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Abstract

Brain imaging genetics is an emergent research field where the association between genetic

variations such as single nucleotide polymorphisms (SNPs) and neuroimaging quantitative traits

(QTs) is evaluated. Sparse canonical correlation analysis (SCCA) is a bi-multivariate analysis

method that has the potential to reveal complex multi-SNP-multi-QT associations. Most existing

SCCA algorithms are designed using the soft threshold strategy, which assumes that the features

in the data are independent from each other. This independence assumption usually does not hold

in imaging genetic data, and thus inevitably limits the capability of yielding optimal solutions. We

propose a novel structure-aware SCCA (denoted as S2CCA) algorithm to not only eliminate the

independence assumption for the input data, but also incorporate group-like structure in the model.

Empirical comparison with a widely used SCCA implementation, on both simulated and real

imaging genetic data, demonstrated that S2CCA could yield improved prediction performance and

biologically meaningful findings.

1 Introduction

Brain imaging genetics is an emerging research field aiming to identify associations between

genetic factors such as single nucleotide polymorphisms (SNPs) and quantitative traits

(QTs) extracted from neuroimaging data. While univariate analyses [9] have been widely

used to discover single-SNP-single-QT associations, recent studies have also started to

perform regression analyses [5] to examine the joint effect of multiple SNPs on one or a few
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QTs, and bi-multivariate analyses [4, 6, 10, 12] to examine complex multi-SNP-multi-QT

associations.

Sparse canonical correlation analysis (SCCA) [7, 14] is a bi-multivariate analysis method

that has been applied to both real [6] and simulated [4] imaging genetics data, as well as

other omics data sets [2, 3, 7, 14]. Most existing SCCA algorithms use the soft threshold

strategy for solving the Lasso [7, 14] or group Lasso [4, 6] regularization terms. However,

the soft threshold approach requires the input data X to have an orthonormal design XTX = I
(see Section 10 in [11]), meaning that the features in the data should be independent from

each other. However, for neuroimaging and genetics data, correlation usually exists among

regions of interest (ROIs) in the brain and among linkage disequilibirum (LD) blocks in the

genome. Simply treating the covariance of the input data as an identity or diagonal matrix

will inevitably limit the capability of identifying meaningful imaging genetic associations.

One possible solution to address this issue is to orthogonalize the input data by performing

principal component analysis (PCA) before running SCCA. However, we aim to identify

relevant imaging and genetic markers, and thus prefer a sparse model. The combined PCA

and SCCA strategy cannot achieve this goal, since PCA loadings on the original imaging

and genetic markers are non-sparse.

To overcome this limitation, in this paper, we propose a novel structure-aware SCCA

(denoted as S2CCA) algorithm for brain imaging genetics applications to achieve the

following two goals: (1) our algorithm is not based on the soft threshold framework and

eliminates the independence assumption for the input data; (2) our model can incorporate

group-like structure (e.g., voxels in an ROI, or SNPs in an LD block) to yield more stable

and biologically more meaningful results than conventional SCCA model. We perform an

empirical comparison between the proposed S2CCA algorithm and a widely used SCCA

implementation in the PMD software package (http://cran.r-project.org/web/packages/

PMA/) [14] using both simulated and real imaging genetic data. The empirical results

demonstrate that the proposed S2CCA algorithm can yield improved prediction performance

and biologically meaningful findings.

2 Structure-aware SCCA (S2CCA)

We denote vectors as boldface lowercase letters and matrices as boldface upper-case ones.

For a given matrix M = (mij), we denote its i -th row and j -th column to mi and mj

respectively. Let X = {x1, …, xn}T ⊆ ℜp be the SNP data and Y = {y1, …, yn}T ⊆ ℜq be the

imaging QT data, where n is the number of participants, p and q are the numbers of SNPs

and QTs, respectively. Canonical correlation analysis (CCA) seeks linear combinations of

variables in X and Y which maximize the correlation between Xu and Yv:

(1)

where u and v are canonical vectors or weights. Two major weaknesses of CCA are that it

requires the number of observations n to exceed the combined dimension of X and Y and

that it produces nonsparse u and v which are difficult to interpret. The sparse CCA (SCCA)
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method removes these weaknesses by maximizing the correlation between Xu and Yv
subject to the weight vector constraints P1(u) ≤ c1 and P2(v) ≤ c2. The penalized matrix

decomposition (PMD) toolkit [14] provided a widely used SCCA implementation, where the

