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Abstract

The human brain is a complex network with countless connected neurons, and can be described as 

a “connectome”. Existing studies on analyzing human connectome data are primarily focused on 

characterizing the brain networks with a small number of easily computable measures that may be 

inadequate for revealing complex relationship between brain function and its structural substrate. 

To facilitate large-scale connectomic analysis, in this paper, we propose a powerful and flexible 

volume rendering scheme to effectively visualize and interactively explore thousands of network 

measures in the context of brain anatomy, and to aid pattern discovery. We demonstrate the 

effectiveness of the proposed scheme by applying it to a real connectome data set.

1. Introduction

Recent advances in acquiring multi-modal neuroimaging data provide exciting new 

opportunities to study how the human brain is wired and how its function is affected by the 

connectivity pattern. Research in this emerging field, known as human connectomics [BSss], 

holds great promise for a systematic characterization of human brain connectivity and its 

relationship to cognition and behavior. The human brain is a complex network of 

approximately 1010 neurons linked by 1014 synaptic connections [Wik]. Given such an 

unprecedented complexity, we are facing critical computational challenges for 

comprehensive mapping and analysis of brain connectivity, across all scales, from the 

micro-scale of individual synaptic connections between neurons to the macro-scale of brain 

regions and interregional pathways.

A large body of research has been devoted to extracting brain networks from structural, 

functional and diffusion magnetic resonance imaging (MRI) data [AB07, BBD*11, BSss, 

BS09, RS10, Spo11, CWS*12, FCD*08, GWK*10, HCG*08, HKG*07, HSM*10, 

MHO*11, CC11, CGM*12]. The number of nodes in these networks varies from a few 
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dozen to several thousand. Existing studies on analyzing these networks are primarily 

focused on characterizing them with a small number of easily computable measures that 

may be inadequate for revealing complex relationship between brain function and its 

structural substrate. To facilitate large-scale connectomic analysis, we propose a flexible 

volume rendering scheme to effectively visualize and interactively explore thousands of 

brain network measures, and to aid pattern discovery. We demonstrate the effectiveness of 

the proposed scheme by applying it to a real connectome data set.

Volume rendering supports the direct display of volume data sets through semi-transparent 

images and transfer functions. To highlight segmented volumes or multiple overlapping 

volumetric fields, existing methods typically modify traditional rendering procedure to 

traverse multiple segmented data sets. For example, in [HBH03], the segmented components 

are combined within each cutting slice in a 3D texture mapping algorithm. In [BA02] and 

[TSH98], a ray casting algorithm is modified to access boundaries of segmented objects 

during the ray casting process. In [CS01], the intermixing of multiple volumes are assessed 

at intensity level, opacity level and illumination parameter level at different stages of the 

rendering process. In our volume rendering algorithm, we apply a unique transfer function 

based volume intermixing by encoding the multiple volume intensity values within the same 

volume such that the transfer function can directly access the intermixing information. Since 

transfer function can be changed dynamically, this approach is more flexible in generating 

different visual effects interactively by simply manipulating the transfer functions.

2. Creation of Structural Connectivity Networks

The topological representation of a network is a collection of nodes and edges between pairs 

of nodes. Nodes and edges are defined and further combined to construct the brain network. 

Fig. 1 summarizes the methodology employed in this work for constructing structural 

connectivity network based on MRI and diffusion tensor imaging (DTI) data. The 

processing pipeline is divided into three major steps as follows.

1) ROI Generation: Anatomical parcellation is performed using FreeSurfer 5.1 (http://

surfer.nmr.mgh.harvard.edu/) [FSD99, DFS99, FSB*02] on the high-resolution T1-weighted 

anatomical MRI scan acquired with MP-RAGE sequence. The parcellation is an automated 

operation on each subject to obtain 68 gyral-based ROIs, with 34 cortical ROIs in each 

hemisphere. The Lausanne parcellation scheme [HCG*08] is applied to further subdivide 

these ROIs into smaller ROIs, so that brain networks at different scales (e.g., Nroi = 83, 129, 

234, 463, or 1015 ROIs/nodes) can be constructed. The T1-weighted MRI image is 

registered to the low resolution b0 image of DTI data using the FLIRT tool-box in FSL 

(http://www.fmrib.ox.ac.uk/fsl.html), and the warping parameters are applied to the ROIs so 

that a new set of ROIs in the DTI image space are created. These new ROIs are used for 

constructing the structural network.

2) DTI tractography: The DTI data are analyzed using FSL. Preprocessing includes 

correction for motion and eddy current effects in DTI images. The processed images are 

then output to Diffusion Toolkit (http://trackvis.org/) for fiber tracking, using the streamline 

tractography algorithm called FACT (fiber assignment by continuous tracking). The FACT 
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algorithm initializes tracks from many seed points and propagates these tracks along the 

vector of the largest principle axis within each voxel until certain termination criteria are 

met. A spline filtering is then applied to smooth the tracks.

