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Abstract

Many recent scientific efforts have been devoted to constructing the human connectome using

Diffusion Tensor Imaging (DTI) data for understanding the large-scale brain networks that

underlie higher-level cognition in human. However, suitable computational network analysis tools

are still lacking in human connectome research. To address this problem, we propose a novel

multi-graph min-max cut model to detect the consistent network modules from the brain

connectivity networks of all studied subjects. A new multi-graph MinMax cut model is introduced

to solve this challenging computational neuroscience problem and the efficient optimization

algorithm is derived. In the identified connectome module patterns, each network module shows

similar connectivity patterns in all subjects, which potentially associate to specific brain functions

shared by all subjects. We validate our method by analyzing the weighted fiber connectivity

networks. The promising empirical results demonstrate the effectiveness of our method.

1 Introduction

Advent of diffusion MRI technology has made tremendous progress over the last decade [2]

and enables us to use Diffusion Tensor Imaging (DTI) for non-invasive in vivo white matter

mapping of the human brain by the inference of axonal fiber pathways from local water

diffusion [4]. DTI combined with tractography allows the reconstruction of the major fiber

bundles in the brain and also permits the mapping of white matter cortico-cortical and

cortico-subcortical projections at high spatial resolution. These studies enable the analysis of

the human connectome as organizational principle of the central nervous system.

Understanding the structural basis of functional connectivity patterns requires a

comprehensive map of structural connection of the human brain, which has been

conceptualized as the human connectome [10]. A connectome is a comprehensive

description of the network elements and connections that form the brain. Such clear and

comprehensive knowledge of anatomical connections lies at the basis of understanding
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network functions. The connectome can be represented as a large interconnected graph, in

which nodes are neuroanatomical regions and synapses are bundles of white matter tracts.

The resultant networks exhibit important topological properties such as small-worldness and

highly connected hub regions in the posterior medial cortical regions. These studies have

accelerated our understandings of human connectome.

Although many network and graph analysis tools have been applied to human connectome

studies, most of them focus on analyzing the connectome of each subject individually. How

to find the consistent network module patterns (connectome modules) from a group of

subjects (i.e. a set of regions are connected by similar density of nerve fibers in all subjects)

under the same condition (e.g. normal or Alzheimer) is important to understand the

underlying brain structural and functional mechanisms. The existing research work mainly

used the average connectivity networks of all subjects to seek the consistent network

modules, however, this straightforward method can easily fail to many conditions. For

example, one or two subjects have very strong signals connecting two brain regions, but the

rest of subjects have small values on this connectivity. The average connectivity value of all

subjects between these two regions can still be large, which indicates a wrong connectivity

pattern.

To solve this challenging problem, we propose a novel multi-graph MinMax cut model to

identify the consistent network patterns from brain connectivity networks of a group of

subjects. Our new approach does the min-max cut on each connectivity network

simultaneously. The common connectome patterns are then detected from the dense

connected modules. We introduce a new projected gradient optimization algorithm to solve

the proposed multi-graph MinMax cut objective. By analyzing the weighted fiber

connectivity network from 50 young male adults, we identify six consistent network

modules which consistently carry high connectivity among all the subjects. These

connectome module patterns potentially associate to the common brain functions shared by

all subjects.

2 Methodology

2.1 Consistent Connectivity Patterns

The brain connectome of each subject can be represented as a graph A, in which each node

is an ROI (region of interest) in human brain and the weight of each edge is the density of

the nerve fibers connecting a pair of nodes. In next section, we will describe the details of

brain network construction. Given a group of m subjects under the same condition with n

ROIs, we can denote their connectivity networks as A1, A2, ···, Am, where Ak ∈ ℜn×n and 

denotes the connectivity of the i-th ROI and the j-th ROI in the k-th subject, k = 1, ···, m, 1 ≤

i, j ≤ n.

It is important to discover the common consistent connectivity patterns, i.e. a set of ROIs

connected by similar density of nerve fibers in all subjects, which are potentially associated

to the underlying brain structural and functional mechanisms shared by the subjects. Thus,

our goal is to detect the sub-networks which have similar connectivity structures in all or

most A1, A2, ···, Am.
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Although there are many graph cut methods to group nodes in the graph, these approaches

only work for single graph and cannot find the common connectome patterns. Thus, we

propose a novel multi-graph MinMax cut model to group nodes based on their structures in

all connectivity networks.