L1 penalty  was used for both P1 and P2. As mentioned earlier, similar

to most SCCA methods, PMD employed the soft threshold strategy for solving the L1

penalty term, which required the input data to have an orthonormal design XTX = I and

YTY = I (see Section 10 in [11]). This independence assumption usually does not hold in

imaging genetic data (e.g., correlated voxels in an ROI, correlated SNPs in an LD block),

and thus inevitably limits the capability of identifying meaningful imaging genetic

associations.

To overcome this limitation, we propose a novel structure-aware SCCA (denoted as

S2CCA) algorithm to not only eliminate the independence assumption for the input data, but

also incorporate group-like structure in the model. Instead of using L1, we define a group L1

constraint on P1 and P2 as follows:

(2)

In Eq. (2), SNPs are partitioned into K1 groups , such that , and

mk1 is the number of SNPs in πk1; and imaging QTs are partitioned into K2 groups

, such that , and mk2 is the number of QTs in πk2. || · ||G is the

constraint for the group structure. In this work, we partition voxels using AAL ROIs and

SNPs using LD blocks.

Now the S2CCA objective function can be formally written as follows:

(3)

Using Lagrange multipliers, Eq. (3) can be transformed as follows:

(4)

Taking the derivative about u and v and setting them to zero, we have

(5)
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(6)

where D1 is the block diagonal matrix of the k1-th diagonal block as , and D2 is the

block diagonal matrix of the k2-th diagonal block as .

Algorithm 1

Structure-aware SCCA (S2CCA)

Require.

 X = {x1, …, xn}T, Y = {y1, …, yn}T

Ensure:

 Canonical vectors u and v.

1: t = 1, Initialize ut ∈ ℜp×1, vt ∈ ℜq×1;

2: while not converged do

3:

 Calculate the block diagonal matrix D1t, where the k1-th diagonal is ;

4:

 ut+1 = (β1XTX + γ1D1t)
−1XTYvt/2; Scale ut+1 so that ;

5:

 Calculate the block diagonal matrix D2t, where the k2-th diagonal is ;

6:

 vt+1 = (β2YTY + γ2D2t)
−1YTXut+1/2; Scale vt+1 so that ;

7:  t = t + 1.

8: end while

With v fixed, we can use an approach similar to G-SMuRFS [13] to solve for u. With u
fixed, we can do the same to solve for v. We propose Algorithm 1 to alternatively compute u
and v until the result converges. We use max{|δ| | δ ∈ (ut+1 − ut)} < 10−5 and max{|δ| | δ ∈

(vt+1 − vt)} < 10−5 as stopping criterion, and nested cross-validation to automatically tune

parameters γ1, γ2, β1 and β2.

3 Experimental Results

3.1 Results on Simulation Data

We first performed a comparative study between S2CCA and PMD using simulated data.

We used the following procedure to generate two sets of synthetic data X and Y, both with n

= 1000 and p = q = 50: 1) We created a random positive definite non-overlapping group

structured covariance matrix M. 2) Data set Y with covariance structure M was calculated

through Cholesky decomposition. 3) We repeated the above two steps to generate another

data set X. 4) Canonical loadings u and v were set based on the group structures of X and Y
respectively, where all the variables within the group share the same weights. In this initial

study, for simplicity, we selected only one group in Y to be associated with 4 groups in X. 5)
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The portion of the specified group in Y were replaced based on the u, v, X and the assigned

correlation. We generated 7 pairs of X and Y with correlations ranging from 0.45 to 0.99.

The canonical loadings and group structure remained the same across all the synthetic data

sets.

We applied S2CCA and PMD to all seven data sets. The regularization parameters were

optimally tuned using a grid search from 10−5 to 105 through nested 5-fold cross-validation.

