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Abstract
Aims/hypothesis EGF and gastrin co-administration reverses
type 1 diabetes in rodent models. However, the failure of this
to translate into a clinical treatment suggests that EGF-
mediated tissue repair is a complicated process and warrants
further investigation. Thus, we aimed to determine whether
EGF receptor (EGFR) feedback inhibition by mitogen-
inducible gene 6 protein (MIG6) limits the effectiveness of
EGF therapy and promotes type 1 diabetes development.
Methods We treated Mig6 (also known as Errfi1)
haploinsufficient mice (Mig6+/−) and their wild-type litter-
mates (Mig6+/+) with multiple low doses of streptozotocin
(STZ), and monitored diabetes development via glucose ho-
meostasis tests and histological analyses. We also investigated
MIG6-mediated cytokine-induced desensitisation of EGFR
signalling and the DNA damage repair response in 832/13
INS-1 beta cells.
Results Whereas STZ-treated Mig6+/+ mice became diabetic,
STZ-treatedMig6+/− mice remained glucose tolerant. In addi-
tion, STZ-treated Mig6+/− mice exhibited preserved

circulating insulin levels following a glucose challenge. As
insulin sensitivity was similar between Mig6+/− and Mig6+/+

mice, the preserved glucose tolerance in STZ-treatedMig6+/−

mice probably results from preserved beta cell function. This
is supported by elevated Pdx1 and Irs2mRNA levels in islets
isolated from STZ-treated Mig6+/− mice. Conversely, MIG6
overexpression in isolated islets compromises glucose-
stimulated insulin secretion. Studies in 832/13 cells suggested
that cytokine-induced MIG6 hinders EGFR activation and
inhibits DNA damage repair. STZ-treated Mig6+/− mice also
have increased beta cell mass recovery.
Conclusions/interpretation Reducing Mig6 expression pro-
motes beta cell repair and abates the development of experi-
mental diabetes, suggesting that MIG6 may be a novel thera-
peutic target for preserving beta cells.
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Abbreviations
CA Camptothecin
CMV Cytomegalovirus
EGFR Epidermal growth factor receptor
ERK Extracellular signal-regulated kinase
GFP Green fluorescent protein
GSIS Glucose-stimulated insulin secretion
GTT Glucose tolerance testing
ITT Insulin tolerance testing
MIG6 Mitogen-inducible gene 6 protein
MLD Multiple low dose
siRNA small interfering RNA
STZ Streptozotocin
STZ-Mig6+/+ STZ-treated Mig6+/+

STZ-Mig6+/− STZ-treated Mig6+/−

Electronic supplementary material The online version of this article
(doi:10.1007/s00125-014-3311-z) contains peer-reviewed but unedited
supplementary material, which is available to authorised users.

Y.<C. Chen : P. T. Fueger
Department of Cellular & Integrative Physiology, Indiana University
School of Medicine, Indianapolis, IN 46202, USA

E. S. Colvin :K. E. Griffin :B. F. Maier : P. T. Fueger (*)
Herman B. Wells Center for Pediatric Research, Indiana University
School of Medicine, 635 Barnhill Drive, MS 2031, Indianapolis,
IN 46202, USA
e-mail: pfueger@iu.edu

E. S. Colvin :K. E. Griffin :B. F. Maier : P. T. Fueger
Department of Pediatrics, Indiana University School of Medicine,
Indianapolis, IN 46202, USA

DOI 10.1007/s00125-014-3311-z
Diabetologia (2014) 57:2066–2075

/Published online: July 20144     

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/46963924?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s00125-014-3311-z