3) Network Construction: Nodes and edges are defined from the previous results in 

constructing the weighted, undirected network. The nodes are chosen to be Nroi ROIs 

obtained from Lausanne parcellation. The weight of the edge between each pair of nodes is 

defined as the density of the fibers connecting the pair, which is the number of tracks 

between two ROIs divided by the mean volume of two ROIs [HKG*07, CWS*12]. A fiber 

is considered to connect two ROIs if and only if its end points fall in two ROIs respectively. 

The weighted network can be described by a matrix (Fig. 1(c-d)). The rows and columns 

correspond to the nodes, and the elements of the matrix correspond to the weights.

3. Visualization Method

Brain connectivity networks obtained through our pipeline can be further taken into complex 

network analysis. Network measures, such as node degree, strength and efficiency, can be 

calculated from individuals or average of a population. Different measures may characterize 

different aspects of the brain connectivity [RS10]. 3D visualization of this connetivity 

network can provide valuable insight and better understanding of the brain networks and 

their functions.

A simple way to visualize ROI measures is through a color lookup table. We assign distinct 

colors for the ROIs according to their network measurement values (e.g., node degree). This 

color lookup table will then be used as the transfer function in volume rendering of the brain 

label image, in which each voxel's intensity is its ROI index. In Fig. 2(a), ROIs with high 

network measurement values are colored red while those with low values are colored blue.

3.1. Volume rendering with highlights

The rendering of the brain label image does not show the original brain volume, which 

makes it difficult to interpret and understand the connectome in the context of an individual 

brain anatomy. To provide the volumetric context for the ROIs, we develop a simple and 

effective volume rendering technique that can highlight individual spots within the brain 

volume. This allows us to visualize the ROIs within the original brain volume by 

highlighting the centroids of the ROIs according to the network measures in real time. Fig. 

2(b) shows an example of this highlighted volume rendering.

In this technique, we employ a modified color transfer function to map the ROIs 

measurement values to given highlight colors at the centroid locations. The challenge is to 

separate the original brain volume intensities from the ROI measurement values in the color 

mapping process. We choose to expand the voxel intensity field in the brain volume to allow 

the encoding of the ROI index values at the ROI centroid locations. This enables the color 

transfer function to assign highlight colors for each ROI centroid point. The method is 

carried out in three steps (Fig. 3).
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Step 1: Creating color table. The color lookup table is created by assigning desired highlight 

colors to different ROIs according to their network measurement values (Fig. 3(a)).

Step 2: Expanding voxel cells. The voxel intensity values in the original brain volume are 

expanded to allow the encoding of both the original intensity values and the ROI index 

values at the ROI centriod locations (Fig. 3(b)). For example, if the original MRI image uses 

12 bits to store each intensity value, we can expand the voxel storage by adding another 12 

bits for each voxel to store the ROI index values at the appropriate locations (Fig. 3). This 

allows the manipulation of the color lookup table to render desired highlight colors for 

voxels carrying ROI index values at the high bits.

Step 3: Color transfer function. Using the modified color lookup table, a standard volume 

rendering algorithm is able to render the volume with highights at the encoded locations 

(centroids) (Fig. 3(c)). This color transfer function (lookup table) can be changed 

interactively, enabling the visual exploration of various connectome measures in real time.

3.2. Exploratory strategies

Several different strategies may be applied to explore the connectome through volume 

visualization.

• Scale: Using Lausanne parcellation scheme, we generate ROIs in 5 different scales, 

which contain 83, 129, 234, 463, 1015 ROIs respectively. However, there is no 

optimal scale for connectome analysis, and the most suitable resolution depends on 

the application [CGM*12]. Using our method, users can visualize the connectome 

at any scale, gain insight of the data, and make appropriate decision.

• Measurement: Different network measures (Table 1, [RS10]) present different 

information about the features of the network. Our method allows users to map any 

measure to ROIs or network nodes for visual evaluation.

• ROI Selection: Users can select a certain set of ROIs (e.g., a hemisphere or the 

hippocampus) to highlight, making other parts of the brain transparent.

• Thresholding: Users can set a threshold value for a certain network measurement. 

Thus, less significant features will not be rendered.

In short, users can perform visual exploratory analysis of the brain network by varying the 

above parameters: (1) look at the connectome at different scales, (2) identify interesting 

measurements, (3) localize ROIs, or (4) adjust the threshold for better visual effects. The 

goal is to have a better understanding of the data and measures, make visual comparison and 

evaluation, and determine strategies for further analyses.

