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Abstract

Pharmacogenetics as a tool to aid clinicians implement individualized pharmacotherapy is utilized

in some areas of medicine. Pharmacogenetics in pregnancy is still a developing field. However,

there are several areas of obstetric therapeutics where data are emerging that give glimpses into

future therapeutic possibilities. These include opioid pain management, antihypertensive therapy,

antidepressant medications, preterm labor tocolytics, antenatal corticosteroids and drugs for

nausea and vomiting of pregnancy, to name a few. More data are needed to populate the

therapeutic models and to truly determine if pharmacogenetics will aid in individualizing

pharmacotherapy in pregnancy. The objective of this review is to summarize current data and

highlight research needs.
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The right drug, at the right dose, given at the right time, for the right patient. This is an ideal

that all healthcare practitioners strive toward when prescribing drugs to patients. This is

particularly important for medications and conditions that have a high risk of adverse events

or for drugs with narrow therapeutic windows. Additionally, pregnancy is a condition that is

particularly enticing for the above mantra. Because of the presence of the developing fetus

and the maternal changes that are occurring, pregnancy therapeutics offers particular

challenges for the clinician. The goals of individualizing pharmacotherapy in pregnancy

require information and tools to truly optimize care.

Pregnant women often need therapeutic drugs. Over 95% of women take a prescription drug

or supplement during their pregnancy [1,2]. This includes over 65% of women taking a
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prescription drug other than prenatal vitamins and iron [1,2]. Not only do women with

medical conditions become pregnant and require continued drug therapy, but pregnant

women also develop conditions that require drug therapy. As pregnancy-specific dosing of

drugs is almost universally lacking, providers are reliant upon dosing regimens in package

inserts, usually derived from studies in healthy males [3]. In fact, the US National Research

Act of 1974 codified the exclusion of reproductive-aged women from many trials to avoid

accidental early fetal exposure to drugs. However, in 1993 the NIH in the US shifted the

paradigm and required the inclusion of women in trials unless there was a reason not to. This

included guidance on the inclusion of pregnant women.

Because pregnant women were excluded from clinical drug trials for so long there are only

scant data regarding drug concentrations in pregnant women for many therapeutics. This

trend does seem to be changing however. In the last 2 years, there were noted to be 264

registered clinical trials of drugs used in pregnancy [4]. Of these registered trials, 28 (10.6%)

specifically were noted to be reporting pharmacokinetic data in pregnant women [4]. This is

important as reports recently have noted that drug concentrations in pregnant women are

much lower than nonpregnant controls for many medications including antibiotic,

antihypertensive and antiretroviral drugs to name a few [5–9]. Much of this change is due to

the myriad physiological changes in pregnancy that are catalogued elsewhere [10]. The work

of several international groups, including the US NIH-funded Obstetric-Fetal Pharmacology

Research Units Network [101], is aimed at closing this gap in pharmacokinetic and

pharmacodynamic data in pregnancy. The purpose of this review is to describe

pharmacogenetics used in current therapeutics, to describe current obstetric

pharmacogenetic findings and research, and to describe what is needed to ensure the future

of pharmacogenetics and individualized pharmacotherapy in pregnancy.

Pharmacogenetics currently utilized in therapeutics

Pharmacogenetics refers to the study of individual candidate genes as a powerful tool to help

explain interindividual variability in drug response [11]. This pertains to both therapeutic as

well as adverse effects. It is well recognized that metabolized drugs exhibit the most

pharmacokinetic variability. The majority of this variability is due to inconsistencies in the

ability of enzymes in the liver and gastrointestinal tract to carry out drug metabolism. The

key enzymes involved in metabolic variation include the CYP450 family of drug-

metabolizing enzymes, which carry out phase 1 drug metabolism, but also the phase 2

enzymes, including the enzymes that carry out acetylation, glucuronidation, sulfation,

methylation and the addition of glutathione. Many of these enzymes have SNPs that can lead

to increased or decreased activity, accounting for some of the observed variation in drug

concentrations and response. Additionally, there are SNPs responsible for receptor

modifications that may impact the binding of a drug to its target. This could lead to no

effect, decreased effect or too great of an effect. Pharmacogenetics studies seek to describe

effect variation and relate it to genetic SNP differences in an effort to better predict response

and minimize adverse effects.