Introduction

Type 1 diabetes is a progressive disease characterised by the
autoimmune-mediated destruction of insulin-secreting pan-
creatic beta cells [1]. To prevent or cure type 1 diabetes,
research efforts, particularly clinical trials, have largely fo-
cused on understanding and modulating immunological re-
sponses. Unfortunately, immunomodulatory therapies have
not proven to have long-term efficacy [2]. Therefore, cellular
therapies promoting the recovery and survival of beta cells
could provide efficacious alternative treatments for type 1
diabetes [3, 4]. The clinical phenomenon of the ‘honeymoon
phase’ (i.e. the remission period that often occurs in newly
diagnosed type 1 diabetes patients after initiation of insulin
therapy) suggests that human beta cells have a finite potential
to recover from assaults [5, 6]. This notion is supported by
several rodent model studies [7–9]. In addition, beta cell
recovery and survival capacity may be enhanced in vivo by
introducing trophic factors. For example, EGF and gastrin
cotreatment has been shown to prevent or reverse diabetes
development in various rodent models. However, translating
this therapy to human diabetes is limited because of our
inadequate understanding of the molecular mechanism of
EGF’s glucose-lowering function. In the current study, we
aimed to investigate whether EGF receptor (EGFR) signalling
in beta cells is compromised by endogenous EGFR feedback
inhibition, and whether such inhibition modulates functional
beta cell mass recovery in a model of beta cell destruction.

As an initiator of diverse intracellular programmes, the
EGFR signalling cascade is fine-tuned by multiple feedback
regulators, including mitogen-inducible gene 6 protein
(MIG6). Following EGFR activation by ligand binding and
dimerisation, MIG6 is rapidly induced to: (1) suppress EGFR
kinase activity; and (2) facilitate EGFR endocytosis and deg-
radation [10–13]. Interestingly, MIG6 expression is also in-
duced by (patho)physiological stress stimuli, suggesting that
MIG6 possibly integrates stress responses and growth factor
signalling to maintain tissue homeostasis [14–16]. In response
to chronic stress, however, sustained MIG6 upregulation
could have pathological consequences. In fact, we have
shown that glucocorticoids and endoplasmic reticulum stress
upregulate MIG6 in pancreatic beta cells, leading to cell cycle
arrest and apoptosis, respectively [17, 18]. Thus, MIG6 may
promote a reduction in beta cell mass by antagonising EGFR
signalling.

As beta cell fate dictates progression to diabetes, it is
essential to determine whether stress-inducible MIG6 pro-
motes beta cell dysfunction and destruction by attenuating
EGFR signalling. In the present study, we investigated the
extent to which Mig6 haploinsufficiency, and hence height-
ened EGFR signalling protects mice against diabetes devel-
opment. To this end, we treated wild-type and Mig6 hetero-
zygous knockout mice with multiple low-dose streptozotocin

(MLD-STZ) to induce beta cell death and an immune re-
sponse that mimics human type 1 diabetes.We then performed
metabolic assessments and morphological analyses. We also
used rat islets and 832/13 INS-1-derived beta cells to investi-
gate the MIG6-mediated molecular signalling events associ-
ated with beta cell dysfunction and destruction in the type 1
diabetes milieu.

Methods

Animals and treatments All animals were maintained and
used according to protocols approved by the Indiana Univer-
sity School of Medicine Institutional Animal Care and Use
Committee. C57Bl/6J mice lacking oneMig6 allele (Mig6+/−)
were obtained from G. Vande Woude (Van Andel Research
Institute, Grand Rapids, MI, USA), bred with wild-type
C57Bl/6J mice (Mig6+/+), and genotyped as previously de-
scribed [19]. An Extract-N-Amp Tissue PCR kit (Sigma-
Aldrich, St Louis, MO, USA) was used for genotyping. Mice
were maintained in a standard light–dark cycle and provided
with free access to water and a standard rodent chow diet.

Ten-week-old male mice of both genotypes were intraper-
itoneally injected with STZ (35 mg/kg body weight; Sigma-
Aldrich) for five consecutive days. A group of control animals
was injected in the same manner with vehicle (saline).

