
GN-SCCA: GraphNet based Sparse Canonical Correlation 
Analysis for Brain Imaging Genetics

Lei Du1, Jingwen Yan1, Sungeun Kim1, Shannon L. Risacher1, Heng Huang2, Mark Inlow3, 
Jason H. Moore4, Andrew J. Saykin1, and Li Shen1,2,* for the Alzheimer’s Disease 
Neuroimaging Initiative**

1Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA

2Computer Science and Engineering, University of Texas at Arlington, TX, USA

3Mathematics, Rose-Hulman Institute of Technology, IN, USA

4Biomedical Informatics, School of Medicine, University of Pennsylvania, PA, USA

Abstract

Identifying associations between genetic variants and neuroimaging quantitative traits (QTs) is a 

popular research topic in brain imaging genetics. Sparse canonical correlation analysis (SCCA) 

has been widely used to reveal complex multi-SNP-multi-QT associations. Several SCCA 

methods explicitly incorporate prior knowledge into the model and intend to uncover the hidden 

structure informed by the prior knowledge. We propose a novel structured SCCA method using 

Graph constrained Elastic-Net (GraphNet) regularizer to not only discover important associations, 

but also induce smoothness between coefficients that are adjacent in the graph. In addition, the 

proposed method incorporates the covariance structure information usually ignored by most 

SCCA methods. Experiments on simulated and real imaging genetic data show that, the proposed 

method not only outperforms a widely used SCCA method but also yields an easy-to-interpret 

biological findings.

1 Introduction

Brain imaging genetics, which intends to discover the associations between genetic factors 

(e.g., the single nucleotide polymorphisms, SNPs) and quantitative traits (QTs, e.g., those 

extracted from neuroimaging data), is an emerging research topic. While single-SNP-single-

QT association analyses have been widely performed [17], several studies have used 

regression techniques [9] to examine the joint effect of multiple SNPs on one or a few QTs. 

Recently, bi-multivariate analyses [6, 12, 7, 18], which aim to identify complex multi-SNP-

multi-QT associations, have also received much attention.
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Sparse canonical correlation analysis (SCCA) [14, 19], a type of bi-multivariate analysis, 

has been successfully used for analyzing imaging genetics data [12, 6], and other biology 

data [4, 5, 14, 19]. To simplify the problem, most existing SCCA methods assume that the 

covariance matrix of the data to be the identity matrix. Then the Lasso [14, 19] or group 

Lasso [6, 12] regularizer is often solved using the soft-thresholding method. Although this 

assumption usually leads to a reasonable result, it is worth pointing out that the relationship 

between those variables within either modality have been ignored. For neuroimaging genetic 

data, correlations usually exist among regions of interest (ROIs) in the brain and among 

linkage disequilibrium (LD) blocks in the genome. Therefore, simply treating the data 

covariance matrices as identity or diagonal ones will limit the performance of identifying 

meaningful structured imaging genetic associations.

Witten et al. [19, 20] proposed an SCCA method which employs penalized matrix 

decomposition (PMD) to yield two sparse canonical loadings. Lin et al. [12] extended 

Witten’s SCCA model to incorporate non-overlapping group knowledge by imposing l2;1-

norm regularizer onto both canonical loadings. Chen et al. [3] proposed the ssCCA approach 

by imposing a smoothness penalty for one canonical loading of the taxa based on their 

relationship on the phylogenetic tree. Chen et al. [4, 5] treated the feature space as an 

undirected graph where each node corresponds to a variable and rij is the edge weight 

between nodes i and j. They proposed network based SCCA which penalizes the l1 norm of 

 to encourage the weight values ui and uj to be similar if rij > 0, or 

dissimilar if rij < 0. A common limitation of these SCCA models is that they approximate 

XTX by identity or diagonal matrix. Du et al. [7] proposed an S2CCA algorithm that 

overcomes this limitation, and requires users to explicitly specify non-overlapping group 

structures. Yan et al. [21] proposed KG-SCCA which uses l2 norm of 

to replace that in Chen’s model [4, 5]. KG-SCCA also requires the structure information to 

be explicitly defined. Note that an inaccurate sign of rij may introduce bias [10].

In this paper, we impose the Graph-constrained Elastic Net (GraphNet) [8] into SCCA 

model and propose a new GraphNet constrained SCCA (GN-SCCA). Our contributions are 

twofold: (1) GN-SCCA estimates the covariance matrix directly instead of approximating it 

by the identity matrix I; (2) GN-SCCA employs a graph penalty using data-driven technique 

to induce smoothness by penalizing the pairwise differences between adjacent features. 