The true and estimated u and v values are shown in Fig. 1. Due to different normalization

strategies, the weights yielded through S2CCA and PMD showed different scales. Yet the

overall profile of the estimated u and v values from S2CCA remained consistent with the

ground truth across the entire range of tested correlation strengths (from 0.45 to 0.99), while

PMD only identified an incomplete portion of all the signals. Furthermore, we also

examined the correlation in the test set computed using the learned CCA models from the

training data for both methods. The left part of Table 1 demonstrates that S2CCA

outperformed PMD consistently and significantly, and it could accurately reveal the

embedded true correlation even in the test data. The right part of Table 1 demonstrates the

sensitivity and specificity performance using area under ROC (AUC), where S2CCA also

significantly outperformed PMD no matter whether the correlation was weak or strong.

From the above results, it can also be observed that S2CCA could identify the correlations

and signal locations not only more accurately but also more stably.

3.2 Results on Real Neuroimaging Genetics Data

S2CCA and PMD were also compared using real neuroimaging and SNP data. The magnetic

resonance imaging (MRI) and SNP data were downloaded from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database. One goal of ADNI has been to test whether serial

MRI, positron emission tomography, other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of mild

cognitive impairment (MCI) and early AD. For up-to-date information, see www.adni-

info.org.

This ADNI study included 176 AD, 363 MCI and 304 healthy control (HC) non-Hispanic

Caucasian participants (Table 2). Structural MRI scans were processed with voxel-based

morphometry (VBM) in SPM8 [1, 8]. Briefly, scans were aligned to a T1-weighted template

image, segmented into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF)

maps, normalized to MNI space, and smoothed with an 8mm FWHM kernel. Rather than

using ROI summary statistics, in this study we subsampled the whole brain and examined

correlations between the voxels (GM density measures) and SNPs. Totally 465 voxels

spanning all brain ROIs were extracted. All SNPs within LD block of APOE e4 were

extracted from an imputed genetic data set containing only SNPs in Illumina 610Q and/or

OmniExpress arrays after basic quality control. As a result, four SNPs (rs429358, rs439401,

rs445925, rs534007) from this LD block were included in this study. Using the regression

weights derived from the healthy control participants, VBM and genetic measures were pre-

adjusted for removing the effects of the baseline age, gender, education, and handedness.

Both S2CCA and PMD were performed on the normalized VBM and SNP measurements.

Similar to the previous analysis, 5-fold nested cross-validation was applied to optimally tune
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the parameters. Table 3 shows 5-fold cross-validation canonical correlation results,

indicating that S2CCA significantly and consistently outperformed PMD in terms of

identifying high correlations from the training data and replicating those in the testing data.

Shown in Fig. 2(a) are the canonical loadings trained from 5-fold cross-validation,

suggesting relevant imaging and genetic markers. Although the S2CCA model did not

explicitly impose sparsity on individual voxels, it was still able to discover a very small

number of relevant ROIs for easy interpretation due to the imposed group sparsity. The

strongest imaging signals came from the right hippocampus, which were inversely

correlated with APOE e4 allele rs429358. In contrast, despite the flat sparsity design, PMD

identified many more ROIs than S2CCA (Fig. 2(ab)), making results hard to interpret. In

addition, comparing the results from 5 cross-validation trials, S2CCA yielded a more stable

and consistent pattern than PMD. It is reassuring that S2CCA identified a well-known

correlation between hippocampal morphometry and APOE in an AD cohort, which shows

the promise of S2CCA to correctly identify biologically meaningful imaging genetic

associations.

4 Conclusions

Most existing SCCA algorithms (e.g., [4, 6, 7, 12, 14]) are designed using the soft threshold

strategy, which assumes that the features in the data are independent from each other. This

independence assumption usually does not hold in imaging genetic data, and thus limits the

capability of yielding optimal results. We have proposed a novel structure-aware sparse

canonical correlation analysis (S2CCA) algorithm, which not only removes the above

independence assumption, but also takes into consideration group-like structure in the data.