4. Experimental Results

We implemented the proposed scheme based on the Visualization Toolkit (VTK, http://

www.vtk.org/). We applied the tool to an ongoing connectome study, where participants 

included 50 young male adults with no history of neurological and psychiatric disorder. 

Following the pipeline described in Section 2, we extracted structural networks for all 
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participants using their MRI and DTI data, and calculated the node measurements shown in 

Table 1. Below we report several examples of our visualization results.

By using the proposed technique, brain networks can be visualized under different 

measurements and in different network scales. Fig. 4 shows a panel of different visualization 

results of a sample brain network by varying the network scale and node measurements. 

Node degree, strength, and other three measures (Table 1) are compared through all 5 

different network scales. From this visualization, users can have an intuitive understanding 

of their data.

Video 1 is an example demonstration of exploring an individual connectome. It includes the 

following steps: (1) volume rendering of the brain; (2) rendering network nodes with and 

without showing the brain volume; (3) adjusting network scales; (4) changing the threshold 

value for rendering “significant” network measures; (5) rendering the measures on the ROIs 

with and without showing their centroids (i.e., network nodes); and (6) selecting ROIs to 

render a user-specified subset of brain regions. This demo shows the effectiveness and 

flexibility of our scheme for exploring an individual connectome, which can greatly help 

users gain a better understanding of the data in an intuitive fashion.

Video 2 is a demo on how to compare different individual brain networks and their average. 

This demo focuses on visualizing local efficiency on all the ROIs, using 8 individual brain 

networks and their average. It presents an intuitive comparison across individuals by 

visualizing the network measure one by one. An average pattern of this group is also shown 

at the end of the video. Using this approach, we can explore the mean and variance of the 

network measures among a group of subjects.

Video 3 shows a demo on how to compare different measures of an individual brain with a 

group-level pattern. The group-level pattern shown in this example consists of common 

connectivity modules identified from 24 individual networks using a Bayesian inference 

model. The common modules are extracted off-line by analyzing the weighted connectivity 

matrices [RS10]. Such a visualization facilitates comparison between individual data and 

group-level pattern as well as comparison between different networks measures of the same 

individual connectome.

The above results have clearly demonstrated that the proposed method can greatly aid in 

human connectome research by extracting new insights from complex neuroimaging data. A 

better understanding of the data could be achieved at the individual level (Video 1), the 

group level (Video 2), or by comparing different individual measures together with a group 

level pattern (Video 3). Using the proposed method, we have learned useful patterns which 

could not be seen before. For example, two functional segregation measures (Table 1), 

clustering coefficient and local efficiency, have demonstrated similar patterns at all the 

scales except scale 83 (Fig. 4). Such type of knowledge can help us determine which scale 

or which measure to focus on in further studies.
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5. Conclusions

Human connectomics has attracted a lot of recent attention in brain research. As a highly 

promising new field, it studies the complex architecture of the human brain and its 

connections in great detail. To facilitate large-scale human connectome analysis, in this 

paper, we have proposed a powerful and flexible volume rendering scheme to effectively 

visualize and interactively explore thousands of network measures in the context of brain 

anatomy, in order to guide subsequent analyses and aid pattern discovery. We have applied 

our technique to a real connectome data set and presented several examples of visual 

exploration and comparison of individual brain networks and group-level patterns. The 

promising results have demonstrated the effectiveness and flexibility of the proposed 

method. Future research will be very important to incorporate the visualization of network 

edges and edge properties into this volume rendering scheme to have a complete visual 

representation of the entire connectome.
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Figure 1. 
Creation of structural connectivity networks. (a) ROI definition via brain segmentation and 

cortical parcellation on MP-RAGE or SPGR scan. (b) Fiber extraction via DTI tractography. 

(c) Creation of connectivity matrix M, where M(i, j) stores the connectivity measure (i.e., 

edge weight) between ROI i and ROI j. (d) Visualization of connectivity matrix as brain 

network.
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Figure 2. Connectome visualization: (a) ROI visualization, (b) volume rendering with 
highlighted nodes
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Figure 3. Top panel: offline expanding method for rendering with highlights; bottom panel: 
expanded voxel intensity
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Figure 4. Visual comparison of five network measurements through all scales (Scale ID indicates 
the number of nodes)
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Table 1
Example measurements of network nodes, see [RS10] for more network measures and 
their details

Name Description

Degree Number of links connected to the node (a basic and important network measure)

Strength Sum of weights of links connected to the node (the weighted variant of the degree)

Clustering Coefficient Fraction of triangles around a node (a measure of segregation)

Local Efficiency Average of inverse shortest path length computed on the neighborhood of the node (a measure of segregation)

Betweenness Centrality Fraction of all shortest paths in the network that contain a given node (a measure of centrality)
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