Thorough experiments on both simulation and real imaging genetic data show that our 

method outperforms a widely used SCCA implementation [19]5 by identifying stronger 

imaging genetic associations and more accurate canonical loading patterns.

2 Preliminaries

2.1 Sparse CCA

We use the boldface lowercase letter to denote the vector, and the boldface uppercase letter 

to denote the matrix. The i-th row and j-th column of M = (mij) are represented as mi and 

5SCCA in the PMA software package is widely used as a benchmark algorithm. Here we simply use SCCA to denote the SCCA 
method in this software package. See http://cran.r-project.org/web/packages/PMA/ for details.
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mj. Let X = {x1; …; xn} ⊆ ℝp be the SNP data and Y = {y1; …; yn} ⊆ ℝp be the QT data, 

where n, p and q are the subject number, SNP number and QT number respectively.

The SCCA model presented in [19, 20] is as follows:

(1)

where the two terms  and  originate from the equalities  and 

, where  and  approximate  and  to simplify 

computation. This simplification approximates the covariance matrices XTX and YTY by 

the identity matrix I (or sometimes a diagonal matrix), assuming that the features are 

independent. Most SCCA methods employ this simplification [3–5, 12, 19, 20]. Besides, 

∥u∥1 ≤ c1 and ∥v∥1 ≤ c2 induce sparsity to control the sparsity of canonical loadings. In 

addition to the Lasso (l1-norm), the fused Lasso can also be used [5, 14, 19, 20].

2.2 Graph Laplacian

The Graph Laplacian, also called the Laplacian matrix, has been widely used in the spectral 

clustering techniques and spectral graph theory [2], owing to its advantage in clustering 

those correlated features automatically. We denote a weighted undirected graph as G = (V; 

E; W), where V is the set of vertices corresponding to features of X or Y, E is the set of 

edges with ei,j indicating that two features vi and vj are connected, and wi,j is the weight of 

edge ei,j. Here we consider G as a complete graph and thus every two vertices are connected.

Formally, the adjacency matrix of G is defined as:

(2)

Generally, wi,j is set to |ri,j|d, where ri,j is the sample correlation between the i-th and j-th 

variables. In this work, for simplicity, we set d = 2, i.e. . It can also be decided by 

domain experts in other applications.

Let D be a diagonal degree matrix with the following diagonal entries: D(i, i) = Σj A(i, j). 

Then the Laplacian matrix L is defined as L = D – A [8]. L has many merits such as the 

symmetry and the positive semi-definite structure. Most importantly, it can map a weighted 

graph onto a new space such that connected vertices stay as close as possible.

3 GraphNet based SCCA (GN-SCCA)

Inspired by the Graph Laplacian [11] and the GraphNet [8] technique, we define the penalty 

P(u) and P(v) as follows:

(3)
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where L1 and L2 are the Laplacian matrices of two complete undirect graphs defined by the 

sample correlation matrices of the SNP and QT training data, respectively. The terms uTL1u 
and vTL2v make each feature fair be penalized smoothly according to the correlation 

between the two features.

Applying the two penalties above, the GN-SCCA model takes the form:

(4)

where the terms ∥u∥1 ≤ c3 and ∥v∥1 ≤ c4 are used to induce sparsity; and the P(u) and P(v) 

are Graph Laplcaian based GraphNet constraints [8]. Note that we use  instead of 

, which is typically used in other models, and thus our model takes into 

consideration the full covariance information.

Using Lagrange multiplier and writing the penalties into the matrix form, the objective 

function of GN-SCCA is as follows:

(5)

where (λ1, λ2, β1, β2) are tuning parameters, corresponding to (c1,c2,c3,c4). Take the 

derivative regarding u and v separately and let them be zero:

(6)

(7)

where D1 is a diagonal matrix with the k1-th element as , and D2 is a 

diagonal matrix with the k2-th element as 6.

Since D1 relies on u and D2 relies on v, we introduce an iterative procedure to solve this 

objective. In each iteration, we first fix v and solve for u, and then fix u and solve for v. The 

procedure stops until it satisfies a predefined stopping criterion. Algorithm 1 shows the 

pseudocode of the GN-SCCA algorithm.

3.1 Convergence Analysis of GN-SCCA

We first introduce Lemma 1 described in [13].