Metabolic tests For glucose tolerance testing (GTT), 1.5 g/kg
body weight D-glucose (Sigma-Aldrich) was intraperitoneally
injected into 5 h-fasted control or STZ-treated mice. Blood
was sampled from a tail vein at the indicated time points, and
blood glucose was measured using an AlphaTRAK
glucometer (Abbott Laboratories, Abbott Park, IL, USA).
Serum insulin was assayed using an ultrasensitive mouse
insulin ELISA kit (Crystal Chem, Downers Grove, IL,
USA). For insulin tolerance testing (ITT), 0.75 U/kg body
weight recombinant insulin (Eli Lilly, Indianapolis, IN) was
intraperitoneally injected into 5 h-fasted untreated and
STZ-treated mice. Blood glucose was determined at the
indicated time points.

Histological studies Immunostaining of pancreatic sections
was performed as previously described [18]. Insulitis scoring
was performed by grading islets as follows: 0, no infiltration;
1, mild peri-insular mononuclear infiltration; 2, moderate
(25–50%) infiltration; and 3, massive (>50%) infiltration
[20]. Antibodies are listed in electronic supplementary
material (ESM) Table 1.

Islet experiments Cadaveric human islets were obtained from
Beta-Pro LLC (Charlottesville, VA, USA), the National Dis-
ease Research Interchange (Philadelphia, PA, USA), or the
Integrated Islet Distribution Program (Duarte, CA, USA).
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Islets from four healthy donors were treated with a proinflam-
matory cytokine cocktail (50 U/ml IL-1β, 1,000 U/ml TNF-α,
and 1,000 U/ml IFN-γ (Prospec, East Brunswick, NJ) for 24 h
in DMEM containing 5.5 mmol/l glucose.

Mouse and rat pancreatic islets were isolated and cultured
as previously described [17]. Immediately after isolation, rat
islets were transduced with adenoviral vectors expressing
MIG6 or green fluorescent protein (GFP) under the control
of the cytomegalovirus (CMV) promoter. Glucose-stimulated
insulin secretion (GSIS) assays were performed 48 h post-
transduction, as previously described [21]. Insulin content of
the buffer was determined using an insulin RIA (Coat-A-
Count Insulin RIA, Siemens Medical Solutions, Malvern,
PA, USA), and data were normalised to total islet protein
concentration.

Groups of 50 islets from Mig6+/+ or Mig6+/− mice were
cultured for 24 h in 100 μl RPMI with or without the cytokine
cocktail. Nitrate and nitrite concentrations in cell supernatants
were then assayed as an index of nitric oxide (NO) using the
Griess assay (Promega, Madison, WI, USA) according to the
manufacturer’s protocol [22].

Cell experiments INS-1-derived 832/13 rat insulinoma cells
were cultured as previously described [23]. A starvation me-
dium (RPMI 1640 containing 2.5 mmol/l glucose and 0.1%
BSA) was used for EGF stimulation experiments. Gene over-
expression and knockdown were performed as previously
described [18].

For cytokine plus EGF stimulation experiments, 832/13
cells were pretreated with cytokines for 16 h, starved for 2 h
and treated with 10 ng/ml rat recombinant EGF (R&D Sys-
tems, Minneapolis, MN, USA) for 5 min. For apoptosis
experiments, 832/13 cells were treated with 1 μmol/l doxoru-
bicin (Adriamycin) or camptothecin (CA; BioVision,
Mountain View, CA, USA) for 6 h.

Immunoblot analysis Immunoblot analysis was performed as
previously described [18]. Phosphorylated protein levels were
normalised to total protein levels, and total (i .e.
nonphosphorylated) protein levels were normalised to tubulin
or GAPDH protein levels. Antibodies are listed in ESM
Table 2.

