT findings, tumor morphology was confirmed 
with histological analysis at 12 and 20 weeks of age (Figure 
3). At 12 weeks, well-defined, ellipsoid tumors showed an 
intralesional granularity on OCT not previously documented 
(Figure 3B) [33-36], likely due to the high resolution of the 
imaging system we used compared with those in earlier work. 
Comparison with histology suggested that this granularity 
was due to the Flexner-Wintersteiner and Homer Wright 
rosettes within these tumors (Figure 3C,D), although higher-
resolution OCT is required to confirm this. In addition, at this 
stage, histology confirmed the inner nuclear layer location of 
these tumors as seen with OCT, with moderate distortion of 
the inner retina and more pronounced depression of the outer 
nuclear layer (Figure 3C,D).

Importantly, these small tumors bore a striking resem-
blance on OCT to those recently observed in human patients 
[27]. An inner nuclear layer origin, defined ellipsoid shape, 
some intralesional granularity, supratumoral retinal blood 
vessels, and depression of the outer nuclear layer were all 
shared features. One noticeable difference was that the 

human tumors appeared to distort the inner retinal layers 
more readily at a small size than the murine tumors, resulting 
in a more spherical shape than the ellipsoid murine tumors.

At 20 weeks, OCT showed massive intraretinal tumors 
distorting the inner retina all the way to the lens without 
disruption of the inner plexiform layer or the ganglion cell 
layer (Figure 3F,J); this was confirmed with histology (Figure 
3G,H,K,L). The posterior aspect of these large lesions on 
OCT was shadowed by the tumor itself. However, retinal 
folds induced by these large tumors were seen on funduscopy 
(Figure 3I) and OCT (Figure 3J), which recapitulated closely 
what was subsequently observed with histology (Figure 
3K,L).

Conclusions: Using OCT, we characterized abnormal growth 
in the TAg-RB model as early as 2 weeks of age, corre-
sponding to the earliest stages at which tumors are histologi-
cally evident [11], and before they are visible with funduscopy. 
Further, OCT imaging determines the intraretinal location of 
tumors more easily and more precisely than funduscopy. Such 
early imaging will be useful for documenting the efficacy 
of chemopreventative approaches for retinoblastoma in this 
model [39]. Moreover, non-invasive tracking of tumor growth 
from its earliest stages as done here will allow better analysis 
of the efficacy of novel therapeutics tested in this powerful 
mouse model. It will also expand the time points readily 
assessable in genetic studies of the effect of retinoblastoma 
oncogenes and tumor suppressors on TAg-RB development 
[37,40].
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