Pharmacogenetics has had slow uptake into clinical practice however. Factors leading to this

include: high cost of the tests, lack of knowledge about the tests and how to apply them by

Haas Page 2

Pharmacogenomics. Author manuscript; available in PMC 2014 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



clinicians, the need for specialized laboratory equipment to perform the tests, difficulty with

interpretation of tests, and the lack of proven utility of several of the pharmacogenetic tests

[12].

Despite these limitations, there are several pharmacogenetic tests currently used in clinical

practice. As of July 2011, there were 15 different drugs or drug classes with commercially

available pharmacogenetic tests. Several of these tests are now standard of care in

therapeutics. A mutation in the KRAS gene codon 12 or 13 leads to resistance to cetuximab

therapy. Thus, the American Society of Clinical Oncology has recommended that all

patients with metastatic colorectal carcinoma who are candidates for cetuximab therapy

should have their tumor tested for KRAS mutations. If codon 12 or 13 mutations are

detected, then the patients should not receive the expensive cetuximab therapy as part of

their treatment [13]. The cutaneous adverse drug reaction Stevens–Johnson syndrome is a

serious concern for people taking drugs such as abacavir and carbamazepine [14,15].

Pharmacogenetic screening for HLA-B*5701 can help identify those taking abacavir most at

risk for developing this severe adverse drug reaction. To avoid Stevens–Johnson syndrome,

this test is now widely used for screening patients in need of abacavir in the developed

world [16]. The BCR-ABL gene negates the benefits of imatinib therapy for those with

chronic myelogenous leukemia and thus the therapy is not recommended for those carrying

that gene. Other pharmacogenetic tests that similarly have data supporting their potential

role for individualizing drug therapy are the CYP2D6 test for tamoxifen [17,18] or

venlafaxine [19], the CYP2C19 test for clopidogrel antiplatelet therapy [20], and the

CYP2C9 and VKCOR test for those starting warfarin therapy [21–23].

These tests and pharmacogenetic findings are becoming much more common. In fact, one

study revealed that nearly one-quarter of all outpatients received at least one drug with

pharmacogenomic information in the label for that drug [24]. Table 1 displays a list of drug-

metabolizing enzymes and receptors that have polymorphic expression and some of the

drugs that are relevant to that drug. While pregnancy therapeutics is behind other therapeutic

areas in researching pharmacogenetics, data are emerging in several areas that may pave the

way toward a greater importance of pharmacogenetics in pregnancy.

Codeine & opioid pain

Opioid analgesics frequently are used for peripartum pain relief. As codeine and other

narcotic pain medications are prodrugs requiring conversion to morphine and other active

metabolites for their action, metabolizing enzymes are important to consider. For instance

codeine requires metabolism by CYP2D6 into the active metabolite morphine. CYP2D6 is

an enzyme that is highly polymorphic and is actually induced through the course of

pregnancy [25,26]. Women who possess certain SNPs in CYP2D6 are categorized as poor

metabolizers (Table 1). These women do not receive adequate pain relief from codeine as it

is not well transformed into active morphine. Conversely, some individuals possess many

copies of the CYP2D6 gene and are either extensive metabolizers (EMs) or ultra-rapid

metabolizers (UMs). These women would convert codeine to morphine in a normal way or

in an excessive way, respectively. People who are UMs might get rapid pain relief but also

be more prone to side effects [27–29]. The presence of these SNPs can be particularly
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relevant depending on the woman’s SNPs in UGT. UGT facilitates the excretion of opioids

from the body [27]. The combination of CYP2D6 UM status of the mother and infants with

a UGTB7*2 genotype, indicative of reduced activity, can lead to toxicity of morphine in

breastfeeding infants [30]. Because these findings have explained infant deaths, the US FDA

issued a Public Health Advisory for women who are breastfeeding and taking narcotics

[102]. In addition, the EMA’s Pharmacovigilance Risk Assessment Committee also

discourages codeine use by breastfeeding women or for any patient who is known to be a

CYP2D6 UM [103].