2.2 Multi-Graph MinMax Cut

Given a graph with weight matrix A ∈ ℜn×n, there are many graph cut methods to group

nodes, such as Min Cut, Ratio Cut, Normalized Cut, and MinMax Cut. The MinMax cut can

provide the balanced group results to avoid grouping the outlier data together. Thus,

MinMax cut is preferred to group nodes in connectome data analysis. However, the

traditional MinMax cut only works for single graph. To solve the multiple networks

problem, we propose a novel multi-graph MinMax cut model for grouping nodes on

multiple graphs simultaneously.

Let Av ∈ ℜn×n denote the v-th network, and Dv are diagonal matrices whose diagonal

elements are . When we perform MinMax cut on the v-th network, we can minimize

the following spectral relaxed objective [9]:

(1)

where  is the group indicator matrix for the v-th network and K is

the number of groups.

The straightforward way to group ROIs on all networks is to average the corresponding edge

weights to build a new “ensemble” network, and perform the MinMax cut on the new

network. However, in such method, some networks have very strong signals in local ROIs

will dominate the average network and lead to the wrong connectivity patterns. It is ideal to

simultaneously perform the MinMax cut on each network and unify their consistent results.

When the multi-graph MinMax algorithm is performed on all networks, the grouping results

in different networks should be unique, i.e. the group indicator matrices Q(v) of different

networks should share the same one. Therefore, in multi-graph MinMax, we force the group

assignment matrices to be the same across different networks, that is, the consensus common

group indicator matrix Q ∈ ℜn×K. Our new Multi-Graph MinMax Cut model (MGMMC) is

to solve the following objective:

(2)

where m is number of connectivity networks, K is number of clusters. The proposed model

is capable of capturing the connectome structures from different networks, and thus

expected to get consistent connectivity patterns. It is difficult to solve the objective in Eq.

(2) because of the orthonormality constraints. We will derive our optimization algorithm

using the projected gradient descent method.
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Taking derivative on J(Q) w.r.t. qk, we get:

We denote:

where diag(x) represents a diagonal matrix whose diagonal elements are the elements in

vector x.

So Eq. (3) can be rewritten as:

(3)

Because we have the orthonormal constraint QTQ = I in objective, we can use the projected

gradient descent method to solve this problem. Given Q, we calculate a new variable H by:

(4)

When H is fixed, we need to solve the following constrained optimization problem:

(5)

Because

(6)

and QTQ = I, and H is fixed, problem (5) is equivalent to solve the following problem:

(7)

If the SVD result of H is : H = UΣVT, then the optimal solution of problem (7) can be

obtained by:

(8)
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where UK is composed of the first K columns of U. Thus, we can iteratively solve H using

Eq. (4) and update Q by Eq. (8) till convergence.

3 Human Brain Connectivity Network Construction

In our project, participants included 50 healthy young male adults (age: 24.0 ± 3.2) with no

history of neurological or psychiatric disorder. The MRI scans were acquired on a Siemens

3T TIM Trio (Erlangen, Germany) using a 12-channel receive only phased array head coil in

combination with a body coil for radio frequency transmission. A SE-EPI DTI sequence was

applied using parameters: matrix= 128 × 128; FOV= 256 × 256mm; TE/TR=77/8300 ms; 68

transversal slices with 2mm thickness; 48 diffusion directions with gradients b=1000s/mm2,

and 8 samplings at b=0. Each session also included a high resolution T1-weighted MP-

RAGE imaging as anatomical reference for subsequent parcellation and co-registration.

The DTI data are analyzed in FSL4. DTI preprocessing includes correction for motion and

eddy current effects in DTI images. The processed DTI images are then output to Diffusion

Toolkit (http://trackvis.org/) for fiber tracking, using the streamline tractography algorithm

called FACT (fiber assignment by continuous tracking). The FACT algorithm initializes

tracks from many seed points and propagates these tracks along the vector of the largest

principle axis within each voxel until certain termination criteria are met. In our study, stop

angle threshold is set to 35 degree, which means if the angle change between two voxels is

greater than 35 degree, the tracking process stops. A spline filtering is then applied to

smooth the tracks.

Anatomical parcellation is performed using FreeSurfer 5.15 [7, 5, 6] on the high-resolution

T1-weighted anatomical MRI scan acquired with MP-RAGE sequence. The parcellation is

an automated operation on each subject to obtain 82 gyral-based ROIs, with 41 cortical

ROIs in each hemisphere, one in brainstem. The T1-weighted MRI image is registered to the

low resolution b0 image of DTI data using the FLIRT toolbox in FSL, and the warping

parameters are applied to the ROIs so that a new set of ROIs in the DTI image space are

created. These new ROIs are used for constructing the structural network.