Quantitative RT-PCR analysis RNA from 832/13 cells, and
mouse, rat, and human islets was isolated using RNeasy Mini
or Micro kits (Qiagen, Valencia, CA, USA). Reverse tran-
scription was performed using a High Capacity cDNA Re-
verse Transcription kit (Applied Biosystems, Foster City, CA,
USA). Threshold cycle methodology was used to calculate the
relative quantities of Mig6, Pdx-1, Ins1/2, Irs2 (TaqMan as-
says, Applied Biosystems), and proinsulin (Ins2; SYBR
Green methodology, Life Technologies, Grand Island, NY,
USA) mRNA. Primer sequences were described previously

[24]. PCR reactions were performed in triplicate for each
sample from at least three independent experiments and nor-
malised to Gapdh or Actb mRNA levels.

Statistical analysis All data are presented as means ± SEM.
Protein andmRNA data were normalised to control conditions
and presented as relative expression. The Student’s t test,
Pearson correlation or ANOVA (with Bonferroni post hoc
tests) were performed using GraphPad Prism software (La
Jolla, CA, USA) to detect statistical differences. p<0.05 was
considered statistically significant.

Results

Mig6 is induced by proinflammatory cytokines Originally
characterised as an immediate-early response gene [25],
Mig6 is induced by various growth factors and cellular stress
stimuli to regulate tissue homeostasis [26]. We sought to
determine whether Mig6 is also induced by type 1 diabetes-
associated pathological stimuli, hence mediating diabetes pro-
gression. As proinflammatory cytokines are major contribu-
tors to beta cell dysfunction and death in type 1 diabetes, we
treated isolated human islets and rat 832/13 INS-1-derived
beta cells with a cytokine cocktail containing IL-1β, TNF-α
and IFN-γ. We observed Mig6 mRNA induction in both
human islets and 832/13 cells (Fig. 1). Interestingly, Mig6
and Ins mRNA expression are inversely correlated in human
islets, suggesting that MIG6 might control beta cell homeo-
stasis and function.

To identify the cellular and molecular mechanisms con-
trolled by MIG6 during diabetes development, we exposed
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Fig. 1 Proinflammatory cytokines induce MIG6 expression. (a) Human
islets or (b) 832/13 cells were treated with cytokines, and MIG6/Mig6
expression was determined. n=4; *p<0.05. (c) INS2 mRNA levels from
four human islet donors (±cytokines) were plotted againstMIG6 mRNA
levels (r2=0.40, p<0.05)
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832/13 cells to proinflammatory cytokines to induce a condi-
tion that mimics the islet inflammation present in developing
type 1 diabetes. As shown in Fig. 2, we discovered that
chronic cytokine treatment inhibits EGFR phosphorylation
and activation. As MIG6 is a bona fide EGFR inhibitor and
Mig6 expression is induced by proinflammatory cytokines,
we speculated that the cytokine-induced MIG6 is responsible
for EGFR inactivation. Indeed, small interfering RNA
(siRNA)-mediated MIG6 knockdown overcomes the
cytokine-induced attenuation of EGFR and extracellular
signal-regulated kinase 1 and 2 (ERK1/2) activation.

Mig6 haploinsufficiency protects against STZ-induced
metabolic dysfunction To investigate the pathophysiological
roles of MIG6 during type 1 diabetes development, we chal-
lengedMig6+/− andMig6+/+ mice withMLD-STZ.MLD-STZ
administration is known to induce hyperglycaemia by: (1)
direct DNA-damaging effects in beta cells; and (2) an indirect
inflammatory effect that promotes islet dysfunction and death
[27]. Hence, we employed MLD-STZ treatment as an exper-
imental model to mimic beta cell destruction in human type 1
diabetes. Heterozygous rather than homozygousMig6 knock-
out mice were used because: (1) homozygous knockouts are
reported to have a higher embryonic lethality rate [19], and are
not viable in our facility; and (2) under normal conditions,
heterozygous mice exhibit physiological and metabolic fea-
tures similar to those of wild-type mice and exhibit