Thus, for women planning to breastfeed who will require narcotic pain medication in the

postpartum period, codeine may not be the best choice for analgesia [31]. While other opioid

pain medications also are metabolized by CYP2D6, many of them also are metabolized

through other CYP450 pathways, thus potentially ameliorating some of the impact of

CYP2D6 metabolism status on pain control and side effects. The importance of these SNPs

with other opioids in the peripartum period is being investigated. However, it is being noted

that pharmacogenetics is an important factor in life-threatening adverse events among opioid

users [32]. This is an active area of research. While guidelines have not been issued as a

result of this research yet, obstetric practitioners should be aware of developments in this

area.

Antihypertensive medications

Hypertension complicates 12–22% of pregnancies [33]. Whether being treated for chronic

hypertension or for acutely elevated blood pressures with preeclampsia, many pregnant

women require antihypertensive drugs. β-blockers are commonly used antihypertensive

drugs. Drugs in this category such as metoprolol and propranolol are metabolized by

CYP2D6. As demonstrated already, CYP2D6 activity increases throughout pregnancy.

Thus, later in pregnancy, someone who had previously been controlled on her medication

may begin to show signs of worsening hypertension [34]. Up to 7% of the US major ethnic

populations are UMs, with gene duplication UMs as high as 45% in Asians [35,36]. As

pregnancy progresses, EMs and UMs have more enzymatic activity, whereas poor

metabolizers have suppressed activity [26,37]. Thus, practitioners who prescribe β-blockers

must be cognizant that as pregnancy progresses, the needs for drug may change.

Atenolol is a β-blocker also used in obstetrics. Polymorphisms in the eNOS gene are

associated with variations in the pharmacological response to atenolol. Patients with G498A

polymorphism in the eNOS gene have a better blood pressure response to atenolol. If

confirmed in larger studies, it is possible that the presence of eNOS polymorphisms could

help inform atenolol antihypertensive therapy [38].

Hydralazine is commonly used for acute treatment of severe hypertension [39]. Hydralazine

is metabolized by the enzyme NAT [40]. NAT has several polymorphisms that lead to

reduced enzymatic activity. This would potentially lead to higher concentrations of

hydralazine that might yield worsening side effects, such as hypotension. This has not been

studied in pregnancy to date. If a pregnant woman was known to have one of these SNPs, it

could lead to her not being administered hydralazine during a hypertensive emergency
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owing to the higher risk of hypotension and may lead to a different drug choice. This would

be one way that pharmacogenetics might play a role in individualized antihypertensive

therapy.

Antidepressant drugs

The mainstays of antidepressant therapy in pregnancy are SSRIs [41]. Several of the SSRI

drugs are metabolized by CYP2D6 [104]. In addition, several of them, such as fluoxetine,

also inhibit the enzyme. It is clear that even in women maintained on drug therapy,

depression symptoms typically worsen as pregnancy progresses [42]. Drug concentrations of

SSRIs also decrease in the third trimester. This is attributed to increased CYP2D6 activity

[43,44]. One study using paroxetine found that CYP2D6 genotype accounted for differences

in maternal plasma paroxetine concentrations during pregnancy [37]. In addition, as

pregnancy progressed, depressive symptoms in women who were EMs and UMs increased

significantly. The authors concluded that knowledge about a patient’s CYP2D6 genotype is

‘indispensable’ when prescribing paroxetine [37].

There are concerns regarding SSRI use and neonatal irritability symptoms and potential

small teratogenic risk increases [45]. It is possible that pharmacogenetic-informed

prescribing could help tailor the dose to help minimize potential adverse effects. More

research is needed on the pharmacogenetics of the adverse events associated with SSRI

therapy. There are now investigators advocating for the use of pharmacogenetic models to

inform therapeutic dosing decisions [46].