The topological representation of a network is a collection of nodes and edges between pairs

of nodes. In constructing the weighted, undirected network, the nodes are chosen to be the

83 registered ROIs obtained from FreeSurfer parcellation. Three different schemes [8, 3] are

used to define the edge weight as follows: 1) Weighted: The density of the fibers connecting

a pair of nodes, which is the number of tracks between two ROIs divided by the mean

volume of the two ROIs; 2) Fiber number: the number of tracks between two ROIs; 3) Fiber

length: the length of tracks between two ROIs. Figure 1 shows the pipeline for constructing

brain connectivity networks in our experiments.

4http://www.fmrib.ox.ac.uk/fsl.html
5http://surfer.nmr.mgh.harvard.edu/
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4 Experiments and Discussions

4.1 Experiment Setup

We apply our MGMMC model on the 50 connectivity networks. The parameter group

number K is set as 10, and the stepsize τ is set as 0.001 for all experiments. We use the

normalized connectivity measure of connectome modules to evaluate the density of detected

modules:

(9)

where Btt represents the normalized connectivity of the t-th connectome module, m is the

total number of networks used in experiments, nt is the cardinality of the t-th module Ct (Ct

is the set of ROIs contained in the t-th cluster), i.e. the number of ROIs in t-th module Ct.

 is the connectivity measure of the t-th module in the v-th network.

4.2 Comparison of Connectivity Measures

To demonstrate the effectiveness of our MGMMC model, we compare MGMMC with two

methods:

1.
MMC performed on the average network, where .

2. Multi-Modal Spectral Clustering (MMSC)[1], which integrates data from different

modality/view to perform spectral clustering.

The connectivity measure are reported in Table 1 and in Figure 2. We can conclude that: for

all three types of graph (W, LL, NF), the average connectivity measurements of top 6

modules detected by our MGMMC model are greater than that of modules detected using

the two comparison methods. This justifies the effectiveness and advantage of our MGMMC

model, which considers the connectivity structures in different graphs. T-test is performed to

evaluate the significance of difference of the module connectivity. The p values of the T-test

for the six pair comparisons (W, W _avg), (W, W _mmsc), (LL, LL _avg), (LL, LL _mmsc),

(NF, NF _avg), (NF, NF _mmsc) are 0.14, 0.04, 0.04, 0.008, 0.03, 0.03. Five out of the six p

values are less than 0.05, which means the difference of most of the six pair comparisons are

significant in all cases except one. We can also see from Table 1 that: the average

connectivity measures of detected connectome modules by using weighted network is the

best among three types of networks, and the fiber length (LL) network gets the worst

connectivity measures. This shows that the weighted network is the best connectivity

measurement.

4.3 Visualization of Detected Modules

We visualize the top 6 connectome modules using weight network detected by MGMMC

model in Figure 4.3. Only the first 24 subjects are shown due to space limitation. ROIs

contained in each connectome module are listed on the left-side in Figure 4.3. We can see

that three pairs of modules are almost symmetric except for one ROI in each pair: module 1

and module 2, module 3 and module 6, module 4 and module 5. This shows that each
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connectome module has its counterpart in the other half brain. In Figure 4, we visualize the

location of the top 6 connectome modules in human brain.

5 Conclusion

In this paper, we proposed a novel brain connectivity network analysis method by

employing the new multi-graph MinMax cut model to identify the consistent connectivity

patterns from multiple subjects. We introduced an efficient algorithm to discover such

connectivity patterns that are potentially associated to different brain functions of humans.

The clinical DTI data were used to construct the brain connectivity networks to validate our

methods. Several important highly connected sub-network modules were detected.
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Fig. 1.
Construction of structural connectivity network: (a) Fiber extraction via DTI tractograohy.

(b) ROI definition via brain segmentation and cortical parcellation on MP-RAGE scan. (c)

Creation of connectivity matrix A, where A(i, j) stores the connectivity measure between

ROI i and ROI j. (d) Visualization of connectivity matrix as a brain network.
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Fig. 2.
The connectivity measure comparisons for three methods.
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Fig. 3.
The top 6 connectome modules discovered by our MGMMC model. ROIs contained in each

connectome module are listed on the left-side. The edge between two nodes denotes there is

connection between these two ROIs. Zoom in for clear view.
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Fig. 4.
Location visualization of top 6 connectome modules discovered by MGMMC model from

top, bottom, right, left views.
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