6If  or , we approximate it with  or , where ζ is a very small non-zero value. 
According to [13], this regularization will not affect the result when ζ → 0.
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Algorithm 1 GraphNet based Structure-aware SCCA (GN-SCCA)

Require:

 X = {x1, …, xn}T, Y = {y1, …, yn}T

Ensure:

Canonical vectors u and v.

1: Initialize u ∈ ℝp × 1, v ∈ ℝq × 1; L1=Du − Au and L2 = Dv − Av only from the training data;

2: while not converged do

3:  while not converged regarding u do

4:

  Calculate the diagonal matrix D1, where the k1-th element is ;

5:   Update u = (λ1L1 + β1D1 + γ1XTX)−1 XTYv;

6:  end while

7:  while not converged regarding v do

8:

  Calculate the diagonal matrix D2, where the k2-th element is ;

9:   Update v = (λ2L2 + β2D2 + γ2YTY)−1 YTXu;

10:  end while

11: end while

12: Scale u so that ∥Xu∥2 = 1;

13: Scale v so that ∥Yv∥2 = 1.

Lemma 1—The following inequality holds for any two nonzero vectors ũ, u with the same 

length,

(8)

Lemma 2—For any real number ũ and any nonzero real number u, we have

(9)

Proof: The proof is obvious, given Lemma 1, ∥ũ∥1 = ∥ũ∥2 and ∥u∥1 = ∥u∥2.

Theorem 1—In each iteration, Algorithm 1 decreases the value of the objective function 

till the algorithm converges.

Proof: The proof consists of two phases. (1) Phase 1: For Steps 3–6, u is the only variable to 

estimate. The objective function Eq. (5) is equivalent to
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From Step 5, we denote the updated value as ũ. Then we have

According to the definition of D1, we obtain

(10)

Then summing Eq. (9) and Eq. (10) on both sides, we obtain

Let , , , we arrive at

(11)

Thus, the objective value decreases during Phase 1: ℒ(ũ, v) ≤ ℒ(u, v).

(2) Phase 2: For Steps 7–10, v is the variable to estimate. Similarly, we have

(12)

Thus, the objective value decreases during Phase 2: .

Applying the transitive property of inequalities, we obtain . Therefore, 

Algorithm 1 decreases the objective function in each iteration.

We set the stopping criterion of Algorithm 1 as max{|δ| | δ ∈ (ut+1−ut)} ≤ τ and max{|δ| | δ 

∈ (vt+1−vt)} ≤ τ, where τ is a desirable estimate error. In this paper, τ = 10−5 is empirically 

chosen in the experiments.

4 Experimental Results

4.1 Results on Simulation Data

We used four simulated data sets to compare the performances of GN-SCCA and a widely 

used SCCA implementation [19]. We applied two different methods to generate these data 
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with distinct structures to assure diversity. The first two data sets (both with n = 1000 and p 

= q = 50, but with different built-in correlations) were generated as follows: 1) We created a 

random positive definite group structured covariance matrix M. 2) Data set Y with 

covariance structure M was calculated by Cholesky decomposition. 3) Data set X was 

created similarly. 4) Canonical loadings u and v were created so that the variables in one 

group share the same weights based on the group structures of X and Y respectively. 5) The 

portion of the specified group in Y were replaced based on the u, v, X and the assigned 

correlation. The last two data sets (with different n, p, q and built-in correlations) were 

created using the simulation procedure described in [5]: 1) Predefined structure information 

was used to create u and v. 2) Latent vector z was generated from N(0, In×n). 3) X was 

created with each xi ~ N(ziu, Ip×p) and Y with each yi ~ N(ziv, Σy) where 

.

According to Eqs. (6–7), six parameters need to be decided for GN-SCCA. Here we choose 

the value of tuning range based on two considerations: 1) Chen and Liu [4] showed that the 

results were insensitive to γ1 and γ2 in a similar study; 2) The major difference between 

traditional CCA and SCCA is the penalty terms. Thus their results will be the same if small 

parameters are used. With this observation, we tune γ1 and γ2 from small range of 

[1,10,100], and tune the remaining ones from 10−1 to 103 through nested 5-fold cross-

validation.