Preterm labor therapy

As the cause of the majority of neonatal morbidity and mortality, preterm labor is a major

focus of obstetric practice. The use of tocolytic medications to stop preterm labor is

commonplace but of varying success [47,48]. While many of the commonly used tocolytic

medications are substrates of polymorphic enzymes or target polymorphic receptors, there is

a paucity of data in this area. Whether the individual variation in success of tocolysis is due

to a less-than-concrete definition of preterm labor, differing pathophysiology of preterm

contractions or pharmacogenetic explanations, there remains work to be done in this area to

better individualize therapy.

Nifedipine is a calcium channel blocker used in obstetrics to stop contractions and delay

birth. It has been demonstrated that calcium channel blockers have a beneficial efficacy and

safety profile over other tocolytic classes of medication [49–51]. Nifedipine is metabolized

by the CYP3A family. Recent studies have demonstrated that polymorphisms in CYP3A5

and the use of CYP3A inhibitors can impact the concentration of nifedipine in maternal

blood [52,53]. While this is preliminary work, efforts have been underway to predict drug

concentrations in maternal blood based on CYP3A predicted activity [54]. As more data

emerge regarding the impact of genotype on drug concentration and the correlation with

pharmacodynamic changes of stopping contractions and preventing delivery, there may be

clinical applications of pharmacogenetics to this therapy. As this is a developing field,

however, more data are needed to populate and validate these models.
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The only FDA-approved drug for preterm labor is ritodrine. This β-adrenergic receptor (β2R)

agonist results in uterine smooth muscle relaxation. The side effects of ritodrine and other

β2R agonists such as terbutaline and hexoprenaline have lessened enthusiasm for these

therapies. The EMA went so far as to restrict the use of these medicines to a maximum of 48

h and only in women between 22 and 37 weeks of gestation [105]. In addition, the FDA

issued a black box warning against prolonged use of terbutaline for these reasons [106].

Even high drug concentrations of ritodrine have been noted not to inhibit labor [55]. Thus, it

may be at the β2R where differential response may be born. Some genotypes of the β2R have

been found to be protective against preterm delivery but the results did not show consistent

genotype associations [56,57]. One study demonstrated that Arg16 homozygosity of the β2R

improved the pregnancy outcome after hexoprenaline use [58]. We are unaware of any other

pharmacogenetic study of β2R agonists.

Prostaglandin inhibitors such as indomethacin have also been demonstrated to be effective

in treatment of preterm labor [50,51]. Indomethacin is metabolized by the polymorphic

CYP2C9 and CYP2C19 enzymes [59]. SNPs in these enzymes may affect the concentrations

of indomethacin and its effectiveness in preterm labor therapy, but we are unaware of any

studies in this area. As prostaglandin inhibitors also have fetal effects, they are typically

limited to use earlier in the preterm period [60]. Magnesium sulfate is another commonly

used tocolytic agent. We are also unaware of any pharmacogenetic studies on magnesium

sulfate as a tocolytic.

Antenatal corticosteroid administration is the most important therapy that can be given to a

woman in preterm labor [47]. Maternally administered to enhance the fetal lung maturation

in anticipation of preterm birth, antenatal corticosteroids reduce both neonatal mortality and

morbidity [61,62]. However, not all neonates receive the same benefit. Differences in

neonatal respiratory outcomes are seen in different ethnic groups, independent of gestational

age, weight and other sociodemographic factors [63–65]. In addition, respiratory distress

syndrome (RDS)-related mortality has a racial disparity that cannot be explained by

demographic factors [64]. Several studies are attempting to test for pharmacogenetic

explanations for this response variability. Betamethasone and dexamethasone are the

currently recommended options for antenatal corticosteroid therapy [47]. There are no

currently published studies to our knowledge that describe genetic influences on

corticosteroid drug concentrations in pregnancy. Much of the literature focuses on genotype

associations with outcomes. For instance glucocorticoids act at the glucocorticoid receptor

(GR). There are polymorphisms in the GR gene that can impact its response. Much of the

work in the GR and glucocorticoid pathway genes has come from asthma research [66,67].