comparable islet architecture [18]. In the current study,
we treated 10-week-old Mig6+/− and Mig6+/+ mice with
MLD-STZ, and performed metabolic and histological
analyses on various days after STZ treatments (Fig. 3).
Whereas STZ-treated Mig6+/+ (hereafter referred to as
STZ-Mig6+/+) mice developed profound glucose intoler-
ance, STZ-Mig6+/− mice remained glucose tolerant com-
pared with saline-treated control mice at the same time
point (Fig. 4). Additionally, STZ-Mig6+/+ exhibited
fasting hyperglycaemia, in contrast to STZ-Mig6+/− mice
(12.40±0.86 mmol/l vs 10.21±0.57 mmol/l; p<0.05).
Concurrently, STZ-Mig6+/− mice had higher serum insu-
lin concentrations following a glucose injection (Fig. 5).
As both untreated and STZ-treated Mig6+/− and Mig6+/+

mice have comparable insulin tolerance, the preserved
glucose tolerance in STZ-Mig6+/− mice probably results
from preserved beta cell function. In fact, pancreatic
islets from STZ-Mig6+/− mice have higher Pdx1 and
IRS2 mRNA expression levels compared to islets from
STZ-Mig6+/+ mice. Taken together, these data suggest
that MIG6 is required for the destructive events leading
to glucose intolerance and loss of islet beta cell integrity
following STZ treatment.

Mig6 regulates beta cell integrity and function Our findings
suggest that MIG6 participates in beta cell destruction and/or
dysfunction in this rodent diabetes model. To further examine
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the role ofMIG6 in beta cell (dys)function, we treated rat islets
with an adenoviral Mig6 expression vector and demonstrated
that elevated MIG6 significantly reduces GSIS (Fig. 6). Ad-
ditionally, because ERK signalling has been implicated in beta
cell integrity and function, and MIG6 suppressed EGFR sig-
nalling (including ERK phosphorylation), we investigated
whether MIG6 suppresses the downstream effectors of ERK.
Elevated MIG6 expression indeed reduced ERK target gene
(i.e. Pdx1 and Ins1) expression in 832/13 cells. Collectively,
our findings suggest that cytokine-induced MIG6 abrogates
EGFR and ERK signalling cascades in beta cells, and that
elevated MIG6 compromises beta cell function.

Mig6 haploinsufficiency does not affect STZ- and cytokine-
induced islet inflammation As mentioned previously, MLD-
STZ treatment promotes both glucose intolerance and
hyperglycaemia and mimics human type 1 diabetes through
promoting islet inflammation. To determine whether MIG6
regulates islet inflammation, we examined the degree of im-
mune cell infiltration in STZ-Mig6+/− and Mig6+/+ mice.
Mig6+/− and Mig6+/+ mice showed comparable, low insulitis
scores (Fig. 7). Furthermore, islets fromMig6+/− and Mig6+/+

mice exhibited similar cytokine responsiveness, with both
producing similar amounts of NO. Taken together, these data
suggest that although MIG6 probably does not modulate
immunity in this model, it is crucial for controlling beta cell
function and integrity during a diabetogenic assault.

Mig6+/−mice have improved beta cell mass recovery following
STZ treatment To determine whetherMIG6 regulates beta cell
regeneration following MLD-STZ treatment, we examined

the histomorphology of isolated Mig6+/− and Mig6+/+ mouse
pancreases. Whereas Mig6+/+ exhibited a sustained reduction
in insulin-positive cross-sectional area, beta cell mass recov-
ered by 21 days post-STZ in Mig6+/− mice to a level compa-
rable with saline-treated mice (Fig. 8). To identify whether the
observed regeneration occurred through beta cell replication,
we performed pH3 staining to evaluate the mitotic rate. Inter-
estingly, STZ-Mig6+/− and STZ-Mig6+/+ mice had almost
identical beta cell replication rates, suggesting that another
factor(s) contributes toMig6 haploinsufficiency-enhanced beta
cell mass recovery.