We have compared S2CCA with PMD (a widely used SCCA implementation) on both

synthetic data and real imaging genetic data. The promising empirical results demonstrate

that S2CCA significantly outperformed PMD in both cases. In addition, S2CCA accurately

recovered the true signals from the synthetic data and yielded improved canonical

correlation performance and biologically meaningful findings from real data. This study is

an initial attempt to remove the feature independence assumption many existing SCCA

methods have. Since joint multivariate modeling of imaging genetic data is computationally

and statistically challenging, we downsampled our data via a targeted APOE analysis to

reduce computational burden and overfitting risk. The S2CCA sparsity was designed to

reduce model complexity and further overcome overfitting. Future directions include

evaluating S2CCA using more realistic settings and expanding S2CCA to address efficiency

and scalability.
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Fig. 1.
5-fold trained weights of u and v. Ground truth of u and v are shown in the most left two

panels. S2CCA results (top row) and PMD results (bottom row) are shown in the remaining

panels, corresponding to true correlation coefficients (CCs) ranging from 0.45 to 0.99. For

each panel pair, the five estimated u values are shown on the left panel, and the five

estimated v values are shown on the right panel.
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Fig. 2.
Comparison of S2CCA and PMD canonical vectors in cross-validation trials: (a) 5-fold

canonical loadings of u and v on 4 APOE SNPs and 465 VBM measures; (b) mapping the

average of imaging canonical loadings v of 5 cross-validation trials onto the brain.

Du et al. Page 9

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Du et al. Page 10

T
ab

le
 1

Fi
ve

-f
ol

d 
cr

os
s-

va
lid

at
io

n 
pe

rf
or

m
an

ce
 o

n 
sy

nt
he

tic
 d

at
a:

 m
ea

n±
st

d 
is

 s
ho

w
n 

fo
r 

es
tim

at
ed

 c
or

re
la

tio
n 

co
ef

fi
ci

en
ts

 a
nd

 A
U

C
 o

f 
th

e 
te

st
 d

at
a 

us
in

g 
th

e

tr
ai

ne
d 

m
od

el
. P

-v
al

ue
 o

f 
pa

ir
ed

 t-
te

st
 b

et
w

ee
n 

S2
C

C
A

 a
nd

 P
M

D
 r

es
ul

ts
 is

 a
ls

o 
sh

ow
n.

T
ru

e 
C

C

C
or

re
la

ti
on

 C
oe

ff
ic

ie
nt

 (
C

C
)

A
re

a 
un

de
r 

R
O

C
 (

A
U

C
)

S2
C

C
A

P
M

D
p

S2
C

C
A

:u
P

M
D

:u
p

S2
C

C
A

:v
P

M
D

:v
p

0.
44

5
0.

42
±

0.
05

0.
27

±
0.

08
7E

-4
1.

00
±

0
0.

68
±

0.
02

4E
-6

1.
00

±
0

0.
84

±
0.

02
4E

-5

0.
52

6
0.

48
±

0.
04

0.
32

±
0.

11
4E

-3
1.

00
±

0
0.

66
±

0.
01

3E
-7

1.
00

±
0

0.
87

±
0.

06
3E

-3

0.
59

4
0.

56
±

0.
07

0.
39

±
0.

12
2E

-3
1.

00
±

0
0.

64
±

0.
01

3E
-7

1.
00

±
0

0.
81

±
0.

05
7E

-4

0.
69

7
0.

67
±

0.
01

0.
47

±
0.

07
2E

-3
0.

94
±

0.
02

0.
66

±
0.

03
6E

-5
1.

00
±

0
0.

85
±

0.
04

3E
-4

0.
81

4
0.

80
±

0.
04

0.
49

±
0.

06
7E

-5
0.

98
±

0.
02

0.
63

±
0.

01
1E

-6
1.

00
±

0
0.

83
±

0.
04

5E
-4

0.
90

6
0.

90
±

0.
01

0.
56

±
0.

06
9E

-5
1.

00
±

0
0.

66
±

0.
01

4E
-7

1.
00

±
0

0.
82

±
0.

04
4E

-4

1.
00

0
0.

99
±

0.
00

0.
65

±
0.

04
2E

-5
1.

00
±

0
0.

66
±

0.
01

3E
-7

1.
00

±
0

0.
86

±
0.

07
4E

-3

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 January 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Du et al. Page 11

Table 2

Participant characteristics.

HC MCI AD

Num 304 363 176

Gender(M/F) 111/193 235/128 95/81

Handedness(R/L) 190/14 329/34 166/10

Age (mean±std) 76.07±4.99 74.88±7.37 75.60±7.50

Education (mean±std) 16.15±2.73 15.72±2.30 14.84±3.12
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