While some SNPs create less functional GR activity, many polymorphisms in the pathway

genes lead to GR hypersensitivity [68]. Studies specifically of polymorphisms in GR have

shown certain haplotypes that may help determine clinical response [69], where one

specifically showed that a polymorphism in the GST-P1 gene may have an effect on RDS

[70]. In addition, a recent pharmacogenetic study looking at multiple CYP3A and other

betamethasone metabolic pathway SNPs and glucocorticoid pathway genes found that both

maternal and fetal genotypes were associated with RDS after betamethasone treatment when

controlling for gestational age and a host of other sociodemographic factors [71]. These
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findings included a fetal CYP3A7*1E genotype with an odds ratio of 23.68 (95% CI: 1.33–

420.6) for developing RDS. There were other SNPs significantly associated with long-term

respiratory morbidity such as bronchopulmonary dysplasia from the same cohort [72]. While

all of these studies are small and need to be confirmed in larger cohorts, there may be

potential for pharmacogenetic variation to help explain some of the outcome differences

from antenatal corticosteroids.

Nausea & vomiting of pregnancy

Nausea and vomiting of pregnancy (NVP) is a very common disorder, affecting up to 80%

of pregnant women [73]. Both mild and severe cases of NVP have a significant impact on

the quality of a woman’s life and can result in loss of time with family and time away from

work [74,75]. Many drugs are used to counteract NVP. These include vitamin B6,

doxylamine, promethazine, metoclopramide and ondansetron alone or in combination with

each other to name a few. Response to these drugs varies. Anesthesia literature has

documented that genotypes of drug-metabolizing enzymes and receptors may impact

therapeutic effectiveness of several of these drugs. A CYP2D6 substrate, ondansetron is a

drug whose failure has been linked to CYP2D6 EMs and UMs [76]. Many of the drugs

commonly given for NVP are substrates for polymorphic CYP450 enzymes. In addition,

many of the drugs act at the polymorphic serotonin receptor 5HT3. This receptor facilitates

the role of serotonin as a mediator of nausea and vomiting [77]. Variants in the 5HT3B

receptor are linked to increased nausea and vomiting due to increased response to serotonin

binding [78]. For women with NVP, one study demonstrated that SNPs in 5HT3B leading to

a high affinity receptor led to women needing more medication [79]. Other SNPs in the

5HT3A receptor were associated with more improvement in both NVP symptoms and

quality of life [79]. This study may be an initial foray into pharmacogenetics of NVP and

should be confirmed. However, it may lead to more individualized therapy for women with

NVP who have genotypes that might make a certain therapeutic drug option less effective.

Antiseizure drugs

Seizure disorders affect up to 2% of the population. Many women thus become pregnant

when taking drugs to prevent seizures. Many of these drugs are associated with teratogenic

effects. Drug concentrations are often monitored in pregnancy as concentrations change.

This often requires dose changes as the pregnancy progresses and in the postpartum period.

Some of this can be explained by the metabolism of some of the drugs. For instance,

phenytoin is metabolized by CYP2C9, a polymorphic enzyme that is induced in pregnancy

[80]. Some of the newer seizure drugs have favorable teratogenic and therapeutic profiles

[81]. One that is commonly used currently is lamotrigine. Lamotrigine clearance increases

several-fold in pregnancy [82–84]. This can lead to the need for higher doses during

pregnancy. Lamotrigine is metabolized through glucuronidation by enzymes that are both

polymorphic and often induced in pregnancy [85].