Mig6 mediates DNA damage-induced beta cell apoptosis We
speculated that the enhanced recovery of beta cells observed
in STZ-Mig6+/− mice results from elevated beta cell survival
through enhanced repair and recovery mechanisms. We there-
fore analysed these events in 832/13 cells. First, we observed
that diabetogenic factors such as proinflammatory cytokines
(Fig. 9) and reactive oxygen species (data not shown) induce
beta cell DNA damage and repair, as indicated by the p53
Ser-15 phosphorylation and accumulation. Next, we exam-
ined whether a reduction in MIG6 would increase EGFR
signalling and promote beta cell survival. Importantly,
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siRNA-mediated MIG6 suppression in 832/13 cells elevated
CA-induced p53 protein expression and partially protected
beta cells from DNA damage-induced apoptosis, as measured
by caspase 3 cleavage.

Discussion

There is currently much interest in the antidiabetogenic effects
of EGFR signalling [28], and we are specifically interested in

MIG6 inhibition of stress-inducible EGFR feedback. In the
current study, we employed Mig6 haploinsufficient mice to
examine the role of MIG6 in experimental diabetes progres-
sion. We treatedMig6+/− andMig6+/+ mice with MLD-STZ to
induce diabetes. We observed that Mig6+/− mice are resistant
to developing STZ-induced diabetes: postprandial glycaemia,
glucose tolerance and serum insulin levels following a glucose
load are preserved. Insulin sensitivity (both before and after
STZ treatment) is comparable between Mig6+/− and Mig6+/+

mice, suggesting that improved glucose homeostasis in
STZ-Mig6+/− mice results from preserved beta cell function.
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levels in islet culture medium was
measured. n=3, *p<0.05 vs
untreated
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Never theless , we recognise that systemic Mig6
haploinsufficiency might alter immunity, angiogenesis or nu-
trient utilisation in other tissues. However, we established that
MIG6 modulates beta cell function and integrity in vivo and
in vitro.Whereas half of the beta cells inMig6+/− andMig6+/+

mice were ablated by STZ treatment, the remaining islets from
Mig6+/− mice had higher Pdx1 and IRS2 mRNA levels. In

contrast, elevated MIG6 expression causes beta cell dysfunc-
tion in isolated rat islets. As MIG6 has been shown to inhibit
ERK1/2 activation in beta cells [17], we examined whether
other beta cell genes are transcriptionally regulated by
ERK1/2 in the context of MIG6 overexpression. We found
that Pdx1 and Ins1/2 mRNA levels are reduced in 832/13
INS-1 cells with elevated Mig6 expression. Additionally,
proinflammatory cytokine-induced Mig6 mRNA expression
inversely correlates with Ins2mRNA levels in isolated human
islets. Therefore, MIG6 may compromise beta cell function in
human type 1 diabetes patients.

We utilised 832/13 cells to study the effect of MIG6 over-
expression on EGFR signalling in a type 1 diabetes proin-
flammatory cytokine milieu. We established, for the first time,
that proinflammatory cytokines impair EGFR signalling.
Excitingly, siRNA-mediated suppression of MIG6 partially
restores the cytokine-mediated attenuation of EGFR activity.
Because proinflammatory cytokines promote NO production
and cause beta cell damage [29], it will be interesting to
determine whether NO mediates beta cell EGFR inactivation,
as reported in other cell types [30, 31]. In addition, it remains
to be determined whether cytokine-induced NO participates in
the induction of EGFR inhibitor such as MIG6. Nevertheless,
our discovery brings a new level of complexity to the mech-
anism of traditional growth factor-based glucose-lowering
therapies. We suggest that under pathological conditions, in-
tracellular and extracellular stress directly inactivates mito-
genic signalling pathways via stress-inducible negative regu-
lators. Our data suggest that cellular stress might interfere with
the glucose-lowering or regenerative effect of growth factor
therapies. Excitingly, Wang et al recently proposed a similar
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hypothesis [32]. They reported that combinatorial therapy
comprising anti-CD3/CD8 immunotherapy (to eradicate in-
flammatory assaults) and gastrin plus EGF (to augment beta
cell regeneration) reverses late-stage diabetes in NOD mice.