The true signals and estimated u and v are shown in Fig. 1. The estimated canonical 

loadings u and v of GN-SCCA were consistent with the ground truth on all simulated data 

sets, while SCCA only found an incomplete portion of the true signals. Shown in Table 1 are 

the cross-validation performances of the two methods. The left part of the table shows that 

GN-SCCA outperformed SCCA consistently and significantly, and it has better test 

accuracy than SCCA on testing data. The right part of Table 1 presents the area under ROC 

(AUC), where GN-SCCA also significantly outperformed SCCA on all data sets. These 

results demonstrated that GN-SCCA identifies the correlations and signal locations more 

accurately and more stably than SCCA.

4.2 Results on Real Neuroimaging Genetics Data

We used the real neuroimaging and SNP data downloaded from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database to assess the performances of GN-SCCA and 

SCCA. One goal of ADNI is to test whether serial MRI, positron emission tomography, 

other biological markers, and clinical and neuropsychological assessment can be combined 

to measure the progression of mild cognitive impairment (MCI) and early AD. Please see 

www.adni-info.org for more details.

Both the SNP and MRI data were downloaded from the LONI website (adni.loni.usc.edu). 

There are 204 healthy control (HC), 363 MCI and 176 AD participants. The structural MRI 

scans were processed with voxel-based morphometry (VBM) in SPM8 [1, 15]. Briefly, 

scans were aligned to a T1-weighted template image, segmented into gray matter (GM), 

white matter (WM) and cerebrospinal fluid (CSF) maps, normalized to MNI space, and 
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smoothed with an 8mm FWHM kernel. We subsampled the whole brain and yielded 465 

voxels spanning all brain ROIs. These VBM measures were pre-adjusted for removing the 

effects of the baseline age, gender, education, and handedness by the regression weights 

derived from HC participants. We investigated SNPs from the top 5 AD risk genes [16] and 

APOE e4. In total we have 379 SNPs in this study. Our task was to examine correlations 

between the voxels (GM density measures) and genetic biomarker SNPs.

Shown in Table 2 are the 5-fold cross-validation results of GN-SCCA and SCCA. GN-

SCCA significantly and consistently outperformed SCCA in terms of identifying stronger 

correlations from the training data. For the testing performance, SCCA did not do well 

possibly due to over-fitting, while GN-SCCA consistently outperformed SCCA. Fig. 2 

shows the heat maps of the trained canonical loadings learned from cross-validation. We 

could observe that both weights, i.e. u and v, estimated by GN-SCCA were quite sparse and 

presented a clear pattern which could be easier to interpret. However, SCCA identified many 

signals which could be harder to explain. The strongest genetic signal, identified by GN-

SCCA, was the APOE e4 SNP rs429358; and the strongest imaging signals came from the 

hippocampus. They were negatively correlated with each other. This reassures that our 

method identified a well-known correlation between APOE and hippocampal morphometry 

in an AD cohort. These results show the capability of GN-SCCA to identify biologically 

meaningful imaging genetic associations.

5 Conclusions

We proposed a GraphNet constrained SCCA (GN-SCCA) to mine imaging genetic 

associations, and incorporated the covariance information ignored by many existing SCCA 

methods. The GraphNet term induces smoothness by penalizing the pairwise differences 

between adjacent features in a complete graph or an user-given graph (correlation matrix 

used in this study). Our experimental study showed that GN-SCCA accurately discovered 

the true signals from the simulation data and obtained improved performance and 

biologically meaningful findings from real data. In this work, we only did comparative study 

between GN-SCCA and a widely-used SCCA method [19]. We have observed many recent 

developments in structured SCCA models. Some (e.g., [6, 18, 19, 14, 12]) ignored the 

covariance structure information of the input data, which was usually helpful to imaging 

genetics applications. A few other models (e.g., [7, 21]) overcome this limitation but impose 

different sparsity structures. Work is in progress to compare the proposed GN-SCCA with 

these structured SCCA models. Given the mathematically simple formulation of GN-SCCA, 

we feel it is a valuable addition which is complementary to the existing SCCA models.
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Fig. 1. 
Comparisons on estimated canonical loadings using 5-fold cross-validation on synthetic 

data. The ground truth (the top row), SCCA results (the middle row) and GN-SCCA results 

(the bottom row) are all shown. For each panel pair, the 5 estimated u’s are shown on the 

left panel, and the 5 estimated v’s are shown on the right.
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Fig. 2. 
Comparisons on estimated canonical loadings using 5-fold cross-validation on real data. The 

SCCA results (the top row) and GN-SCCA results (the bottom row) are shown. For each 

panel pair, the 5 estimated u’s are shown on the left panel, and the 5 estimated v’s are shown 

on the right.
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