Obstetric anesthesia

In addition to utilizing antihypertensive medications and oral opioids listed above, there are

some potential areas where pharmacogenetics may influence obstetric anesthesia.
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Hypotension is a common side effect after spinal anesthesia. Response to stimulant therapy

for this is affected by the β2R genotype/haplotype [86]. In this study, less ephedrine was

needed to treat the hypotension in women carrying one or two alleles of the variant. Landau

points out that this may be one reason why numerous studies trying to prevent or treat

hypotension during spinal anesthesia for cesarean have failed to define a single ‘one size fits

all’ strategy [87]. Genetics may explain interindividual variation in this area. Additionally

SNPs in the μ-opioid receptor probably influence the pharmacodynamics of intrathecal

fentanyl [88]. These are just a few of the several areas where obstetric anesthesia is

embarking on pharmacogenetic research [87,89].

Pharmacogenetic horizon areas in obstetrics

There are a few other recent studies that highlight some areas where pharmacogenetics may

be utilized in obstetric therapeutics and management. The genetics of preeclampsia have

been analyzed multiple ways. The importance of both maternal and fetal genotype in this

disorder is apparent [90]. The endothelial isoform of nitric oxide synthase may be important

in the manifestations and the treatment of preeclampsia [38]. Smoking cessation is an

important goal of prenatal care. Recent findings that fetal GSTT1 deletion significantly

modifies the effect of smoking on birth weight may open windows into genotype and may

impact therapy for growth restriction [91]. The treatment of gestational diabetes has

undergone many changes in the last decade. The use of oral hypoglycemic agents has

diminished the use of insulin for patients. However, with the recent finding that typical

doses of glyburide for these women may lead to suboptimal drug concentrations [92],

pharmacogenetic impact studies on drug concentration variability are underway.

The patient’s perspective

The uptake of pharmacogenetics in clinical practice has been slow [12]. Much of this is due

to the paucity of data and pharmacogenetic-driven therapeutic trials. However, there is also a

lack of understanding on the part of clinicians. There is also a worry about how to best make

patients understand the science and nuance of pharmacogenetics in relation to their medical

therapy.

As researchers and practitioners postulate about future implementation, it is reassuring to

know that in general, most surveyed populations support collecting biological specimens for

research [93–95]. For pregnant women, the majority would give a specimen for DNA

analysis by either blood (needlestick) or saliva [96]. Making the transition from research to

clinical care, however, is less studied.

In an interesting follow-up study at Motherisk in Toronto, Madadi and colleagues asked

participants in a pharmacogenetic study about the communication of their information back

to them [97]. The diversity and complexity of questions that participants asked the

investigators underscore the need for supportive communication of results in the context of

personalized genetic information counseling. Some of the common suggestions by

participants related to having a short amount of time between the test and the results [97].

This is particularly relevant to pregnancy where decision for therapy cannot wait for several

years (the normal time cycle for research results). In addition, it was commonly brought up
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that genetic screening should be a routine part of prenatal screening or even to be carried out

before pregnancy. The clear message was that patients want to know if their genetic

information may impact their therapy or their babies. While this is only representative of a

small pregnant population, it is an area that will need further work.

Future perspective

Achieving individualized therapy in pregnancy (and in all of medicine) is a reachable goal.

Pharmacogenetics may be one tool to help achieve that goal. However, the current studies in

these areas are underpowered and observational. More data that combine genotypes,

pharmacokinetic information and pharmacodynamic outcomes are crucial to take steps

forward. In particular, the outcomes that need to garner focus for obstetric therapeutics are

the short- and long-term neonatal outcomes. These studies are expensive and difficult but

truly needed to understand if pharmacogenetic-driven therapy is truly a step forward.

Consideration of both maternal and fetal genotypes and building therapeutic models can

help supply clinicians with strategies for treatment. However, they will rely on robust data to

populate and validate the models. Only then will individualized pharmacotherapy in

pregnancy utilizing pharmacogenetics be realized.
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Executive summary

• ‘The right drug at the right dose at the right time for the right patient’ is the ideal

for individualized therapeutics.

• Most pregnant women take therapeutic drugs during their pregnancy.