Previous reports suggested that EGF plus gastrin
cotreatment increases beta cell mass by promoting beta cell
proliferation [32], transdifferentiation [33–35] and neogenesis
[32]. In the current study, we used Mig6+/− mice as an alter-
native model to examine the mechanism of EGF-regulated
beta cell regeneration. We showed that STZ-Mig6+/−mice had
improved beta cell mass recovery 20 days after STZ treatment.
However, cell replication is probably not the mechanism
responsible for increased beta cell mass because both geno-
types exhibited similar STZ-stimulated beta cell proliferation
rates. Given this, we infer that recovery of the insulin-positive
area is attributed to other sources such as transdifferentiation
or the restoration of insulin positivity (i.e. beta cell recovery)
[8]. However, we do not consider duct-to-beta cell
transdifferentiation to be the main contributor to the increased
beta cell mass in STZ-Mig6+/−mice because CK19/Ins-positive
cells are rare at the time points used for our histological studies
(data not shown).

As an alternative to these mechanisms, we examined
whether Mig6 haploinsufficiency facilitates beta cell survival
because: (1) newly generated beta cells are more susceptible to
cell death [36]; (2) we and others have demonstrated that
MIG6 promotes apoptosis [18, 37]; and (3) EGFR promotes
DNA damage repair and facilitates survival in various cell
types [38]. We revealed that proinflammatory cytokines in-
duce DNA damage in 832/13 cells, as indicated by the elevat-
ed levels of phosphorylated and total p53 protein. In addition,
we showed that siRNA-mediated MIG6 suppression partially
protects beta cells from DNA damage-induced apoptosis me-
diated by p53. However, we cannot rule out the possibility that
MIG6 promotes beta cell death through EGFR-independent
mechanisms, as suggested by Hopkins et al [37]. Further,
EGFR facilitates cell survival through various molecular
actions, such as promoting phosphoinositide 3-kinase
(PI3K)/Akt- and Ras/ERK-mediated transcription of DNA
repair genes [39, 40], and activating nuclear proteins involved
in damage repair [41, 42]. Thus, future investigations should
aim to elucidate the signalling pathways through which MIG6
regulates EGFR activity and cell survival.

Taken together, we demonstrated that while MIG6 defi-
ciency does not enhance STZ-stimulated beta cell prolifera-
tion, it probably allows beta cells to mount a more robust
damage-repair response, leading to their improved recovery
and insulin positivity. Our discovery highlights the largely
overlooked beta cell repair mechanisms as potential therapeu-
tic targets in diabetes [4]. Indeed, accumulated cadaveric
studies reported that even long-term type 1 diabetes patients
have minimal levels of C-peptide and preserved beta cells
(albeit degranulated and scattered as small clusters) [43–45],

and that human islets are capable of recovering from damage
[6, 9, 46]. These findings suggest that beta cells in type 1
diabetes patients can be repaired if provided with the proper
stimulation. We suggest that targeted MIG6 inhibition could
be a good treatment option for type 1 diabetes because MIG6
compromises beta cell functional integrity and facilitates beta
cell death. To explore this idea further, future studies will
examine the role of MIG6 in diabetes development in the
NOD mouse, which is a better model of human type 1
diabetes.

In summary, our data demonstrated that cytokine-induced
MIG6 negatively controls EGFR signalling, compromises
beta cell function and identity, and inhibits beta cell recovery
in a chemically induced diabetes model. This study indicates
that using growth factors alone as antidiabetogenic therapies
could be ineffective because pathological stimuli can directly
turn off mitogenic signalling pathways via negative regulators
such as MIG6. Further, we propose that targeting the beta cell
recovery machinery represents a promising therapeutic strategy
to prevent or reverse type 1 diabetes progression.
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