• There is a paucity of pharmacokinetic and pharmacogenetic studies particularly

relating to pregnant women. This has delayed development in the field.

• Pharmacogenetic tests are used in other areas of medicine to help guide therapy.

These include tests for the drugs cetuximab, abacavir, carbamazepine and

imatinib. Other drugs with information supporting pharmacogenetic testing but

not yet commonly used are tamoxifen, venlafaxine, clopidogrel and warfarin.

• Breastfeeding women who have genotypes expressing CYP2D6 (extensive or

ultrarapid metabolizers) who also have a UGTB7*2 genotype may be at higher

risk for morphine toxicity in their infants. Thus a public health advisory warns

about this potential problem. SNPs in CYP2D6 can also play a role in maternal

pain control from other opioid drugs.

• Antihypertensive drugs such as β-blockers are metabolized through CYP2D6,

which may explain some of the variability in response. Other antihypertensive

drugs are also metabolized through polymorphic enzyme pathways.

• Some studies on SSRIs have found that polymorphisms in CYP450 enzymes

may play a role in their effectiveness. More studies are needed, particularly in

pregnancy relating to neonatal irritability syndrome.

• Preterm labor tocolytics are metabolized by polymorphic pathways or act at

polymorphic receptors. There are limited data regarding the impact of SNPs on

drug concentrations or effect.

• Some polymorphisms in glucocorticoid receptor pathways and CYP450s may be

associated with neonatal respiratory outcomes after antenatal corticosteroid

therapy.

• Drugs used for nausea and vomiting of pregnancy may demonstrate different

responses based on serotonin receptor SNPs.

• Patients have noted that they would like genetic information returned,

particularly if it would impact their future care or their baby’s health.

• There is a continuing imperative for more data combining pharmacokinetics,

pharmacodynamics and pharmacogenetics in order to build optimal therapeutic

models. The focus of these models needs to be on short- and long-term newborn

outcome optimization.
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Table 1

Drug-metabolizing enzymes and selected receptors with known polymorphisms affecting drug concentrations

and/or response and some commonly used drugs in pregnancy that are substrates of that enzyme.

Enzyme/receptor and specific SNP and functional significance Drugs metabolized

CYP2D6
*1/*1 with multiple copies = ultrarapid metabolizer
*4/*4, *4/*5, *5/*5 = poor metabolizer
*1/*1, *1/*2, *2/*2 = extensive metabolizer

Codeine, clonidine, fluoxetine, paroxetine, venlafaxine,
metoprolol, metoclopramide, ondansetron and
promethazine

CYP2C9
*1 = normal enzymatic activity
*3/*3 = decreased enzymatic activity (warfarin dose adjustment needed)

Fluoxetine, glyburide, ibuprofen and warfarin

CYP2C19
*1/*1 = normal enzymatic activity
*17/*17 = ultrarapid metabolizer
*2/*2, *3/*3, *2/*3 = poor metabolizer

Omeprazole and other proton pump inhibitors, phenytoin
and propranolol

CYP3A
CYP3A4*1B = decreased activity
CYP3A5*3 = decreased activity
CYP3A7 = some polymorphisms allow this fetal enzyme to persist into
adulthood

Chlorpheniramine, dexamethasone, indinavir and other
HIV antivirals, methadone, midazolam, nifedipine and
other calcium channel blockers, and propranolol

CYP2B6
*6 = decreased enzymatic activity

Bupropion and methadone

5HT3B receptor variant = high affinity receptor
5HT3A receptor variant = increased expression of subunit

Ondansetron and SSRI drugs

β2 adrenergic receptor
Arg16Gly = enhanced agonist-induced desensitization
Gln27Glu = resistance to desensitization

Ritodrine, terbutaline and hexoprenaline

Glucocorticoid receptor NR3C1
N363S = hypersensitivity
BclI = hypersensitivity

Betamethasone and dexamethasone

GST-P1 Ile105Val = reduced enzyme activity Betamethasone and dexamethasone

List not comprehensive.
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